mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-15 17:14:00 +08:00
412c8f7de0
radeon must load only after amdkfd's loading has been completed. If that is not enforced, then radeon's call into amdkfd's functions will cause a kernel BUG. When radeon and amdkfd are built as kernel modules, that rule is enforced by the kernel's modules loading mechanism. When radeon and amdkfd are built inside the kernel image, that rule is enforced by ordering in the drm Makefile (amdkfd before radeon). Instead of using drm Makefile ordering, we can now use deferred loading as amdkfd now returns -EPROBE_DEFER in kgd2kfd_init() when it is not yet loaded. This patch defers radeon loading by propagating -EPROBE_DEFER to the kernel's drivers loading infrastructure. That will put radeon into the pending drivers list (see description in dd.c). Once amdkfd is loaded, a call to kgd2kfd_init() will return successfully and radeon will be able to load. Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com> Reviewed-by: Alex Deucher <alexander.deucher@amd.com>
863 lines
22 KiB
C
863 lines
22 KiB
C
/*
|
|
* Copyright 2014 Advanced Micro Devices, Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/fdtable.h>
|
|
#include <linux/uaccess.h>
|
|
#include <drm/drmP.h>
|
|
#include "radeon.h"
|
|
#include "cikd.h"
|
|
#include "cik_reg.h"
|
|
#include "radeon_kfd.h"
|
|
#include "radeon_ucode.h"
|
|
#include <linux/firmware.h>
|
|
#include "cik_structs.h"
|
|
|
|
#define CIK_PIPE_PER_MEC (4)
|
|
|
|
static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
|
|
TCP_WATCH0_ADDR_H, TCP_WATCH0_ADDR_L, TCP_WATCH0_CNTL,
|
|
TCP_WATCH1_ADDR_H, TCP_WATCH1_ADDR_L, TCP_WATCH1_CNTL,
|
|
TCP_WATCH2_ADDR_H, TCP_WATCH2_ADDR_L, TCP_WATCH2_CNTL,
|
|
TCP_WATCH3_ADDR_H, TCP_WATCH3_ADDR_L, TCP_WATCH3_CNTL
|
|
};
|
|
|
|
struct kgd_mem {
|
|
struct radeon_bo *bo;
|
|
uint64_t gpu_addr;
|
|
void *cpu_ptr;
|
|
};
|
|
|
|
|
|
static int alloc_gtt_mem(struct kgd_dev *kgd, size_t size,
|
|
void **mem_obj, uint64_t *gpu_addr,
|
|
void **cpu_ptr);
|
|
|
|
static void free_gtt_mem(struct kgd_dev *kgd, void *mem_obj);
|
|
|
|
static uint64_t get_vmem_size(struct kgd_dev *kgd);
|
|
static uint64_t get_gpu_clock_counter(struct kgd_dev *kgd);
|
|
|
|
static uint32_t get_max_engine_clock_in_mhz(struct kgd_dev *kgd);
|
|
static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
|
|
|
|
/*
|
|
* Register access functions
|
|
*/
|
|
|
|
static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
|
|
uint32_t sh_mem_config, uint32_t sh_mem_ape1_base,
|
|
uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
|
|
|
|
static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
|
|
unsigned int vmid);
|
|
|
|
static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
|
|
uint32_t hpd_size, uint64_t hpd_gpu_addr);
|
|
static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
|
|
static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
|
|
uint32_t queue_id, uint32_t __user *wptr);
|
|
static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd);
|
|
static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
