2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 22:53:55 +08:00
linux-next/arch/x86/mm/kmemcheck/kmemcheck.c
Christoph Lameter 89cbc76768 x86: Replace __get_cpu_var uses
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x).  This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.

Other use cases are for storing and retrieving data from the current
processors percpu area.  __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.

__get_cpu_var() is defined as :

#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))

__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.

this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.

This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset.  Thereby address calculations are avoided and less registers
are used when code is generated.

Transformations done to __get_cpu_var()

1. Determine the address of the percpu instance of the current processor.

	DEFINE_PER_CPU(int, y);
	int *x = &__get_cpu_var(y);

    Converts to

	int *x = this_cpu_ptr(&y);

2. Same as #1 but this time an array structure is involved.

	DEFINE_PER_CPU(int, y[20]);
	int *x = __get_cpu_var(y);

    Converts to

	int *x = this_cpu_ptr(y);

3. Retrieve the content of the current processors instance of a per cpu
variable.

	DEFINE_PER_CPU(int, y);
	int x = __get_cpu_var(y)

   Converts to

	int x = __this_cpu_read(y);

4. Retrieve the content of a percpu struct

	DEFINE_PER_CPU(struct mystruct, y);
	struct mystruct x = __get_cpu_var(y);

   Converts to

	memcpy(&x, this_cpu_ptr(&y), sizeof(x));

5. Assignment to a per cpu variable

	DEFINE_PER_CPU(int, y)
	__get_cpu_var(y) = x;

   Converts to

	__this_cpu_write(y, x);

6. Increment/Decrement etc of a per cpu variable

	DEFINE_PER_CPU(int, y);
	__get_cpu_var(y)++

   Converts to

	__this_cpu_inc(y)

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86@kernel.org
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-26 13:45:49 -04:00