|
|
uint32_t pipe_id, uint32_t queue_id);
|
|
|
|
static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type,
|
|
unsigned int timeout, uint32_t pipe_id,
|
|
uint32_t queue_id);
|
|
static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
|
|
static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
|
|
unsigned int timeout);
|
|
static int kgd_address_watch_disable(struct kgd_dev *kgd);
|
|
static int kgd_address_watch_execute(struct kgd_dev *kgd,
|
|
unsigned int watch_point_id,
|
|
uint32_t cntl_val,
|
|
uint32_t addr_hi,
|
|
uint32_t addr_lo);
|
|
static int kgd_wave_control_execute(struct kgd_dev *kgd,
|
|
uint32_t gfx_index_val,
|
|
uint32_t sq_cmd);
|
|
static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
|
|
unsigned int watch_point_id,
|
|
unsigned int reg_offset);
|
|
|
|
static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
|
|
static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
|
|
uint8_t vmid);
|
|
static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
|
|
|
|
static const struct kfd2kgd_calls kfd2kgd = {
|
|
.init_gtt_mem_allocation = alloc_gtt_mem,
|
|
.free_gtt_mem = free_gtt_mem,
|
|
.get_vmem_size = get_vmem_size,
|
|
.get_gpu_clock_counter = get_gpu_clock_counter,
|
|
.get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
|
|
.program_sh_mem_settings = kgd_program_sh_mem_settings,
|
|
.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
|
|
.init_pipeline = kgd_init_pipeline,
|
|
.init_interrupts = kgd_init_interrupts,
|
|
.hqd_load = kgd_hqd_load,
|
|
.hqd_sdma_load = kgd_hqd_sdma_load,
|
|
.hqd_is_occupied = kgd_hqd_is_occupied,
|
|
.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
|
|
.hqd_destroy = kgd_hqd_destroy,
|
|
.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
|
|
.address_watch_disable = kgd_address_watch_disable,
|
|
.address_watch_execute = kgd_address_watch_execute,
|
|
.wave_control_execute = kgd_wave_control_execute,
|
|
.address_watch_get_offset = kgd_address_watch_get_offset,
|
|
.get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
|
|
.get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
|
|
.write_vmid_invalidate_request = write_vmid_invalidate_request,
|
|
.get_fw_version = get_fw_version
|
|
};
|
|
|
|
static const struct kgd2kfd_calls *kgd2kfd;
|
|
|
|
int radeon_kfd_init(void)
|
|
{
|
|
int ret;
|
|
|
|
#if defined(CONFIG_HSA_AMD_MODULE)
|
|
int (*kgd2kfd_init_p)(unsigned, const struct kgd2kfd_calls**);
|
|
|
|
kgd2kfd_init_p = symbol_request(kgd2kfd_init);
|
|
|
|
if (kgd2kfd_init_p == NULL)
|
|
return -ENOENT;
|
|
|
|
ret = kgd2kfd_init_p(KFD_INTERFACE_VERSION, &kgd2kfd);
|
|
if (ret) {
|
|
symbol_put(kgd2kfd_init);
|
|
kgd2kfd = NULL;
|
|
}
|
|
|
|
#elif defined(CONFIG_HSA_AMD)
|
|
ret = kgd2kfd_init(KFD_INTERFACE_VERSION, &kgd2kfd);
|
|
if (ret)
|
|
kgd2kfd = NULL;
|
|
|
|
#else
|
|
ret = -ENOENT;
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
void radeon_kfd_fini(void)
|
|
{
|
|
if (kgd2kfd) {
|
|
kgd2kfd->exit();
|
|
symbol_put(kgd2kfd_init);
|
|
}
|
|
}
|
|
|
|
void radeon_kfd_device_probe(struct radeon_device *rdev)
|
|
{
|
|
if (kgd2kfd)
|
|
rdev->kfd = kgd2kfd->probe((struct kgd_dev *)rdev,
|
|
rdev->pdev, &kfd2kgd);
|
|
}
|
|
|
|
void radeon_kfd_device_init(struct radeon_device *rdev)
|
|
{
|
|
if (rdev->kfd) {
|
|
struct kgd2kfd_shared_resources gpu_resources = {
|
|
.compute_vmid_bitmap = 0xFF00,
|
|
|
|
.first_compute_pipe = 1,
|
|
.compute_pipe_count = 4 - 1,
|
|
};
|
|
|
|
radeon_doorbell_get_kfd_info(rdev,
|
|
&gpu_resources.doorbell_physical_address,
|
|
&gpu_resources.doorbell_aperture_size,
|
|
&gpu_resources.doorbell_start_offset);
|
|
|
|
kgd2kfd->device_init(rdev->kfd, &gpu_resources);
|
|
}
|
|
}
|
|
|
|
void radeon_kfd_device_fini(struct radeon_device *rdev)
|
|
{
|
|
if (rdev->kfd) {
|
|
kgd2kfd->device_exit(rdev->kfd);
|
|
rdev->kfd = NULL;
|
|
}
|
|
}
|
|
|
|
void radeon_kfd_interrupt(struct radeon_device *rdev, const void *ih_ring_entry)
|
|
{
|
|
if (rdev->kfd)
|
|
kgd2kfd->interrupt(rdev->kfd, ih_ring_entry);
|
|
}
|
|
|
|
void radeon_kfd_suspend(struct radeon_device *rdev)
|
|
{
|
|
if (rdev->kfd)
|
|
kgd2kfd->suspend(rdev->kfd);
|
|
}
|
|
|
|
int radeon_kfd_resume(struct radeon_device *rdev)
|
|
{
|
|
int r = 0;
|
|
|
|
if (rdev->kfd)
|
|
r = kgd2kfd->resume(rdev->kfd);
|
|
|
|
return r;
|
|
}
|
|
|
|
static int alloc_gtt_mem(struct kgd_dev *kgd, size_t size,
|
|
void **mem_obj, uint64_t *gpu_addr,
|
|
void **cpu_ptr)
|
|
{
|
|
struct radeon_device *rdev = (struct radeon_device *)kgd;
|
|
struct kgd_mem **mem = (struct kgd_mem **) mem_obj;
|
|
int r;
|
|
|
|
BUG_ON(kgd == NULL);
|
|
BUG_ON(gpu_addr == NULL);
|
|
BUG_ON(cpu_ptr == NULL);
|
|
|
|
*mem = kmalloc(sizeof(struct kgd_mem), GFP_KERNEL);
|
|
if ((*mem) == NULL)
|
|
return -ENOMEM;
|
|
|
|
r = radeon_bo_create(rdev, size, PAGE_SIZE, true, RADEON_GEM_DOMAIN_GTT,
|
|
RADEON_GEM_GTT_WC, NULL, NULL, &(*mem)->bo);
|
|
if (r) {
|
|
dev_err(rdev->dev,
|
|
"failed to allocate BO for amdkfd (%d)\n", r);
|
|
return r;
|
|
}
|
|
|
|
/* map the buffer */
|
|
r = radeon_bo_reserve((*mem)->bo, true);
|
|
if (r) {
|
|
dev_err(rdev->dev, "(%d) failed to reserve bo for amdkfd\n", r);
|
|
goto allocate_mem_reserve_bo_failed;
|
|
}
|
|
|
|
r = radeon_bo_pin((*mem)->bo, RADEON_GEM_DOMAIN_GTT,
|
|
&(*mem)->gpu_addr);
|
|
if (r) {
|
|
dev_err(rdev->dev, "(%d) failed to pin bo for amdkfd\n", r);
|
|
goto allocate_mem_pin_bo_failed;
|
|
}
|
|
*gpu_addr = (*mem)->gpu_addr;
|
|
|
|
r = radeon_bo_kmap((*mem)->bo, &(*mem)->cpu_ptr);
|
|
if (r) {
|
|
dev_err(rdev->dev,
|
|
"(%d) failed to map bo to kernel for amdkfd\n", r);
|
|
goto allocate_mem_kmap_bo_failed;
|
|
}
|
|
*cpu_ptr = (*mem)->cpu_ptr;
|
|
|
|
radeon_bo_unreserve((*mem)->bo);
|
|
|
|
return 0;
|
|
|
|
allocate_mem_kmap_bo_failed:
|
|
radeon_bo_unpin((*mem)->bo);
|
|
allocate_mem_pin_bo_failed:
|
|
radeon_bo_unreserve((*mem)->bo);
|
|
allocate_mem_reserve_bo_failed:
|
|
radeon_bo_unref(&(*mem)->bo);
|
|
|
|
return r;
|
|
}
|
|
|
|
static void free_gtt_mem(struct kgd_dev *kgd, void *mem_obj)
|
|
{
|
|
struct kgd_mem *mem = (struct kgd_mem *) mem_obj;
|
|
|
|
BUG_ON(mem == NULL);
|
|
|
|
radeon_bo_reserve(mem->bo, true);
|
|
radeon_bo_kunmap(mem->bo);
|
|