660 lines
14 KiB
C

/**
* kmemcheck - a heavyweight memory checker for the linux kernel
* Copyright (C) 2007, 2008 Vegard Nossum <vegardno@ifi.uio.no>
* (With a lot of help from Ingo Molnar and Pekka Enberg.)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License (version 2) as
* published by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kallsyms.h>
#include <linux/kernel.h>
#include <linux/kmemcheck.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/page-flags.h>
#include <linux/percpu.h>
#include <linux/ptrace.h>
#include <linux/string.h>
#include <linux/types.h>
#include <asm/cacheflush.h>
#include <asm/kmemcheck.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include "error.h"
#include "opcode.h"
#include "pte.h"
#include "selftest.h"
#include "shadow.h"
#ifdef CONFIG_KMEMCHECK_DISABLED_BY_DEFAULT
# define KMEMCHECK_ENABLED 0
#endif
#ifdef CONFIG_KMEMCHECK_ENABLED_BY_DEFAULT
# define KMEMCHECK_ENABLED 1
#endif
#ifdef CONFIG_KMEMCHECK_ONESHOT_BY_DEFAULT
# define KMEMCHECK_ENABLED 2
#endif
int kmemcheck_enabled = KMEMCHECK_ENABLED;
int __init kmemcheck_init(void)
{
#ifdef CONFIG_SMP
/*
* Limit SMP to use a single CPU. We rely on the fact that this code
* runs before SMP is set up.
*/
if (setup_max_cpus > 1) {
printk(KERN_INFO
"kmemcheck: Limiting number of CPUs to 1.\n");
setup_max_cpus = 1;
}
#endif
if (!kmemcheck_selftest()) {
printk(KERN_INFO "kmemcheck: self-tests failed; disabling\n");
kmemcheck_enabled = 0;
return -EINVAL;
}
printk(KERN_INFO "kmemcheck: Initialized\n");
return 0;
}
early_initcall(kmemcheck_init);
/*
* We need to parse the kmemcheck= option before any memory is allocated.
*/
static int __init param_kmemcheck(char *str)
{
int val;
int ret;
if (!str)
return -EINVAL;
ret = kstrtoint(str, 0, &val);
if (ret)
return ret;
kmemcheck_enabled = val;
return 0;
}
early_param("kmemcheck", param_kmemcheck);
int kmemcheck_show_addr(unsigned long address)
{
pte_t *pte;
pte = kmemcheck_pte_lookup(address);
if (!pte)
return 0;
set_pte(pte, __pte(pte_val(*pte) | _PAGE_PRESENT));
__flush_tlb_one(address);
return 1;
}
int kmemcheck_hide_addr(unsigned long address)
{
pte_t *pte;
pte = kmemcheck_pte_lookup(address);
if (!pte)
return 0;
set_pte(pte, __pte(pte_val(*pte) & ~_PAGE_PRESENT));
__flush_tlb_one(address);
return 1;
}
struct kmemcheck_context {
bool busy;
int balance;
/*
* There can be at most two memory operands to an instruction, but
* each address can cross a page boundary -- so we may need up to
* four addresses that must be hidden/revealed for each fault.
*/
unsigned long addr[4];
unsigned long n_addrs;
unsigned long flags;
/* Data size of the instruction that caused a fault. */
unsigned int size;
};
static DEFINE_PER_CPU(struct kmemcheck_context, kmemcheck_context);
bool kmemcheck_active(struct pt_regs *regs)
{
struct kmemcheck_context *data = this_cpu_ptr(&kmemcheck_context);
return data->balance > 0;
}
/* Save an address that needs to be shown/hidden */
static void kmemcheck_save_addr(unsigned long addr)
{
struct kmemcheck_context *data = this_cpu_ptr(&kmemcheck_context);
BUG_ON(data->n_addrs >= ARRAY_SIZE(data->addr));
data->addr[data->n_addrs++] = addr;
}
static unsigned int kmemcheck_show_all(void)
{
struct kmemcheck_context *data = this_cpu_ptr(&kmemcheck_context);
unsigned int i;
unsigned int n;
n = 0;
for (i = 0; i < data->n_addrs; ++i)
n += kmemcheck_show_addr(data->addr[i]);
return n;
}
static unsigned int kmemcheck_hide_all(void)
{
struct kmemcheck_context *data = this_cpu_ptr(&kmemcheck_context);
unsigned int i;
unsigned int n;
n = 0;
for (i = 0; i < data->n_addrs; ++i)
n += kmemcheck_hide_addr(data->addr[i]);
return n;
}
/*
* Called from the #PF handler.
*/
void kmemcheck_show(struct pt_regs *regs)
{
struct kmemcheck_context *data = this_cpu_ptr(&kmemcheck_context);
BUG_ON(!irqs_disabled());
if (unlikely(data->balance != 0)) {
kmemcheck_show_all();
kmemcheck_error_save_bug(regs);
data->balance = 0;
return;
}
/*
* None of the addresses actually belonged to kmemcheck. Note that
* this is not an error.
*/
if (kmemcheck_show_all() == 0)
return;
++data->balance;
/*
* The IF needs to be cleared as well, so that the faulting