radeon_bo_unpin(mem->bo);
|
|
radeon_bo_unreserve(mem->bo);
|
|
radeon_bo_unref(&(mem->bo));
|
|
kfree(mem);
|
|
}
|
|
|
|
static uint64_t get_vmem_size(struct kgd_dev *kgd)
|
|
{
|
|
struct radeon_device *rdev = (struct radeon_device *)kgd;
|
|
|
|
BUG_ON(kgd == NULL);
|
|
|
|
return rdev->mc.real_vram_size;
|
|
}
|
|
|
|
static uint64_t get_gpu_clock_counter(struct kgd_dev *kgd)
|
|
{
|
|
struct radeon_device *rdev = (struct radeon_device *)kgd;
|
|
|
|
return rdev->asic->get_gpu_clock_counter(rdev);
|
|
}
|
|
|
|
static uint32_t get_max_engine_clock_in_mhz(struct kgd_dev *kgd)
|
|
{
|
|
struct radeon_device *rdev = (struct radeon_device *)kgd;
|
|
|
|
/* The sclk is in quantas of 10kHz */
|
|
return rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.sclk / 100;
|
|
}
|
|
|
|
static inline struct radeon_device *get_radeon_device(struct kgd_dev *kgd)
|
|
{
|
|
return (struct radeon_device *)kgd;
|
|
}
|
|
|
|
static void write_register(struct kgd_dev *kgd, uint32_t offset, uint32_t value)
|
|
{
|
|
struct radeon_device *rdev = get_radeon_device(kgd);
|
|
|
|
writel(value, (void __iomem *)(rdev->rmmio + offset));
|
|
}
|
|
|
|
static uint32_t read_register(struct kgd_dev *kgd, uint32_t offset)
|
|
{
|
|
struct radeon_device *rdev = get_radeon_device(kgd);
|
|
|
|
return readl((void __iomem *)(rdev->rmmio + offset));
|
|
}
|
|
|
|
static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
|
|
uint32_t queue, uint32_t vmid)
|
|
{
|
|
struct radeon_device *rdev = get_radeon_device(kgd);
|
|
uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
|
|
|
|
mutex_lock(&rdev->srbm_mutex);
|
|
write_register(kgd, SRBM_GFX_CNTL, value);
|
|
}
|
|
|
|
static void unlock_srbm(struct kgd_dev *kgd)
|
|
{
|
|
struct radeon_device *rdev = get_radeon_device(kgd);
|
|
|
|
write_register(kgd, SRBM_GFX_CNTL, 0);
|
|
mutex_unlock(&rdev->srbm_mutex);
|
|
}
|
|
|
|
static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
|
|
uint32_t queue_id)
|
|
{
|
|
uint32_t mec = (++pipe_id / CIK_PIPE_PER_MEC) + 1;
|
|
uint32_t pipe = (pipe_id % CIK_PIPE_PER_MEC);
|
|
|
|
lock_srbm(kgd, mec, pipe, queue_id, 0);
|
|
}
|
|
|
|
static void release_queue(struct kgd_dev *kgd)
|
|
{
|
|
unlock_srbm(kgd);
|
|
}
|
|
|
|
static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
|
|
uint32_t sh_mem_config,
|
|
uint32_t sh_mem_ape1_base,
|
|
uint32_t sh_mem_ape1_limit,
|
|
uint32_t sh_mem_bases)
|
|
{
|
|
lock_srbm(kgd, 0, 0, 0, vmid);
|
|
|
|
write_register(kgd, SH_MEM_CONFIG, sh_mem_config);
|
|
write_register(kgd, SH_MEM_APE1_BASE, sh_mem_ape1_base);
|
|
write_register(kgd, SH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
|
|
write_register(kgd, SH_MEM_BASES, sh_mem_bases);
|
|
|
|
unlock_srbm(kgd);
|
|
}
|
|
|
|
static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
|
|
unsigned int vmid)
|
|
{
|
|
/*
|
|
* We have to assume that there is no outstanding mapping.
|
|
* The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0
|
|
* because a mapping is in progress or because a mapping finished and
|
|
* the SW cleared it.
|
|
* So the protocol is to always wait & clear.