* instruction can run "uninterrupted". Otherwise, we might take
* an interrupt and start executing that before we've had a chance
* to hide the page again.
*
* NOTE: In the rare case of multiple faults, we must not override
* the original flags:
*/
if (!(regs->flags & X86_EFLAGS_TF))
data->flags = regs->flags;
regs->flags |= X86_EFLAGS_TF;
regs->flags &= ~X86_EFLAGS_IF;
}
/*
* Called from the #DB handler.
*/
void kmemcheck_hide(struct pt_regs *regs)
{
struct kmemcheck_context *data = this_cpu_ptr(&kmemcheck_context);
int n;
BUG_ON(!irqs_disabled());
if (unlikely(data->balance != 1)) {
kmemcheck_show_all();
kmemcheck_error_save_bug(regs);
data->n_addrs = 0;
data->balance = 0;
if (!(data->flags & X86_EFLAGS_TF))
regs->flags &= ~X86_EFLAGS_TF;
if (data->flags & X86_EFLAGS_IF)
regs->flags |= X86_EFLAGS_IF;
return;
}
if (kmemcheck_enabled)
n = kmemcheck_hide_all();
else
n = kmemcheck_show_all();
if (n == 0)
return;
--data->balance;
data->n_addrs = 0;
if (!(data->flags & X86_EFLAGS_TF))
regs->flags &= ~X86_EFLAGS_TF;
if (data->flags & X86_EFLAGS_IF)
regs->flags |= X86_EFLAGS_IF;
}
void kmemcheck_show_pages(struct page *p, unsigned int n)
{
unsigned int i;
for (i = 0; i < n; ++i) {
unsigned long address;
pte_t *pte;
unsigned int level;
address = (unsigned long) page_address(&p[i]);
pte = lookup_address(address, &level);
BUG_ON(!pte);
BUG_ON(level != PG_LEVEL_4K);
set_pte(pte, __pte(pte_val(*pte) | _PAGE_PRESENT));
set_pte(pte, __pte(pte_val(*pte) & ~_PAGE_HIDDEN));
__flush_tlb_one(address);
}
}
bool kmemcheck_page_is_tracked(struct page *p)
{
/* This will also check the "hidden" flag of the PTE. */
return kmemcheck_pte_lookup((unsigned long) page_address(p));
}
void kmemcheck_hide_pages(struct page *p, unsigned int n)
{
unsigned int i;
for (i = 0; i < n; ++i) {
unsigned long address;
pte_t *pte;
unsigned int level;
address = (unsigned long) page_address(&p[i]);
pte = lookup_address(address, &level);
BUG_ON(!pte);
BUG_ON(level != PG_LEVEL_4K);
set_pte(pte, __pte(pte_val(*pte) & ~_PAGE_PRESENT));
set_pte(pte, __pte(pte_val(*pte) | _PAGE_HIDDEN));
__flush_tlb_one(address);
}
}
/* Access may NOT cross page boundary */
static void kmemcheck_read_strict(struct pt_regs *regs,
unsigned long addr, unsigned int size)
{
void *shadow;
enum kmemcheck_shadow status;
shadow = kmemcheck_shadow_lookup(addr);
if (!shadow)
return;
kmemcheck_save_addr(addr);
status = kmemcheck_shadow_test(shadow, size);
if (status == KMEMCHECK_SHADOW_INITIALIZED)
return;
if (kmemcheck_enabled)
kmemcheck_error_save(status, addr, size, regs);
if (kmemcheck_enabled == 2)
kmemcheck_enabled = 0;
/* Don't warn about it again. */
kmemcheck_shadow_set(shadow, size);
}
bool kmemcheck_is_obj_initialized(unsigned long addr, size_t size)
{
enum kmemcheck_shadow status;
void *shadow;
shadow = kmemcheck_shadow_lookup(addr);
if (!shadow)
return true;
status = kmemcheck_shadow_test_all(shadow, size);
return status == KMEMCHECK_SHADOW_INITIALIZED;
}
/* Access may cross page boundary */
static void kmemcheck_read(struct pt_regs *regs,
unsigned long addr, unsigned int size)
{
unsigned long page = addr & PAGE_MASK;
unsigned long next_addr = addr + size - 1;
unsigned long next_page = next_addr & PAGE_MASK;
if (likely(page == next_page)) {
kmemcheck_read_strict(regs, addr, size);
return;
}
/*
* What we do is basically to split the access across the
* two pages and handle each part separately. Yes, this means
* that we may now see reads that are 3 + 5 bytes, for
* example (and if both are uninitialized, there will be two
* reports), but it makes the code a lot simpler.
*/
kmemcheck_read_strict(regs, addr, next_page - addr);
kmemcheck_read_strict(regs, next_page, next_addr - next_page);
}
static void kmemcheck_write_strict(struct pt_regs *regs,
unsigned long addr, unsigned int size)
{
void *shadow;
shadow = kmemcheck_shadow_lookup(addr);
if (!shadow)
return;
kmemcheck_save_addr(addr);
kmemcheck_shadow_set(shadow, size);
}
static void kmemcheck_write(struct pt_regs *regs,
unsigned long addr, unsigned int size)
{
unsigned long page = addr & PAGE_MASK;
unsigned long next_addr = addr + size - 1;