|
|
*/
|
|
uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
|
|
ATC_VMID_PASID_MAPPING_VALID_MASK;
|
|
|
|
write_register(kgd, ATC_VMID0_PASID_MAPPING + vmid*sizeof(uint32_t),
|
|
pasid_mapping);
|
|
|
|
while (!(read_register(kgd, ATC_VMID_PASID_MAPPING_UPDATE_STATUS) &
|
|
(1U << vmid)))
|
|
cpu_relax();
|
|
write_register(kgd, ATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
|
|
|
|
/* Mapping vmid to pasid also for IH block */
|
|
write_register(kgd, IH_VMID_0_LUT + vmid * sizeof(uint32_t),
|
|
pasid_mapping);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
|
|
uint32_t hpd_size, uint64_t hpd_gpu_addr)
|
|
{
|
|
uint32_t mec = (pipe_id / CIK_PIPE_PER_MEC) + 1;
|
|
uint32_t pipe = (pipe_id % CIK_PIPE_PER_MEC);
|
|
|
|
lock_srbm(kgd, mec, pipe, 0, 0);
|
|
write_register(kgd, CP_HPD_EOP_BASE_ADDR,
|
|
lower_32_bits(hpd_gpu_addr >> 8));
|
|
write_register(kgd, CP_HPD_EOP_BASE_ADDR_HI,
|
|
upper_32_bits(hpd_gpu_addr >> 8));
|
|
write_register(kgd, CP_HPD_EOP_VMID, 0);
|
|
write_register(kgd, CP_HPD_EOP_CONTROL, hpd_size);
|
|
unlock_srbm(kgd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
|
|
{
|
|
uint32_t mec;
|
|
uint32_t pipe;
|
|
|
|
mec = (pipe_id / CIK_PIPE_PER_MEC) + 1;
|
|
pipe = (pipe_id % CIK_PIPE_PER_MEC);
|
|
|
|
lock_srbm(kgd, mec, pipe, 0, 0);
|
|
|
|
write_register(kgd, CPC_INT_CNTL,
|
|
TIME_STAMP_INT_ENABLE | OPCODE_ERROR_INT_ENABLE);
|
|
|
|
unlock_srbm(kgd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
|
|
{
|
|
uint32_t retval;
|
|
|
|
retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
|
|
m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
|
|
|
|
pr_debug("kfd: sdma base address: 0x%x\n", retval);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static inline struct cik_mqd *get_mqd(void *mqd)
|
|
{
|
|
return (struct cik_mqd *)mqd;
|
|
}
|
|
|
|
static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
|
|
{
|
|
return (struct cik_sdma_rlc_registers *)mqd;
|
|
}
|
|
|
|
static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
|
|
uint32_t queue_id, uint32_t __user *wptr)
|
|
{
|
|
uint32_t wptr_shadow, is_wptr_shadow_valid;
|
|
struct cik_mqd *m;
|
|
|
|
m = get_mqd(mqd);
|
|
|
|
is_wptr_shadow_valid = !get_user(wptr_shadow, wptr);
|
|
|
|
acquire_queue(kgd, pipe_id, queue_id);
|
|
write_register(kgd, CP_MQD_BASE_ADDR, m->cp_mqd_base_addr_lo);
|
|
write_register(kgd, CP_MQD_BASE_ADDR_HI, m->cp_mqd_base_addr_hi);
|
|
write_register(kgd, CP_MQD_CONTROL, m->cp_mqd_control);
|
|
|
|
write_register(kgd, CP_HQD_PQ_BASE, m->cp_hqd_pq_base_lo);
|
|
write_register(kgd, CP_HQD_PQ_BASE_HI, m->cp_hqd_pq_base_hi);
|
|
write_register(kgd, CP_HQD_PQ_CONTROL, m->cp_hqd_pq_control);
|
|
|
|
write_register(kgd, CP_HQD_IB_CONTROL, m->cp_hqd_ib_control);
|
|
write_register(kgd, CP_HQD_IB_BASE_ADDR, m->cp_hqd_ib_base_addr_lo);
|
|
write_register(kgd, CP_HQD_IB_BASE_ADDR_HI, m->cp_hqd_ib_base_addr_hi);
|
|
|
|
write_register(kgd, CP_HQD_IB_RPTR, m->cp_hqd_ib_rptr);
|
|
|
|
write_register(kgd, CP_HQD_PERSISTENT_STATE,
|
|
m->cp_hqd_persistent_state);
|
|
write_register(kgd, CP_HQD_SEMA_CMD, m->cp_hqd_sema_cmd);
|
|
write_register(kgd, CP_HQD_MSG_TYPE, m->cp_hqd_msg_type);
|
|
|
|
write_register(kgd, CP_HQD_ATOMIC0_PREOP_LO,
|
|
m->cp_hqd_atomic0_preop_lo);
|
|
|
|
write_register(kgd, CP_HQD_ATOMIC0_PREOP_HI,
|
|
m->cp_hqd_atomic0_preop_hi);
|
|
|
|
write_register(kgd, CP_HQD_ATOMIC1_PREOP_LO,
|
|
m->cp_hqd_atomic1_preop_lo);
|
|
|
|
write_register(kgd, CP_HQD_ATOMIC1_PREOP_HI,
|
|
m->cp_hqd_atomic1_preop_hi);
|
|
|
|
write_register(kgd, CP_HQD_PQ_RPTR_REPORT_ADDR,
|
|
m->cp_hqd_pq_rptr_report_addr_lo);
|
|
|
|
write_register(kgd, CP_HQD_PQ_RPTR_REPORT_ADDR_HI,
|
|
m->cp_hqd_pq_rptr_report_addr_hi);
|
|
|
|
write_register(kgd, CP_HQD_PQ_RPTR, m->cp_hqd_pq_rptr);
|
|
|
|
write_register(kgd, CP_HQD_PQ_WPTR_POLL_ADDR,
|
|
m->cp_hqd_pq_wptr_poll_addr_lo);
|
|
|
|
write_register(kgd, CP_HQD_PQ_WPTR_POLL_ADDR_HI,
|
|
m->cp_hqd_pq_wptr_poll_addr_hi);
|
|
|
|
write_register(kgd, CP_HQD_PQ_DOORBELL_CONTROL,
|
|
m->cp_hqd_pq_doorbell_control);
|
|
|
|
write_register(kgd, CP_HQD_VMID, m->cp_hqd_vmid);
|
|
|
|
write_register(kgd, CP_HQD_QUANTUM, m->cp_hqd_quantum);
|
|
|
|
write_register(kgd, CP_HQD_PIPE_PRIORITY, m->cp_hqd_pipe_priority);
|
|
write_register(kgd, CP_HQD_QUEUE_PRIORITY, m->cp_hqd_queue_priority);
|
|
|
|
write_register(kgd, CP_HQD_IQ_RPTR, m->cp_hqd_iq_rptr);
|
|
|
|
if (is_wptr_shadow_valid)
|
|
write_register(kgd, CP_HQD_PQ_WPTR, wptr_shadow);
|
|
|
|
write_register(kgd, CP_HQD_ACTIVE, m->cp_hqd_active);
|
|
release_queue(kgd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd)
|
|
{
|
|
struct cik_sdma_rlc_registers *m;
|
|
uint32_t sdma_base_addr;
|
|
|
|
m = get_sdma_mqd(mqd);
|
|
sdma_base_addr = get_sdma_base_addr(m);
|
|
|
|
write_register(kgd,
|
|
sdma_base_addr + SDMA0_RLC0_VIRTUAL_ADDR,
|
|
m->sdma_rlc_virtual_addr);
|
|
|
|
write_register(kgd,
|
|
sdma_base_addr + SDMA0_RLC0_RB_BASE,
|
|
m->sdma_rlc_rb_base);
|
|
|
|
write_register(kgd,
|
|
sdma_base_addr + SDMA0_RLC0_RB_BASE_HI,
|
|
m->sdma_rlc_rb_base_hi);
|
|
|
|
write_register(kgd,
|
|
sdma_base_addr + SDMA0_RLC0_RB_RPTR_ADDR_LO,
|
|
m->sdma_rlc_rb_rptr_addr_lo);
|
|
|
|
write_register(kgd,
|
|
sdma_base_addr + SDMA0_RLC0_RB_RPTR_ADDR_HI,
|
|
m->sdma_rlc_rb_rptr_addr_hi);
|
|
|
|
write_register(kgd,
|
|
sdma_base_addr + SDMA0_RLC0_DOORBELL,
|
|
m->sdma_rlc_doorbell);
|
|
|
|
write_register(kgd,
|
|
sdma_base_addr + SDMA0_RLC0_RB_CNTL,
|
|
m->sdma_rlc_rb_cntl);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
|
|
uint32_t pipe_id, uint32_t queue_id)
|
|
{
|
|
uint32_t act;
|
|
bool retval = false;
|
|
uint32_t low, high;
|
|
|
|
acquire_queue(kgd, pipe_id, queue_id);
|
|
act = read_register(kgd, CP_HQD_ACTIVE);
|
|
if (act) {
|
|
low = lower_32_bits(queue_address >> 8);
|
|
high = upper_32_bits(queue_address >> 8);
|
|
|
|
if (low == read_register(kgd, CP_HQD_PQ_BASE) &&
|
|
high == read_register(kgd, CP_HQD_PQ_BASE_HI))
|
|
retval = true;
|
|
}
|
|
release_queue(kgd);
|
|
return retval;
|
|
}
|
|
|
|
static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
|
|
{
|
|
struct cik_sdma_rlc_registers *m;
|
|
uint32_t sdma_base_addr;
|
|
uint32_t sdma_rlc_rb_cntl;
|
|
|
|
m = get_sdma_mqd(mqd);
|
|
sdma_base_addr = get_sdma_base_addr(m);
|
|
|
|
sdma_rlc_rb_cntl = read_register(kgd,
|
|
sdma_base_addr + SDMA0_RLC0_RB_CNTL);
|
|
|
|
if (sdma_rlc_rb_cntl & SDMA_RB_ENABLE)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type,
|
|
unsigned int timeout, uint32_t pipe_id,
|
|
uint32_t queue_id)
|
|
{
|
|
uint32_t temp;
|
|
|
|
acquire_queue(kgd, pipe_id, queue_id);
|
|
write_register(kgd, CP_HQD_PQ_DOORBELL_CONTROL, 0);
|
|
|
|
write_register(kgd, CP_HQD_DEQUEUE_REQUEST, reset_type);
|
|
|
|
while (true) {
|
|
temp = read_register(kgd, CP_HQD_ACTIVE);
|
|
if (temp & 0x1)
|
|
break;
|
|
if (timeout == 0) {
|
|
pr_err("kfd: cp queue preemption time out (%dms)\n",
|
|
temp);
|
|
release_queue(kgd);
|
|
return -ETIME;
|
|
}
|
|
msleep(20);
|
|
timeout -= 20;
|
|
}
|
|
|
|
release_queue(kgd);
|
|
return 0;
|
|
}
|
|
|
|
static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
|
|
unsigned int timeout)
|
|
{
|
|
struct cik_sdma_rlc_registers *m;
|
|
uint32_t sdma_base_addr;
|
|
uint32_t temp;
|
|
|
|
m = get_sdma_mqd(mqd);
|
|
sdma_base_addr = get_sdma_base_addr(m);
|
|
|
|
temp = read_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_CNTL);
|
|
temp = temp & ~SDMA_RB_ENABLE;
|
|
write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_CNTL, temp);
|
|
|
|
while (true) {
|
|
temp = read_register(kgd, sdma_base_addr +
|
|
SDMA0_RLC0_CONTEXT_STATUS);
|
|
if (temp & SDMA_RLC_IDLE)
|
|
break;
|
|
if (timeout == 0)
|
|
return -ETIME;
|
|
msleep(20);
|
|
timeout -= 20;
|
|
}
|
|
|
|
write_register(kgd, sdma_base_addr + SDMA0_RLC0_DOORBELL, 0);
|
|
write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_RPTR, 0);
|
|
write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_WPTR, 0);
|
|
write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_BASE, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kgd_address_watch_disable(struct kgd_dev *kgd)
|
|
{
|
|
union TCP_WATCH_CNTL_BITS cntl;
|
|
unsigned int i;
|
|
|
|
cntl.u32All = 0;
|
|
|
|
cntl.bitfields.valid = 0;
|
|
cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
|
|
cntl.bitfields.atc = 1;
|
|
|
|
/* Turning off this address until we set all the registers */
|
|
for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
|
|
write_register(kgd,
|
|
watchRegs[i * ADDRESS_WATCH_REG_MAX +
|
|
ADDRESS_WATCH_REG_CNTL],
|
|
cntl.u32All);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kgd_address_watch_execute(struct kgd_dev *kgd,
|
|
unsigned int watch_point_id,
|
|
uint32_t cntl_val,
|
|
uint32_t addr_hi,
|
|
uint32_t addr_lo)
|
|
{
|
|
union TCP_WATCH_CNTL_BITS cntl;
|
|
|
|
cntl.u32All = cntl_val;
|
|
|
|
/* Turning off this watch point until we set all the registers */
|
|
cntl.bitfields.valid = 0;
|
|
write_register(kgd,
|
|
watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
|
|
ADDRESS_WATCH_REG_CNTL],
|
|
cntl.u32All);
|
|
|
|
write_register(kgd,
|
|
watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
|
|
ADDRESS_WATCH_REG_ADDR_HI],
|
|
addr_hi);
|
|
|
|
write_register(kgd,
|
|
watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
|
|
ADDRESS_WATCH_REG_ADDR_LO],
|
|
addr_lo);
|
|
|
|
/* Enable the watch point */
|
|
cntl.bitfields.valid = 1;
|
|
|
|
write_register(kgd,
|
|
watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
|
|
ADDRESS_WATCH_REG_CNTL],
|
|
cntl.u32All);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kgd_wave_control_execute(struct kgd_dev *kgd,
|
|
uint32_t gfx_index_val,
|
|
uint32_t sq_cmd)
|
|
{
|
|
struct radeon_device *rdev = get_radeon_device(kgd);
|
|
uint32_t data;
|
|
|
|
mutex_lock(&rdev->grbm_idx_mutex);
|
|
|
|
write_register(kgd, GRBM_GFX_INDEX, gfx_index_val);
|
|
write_register(kgd, SQ_CMD, sq_cmd);
|
|
|
|
/* Restore the GRBM_GFX_INDEX register */
|
|
|
|
data = INSTANCE_BROADCAST_WRITES | SH_BROADCAST_WRITES |
|
|
SE_BROADCAST_WRITES;
|
|
|
|
write_register(kgd, GRBM_GFX_INDEX, data);
|
|
|
|
mutex_unlock(&rdev->grbm_idx_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
|
|
unsigned int watch_point_id,
|
|
unsigned int reg_offset)
|
|
{
|
|
return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
|
|
}
|
|
|
|
static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid)
|
|
{
|
|
uint32_t reg;
|
|
struct radeon_device *rdev = (struct radeon_device *) kgd;
|
|
|
|
reg = RREG32(ATC_VMID0_PASID_MAPPING + vmid*4);
|
|
return reg & ATC_VMID_PASID_MAPPING_VALID_MASK;
|
|
}
|
|
|
|
static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
|
|
uint8_t vmid)
|
|
{
|
|
uint32_t reg;
|
|
struct radeon_device *rdev = (struct radeon_device *) kgd;
|
|
|
|
reg = RREG32(ATC_VMID0_PASID_MAPPING + vmid*4);
|
|
return reg & ATC_VMID_PASID_MAPPING_PASID_MASK;
|
|
}
|
|
|
|
static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid)
|
|
{
|
|
struct radeon_device *rdev = (struct radeon_device *) kgd;
|
|
|
|
return WREG32(VM_INVALIDATE_REQUEST, 1 << vmid);
|
|
}
|
|
|
|
static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
|
|
{
|
|
struct radeon_device *rdev = (struct radeon_device *) kgd;
|
|
const union radeon_firmware_header *hdr;
|
|
|
|
BUG_ON(kgd == NULL || rdev->mec_fw == NULL);
|
|
|
|
switch (type) {
|
|
case KGD_ENGINE_PFP:
|
|
hdr = (const union radeon_firmware_header *) rdev->pfp_fw->data;
|
|
break;
|
|
|
|
case KGD_ENGINE_ME:
|
|
hdr = (const union radeon_firmware_header *) rdev->me_fw->data;
|
|
break;
|
|
|
|
case KGD_ENGINE_CE:
|
|
hdr = (const union radeon_firmware_header *) rdev->ce_fw->data;
|
|
break;
|
|
|
|
case KGD_ENGINE_MEC1:
|
|
hdr = (const union radeon_firmware_header *) rdev->mec_fw->data;
|
|
break;
|
|
|
|
case KGD_ENGINE_MEC2:
|
|
hdr = (const union radeon_firmware_header *)
|
|
rdev->mec2_fw->data;
|
|
break;
|
|
|
|
case KGD_ENGINE_RLC:
|
|
hdr = (const union radeon_firmware_header *) rdev->rlc_fw->data;
|
|
break;
|
|
|
|
case KGD_ENGINE_SDMA1:
|
|
case KGD_ENGINE_SDMA2:
|
|
hdr = (const union radeon_firmware_header *)
|
|
rdev->sdma_fw->data;
|
|
break;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
if (hdr == NULL)
|
|
return 0;
|
|
|
|
/* Only 12 bit in use*/
|
|
return hdr->common.ucode_version;
|
|
}
|