unsigned long next_page = next_addr & PAGE_MASK;
if (likely(page == next_page)) {
kmemcheck_write_strict(regs, addr, size);
return;
}
/* See comment in kmemcheck_read(). */
kmemcheck_write_strict(regs, addr, next_page - addr);
kmemcheck_write_strict(regs, next_page, next_addr - next_page);
}
/*
* Copying is hard. We have two addresses, each of which may be split across
* a page (and each page will have different shadow addresses).
*/
static void kmemcheck_copy(struct pt_regs *regs,
unsigned long src_addr, unsigned long dst_addr, unsigned int size)
{
uint8_t shadow[8];
enum kmemcheck_shadow status;
unsigned long page;
unsigned long next_addr;
unsigned long next_page;
uint8_t *x;
unsigned int i;
unsigned int n;
BUG_ON(size > sizeof(shadow));
page = src_addr & PAGE_MASK;
next_addr = src_addr + size - 1;
next_page = next_addr & PAGE_MASK;
if (likely(page == next_page)) {
/* Same page */
x = kmemcheck_shadow_lookup(src_addr);
if (x) {
kmemcheck_save_addr(src_addr);
for (i = 0; i < size; ++i)
shadow[i] = x[i];
} else {
for (i = 0; i < size; ++i)
shadow[i] = KMEMCHECK_SHADOW_INITIALIZED;
}
} else {
n = next_page - src_addr;
BUG_ON(n > sizeof(shadow));
/* First page */
x = kmemcheck_shadow_lookup(src_addr);
if (x) {
kmemcheck_save_addr(src_addr);
for (i = 0; i < n; ++i)
shadow[i] = x[i];
} else {
/* Not tracked */
for (i = 0; i < n; ++i)
shadow[i] = KMEMCHECK_SHADOW_INITIALIZED;
}
/* Second page */
x = kmemcheck_shadow_lookup(next_page);
if (x) {
kmemcheck_save_addr(next_page);
for (i = n; i < size; ++i)
shadow[i] = x[i - n];
} else {
/* Not tracked */
for (i = n; i < size; ++i)
shadow[i] = KMEMCHECK_SHADOW_INITIALIZED;
}
}
page = dst_addr & PAGE_MASK;
next_addr = dst_addr + size - 1;
next_page = next_addr & PAGE_MASK;
if (likely(page == next_page)) {
/* Same page */
x = kmemcheck_shadow_lookup(dst_addr);
if (x) {
kmemcheck_save_addr(dst_addr);
for (i = 0; i < size; ++i) {
x[i] = shadow[i];
shadow[i] = KMEMCHECK_SHADOW_INITIALIZED;
}
}
} else {
n = next_page - dst_addr;
BUG_ON(n > sizeof(shadow));
/* First page */
x = kmemcheck_shadow_lookup(dst_addr);
if (x) {
kmemcheck_save_addr(dst_addr);
for (i = 0; i < n; ++i) {
x[i] = shadow[i];
shadow[i] = KMEMCHECK_SHADOW_INITIALIZED;
}
}
/* Second page */
x = kmemcheck_shadow_lookup(next_page);
if (x) {
kmemcheck_save_addr(next_page);
for (i = n; i < size; ++i) {
x[i - n] = shadow[i];
shadow[i] = KMEMCHECK_SHADOW_INITIALIZED;
}
}
}
status = kmemcheck_shadow_test(shadow, size);
if (status == KMEMCHECK_SHADOW_INITIALIZED)
return;
if (kmemcheck_enabled)
kmemcheck_error_save(status, src_addr, size, regs);
if (kmemcheck_enabled == 2)
kmemcheck_enabled = 0;
}
enum kmemcheck_method {
KMEMCHECK_READ,
KMEMCHECK_WRITE,
};
static void kmemcheck_access(struct pt_regs *regs,
unsigned long fallback_address, enum kmemcheck_method fallback_method)
{
const uint8_t *insn;
const uint8_t *insn_primary;
unsigned int size;
struct kmemcheck_context *data = this_cpu_ptr(&kmemcheck_context);
/* Recursive fault -- ouch. */
if (data->busy) {
kmemcheck_show_addr(fallback_address);
kmemcheck_error_save_bug(regs);
return;
}
data->busy = true;
insn = (const uint8_t *) regs->ip;
insn_primary = kmemcheck_opcode_get_primary(insn);
kmemcheck_opcode_decode(insn, &size);
switch (insn_primary[0]) {
#ifdef CONFIG_KMEMCHECK_BITOPS_OK
/* AND, OR, XOR */
/*
* Unfortunately, these instructions have to be excluded from
* our regular checking since they access only some (and not
* all) bits. This clears out "bogus" bitfield-access warnings.
*/
case 0x80:
case 0x81:
case 0x82:
case 0x83:
switch ((insn_primary[1] >> 3) & 7) {
/* OR */
case 1:
/* AND */
case 4:
/* XOR */
case 6:
kmemcheck_write(regs, fallback_address, size);
goto out;
/* ADD */
case 0:
/* ADC */
case 2:
/* SBB */
case 3:
/* SUB */
case 5:
/* CMP */
case 7:
break;
}
break;
#endif
/* MOVS, MOVSB, MOVSW, MOVSD */
case 0xa4:
case 0xa5:
/*
* These instructions are special because they take two
* addresses, but we only get one page fault.
*/
kmemcheck_copy(regs, regs->si, regs->di, size);
goto out;
/* CMPS, CMPSB, CMPSW, CMPSD */
case 0xa6:
case 0xa7:
kmemcheck_read(regs, regs->si, size);
kmemcheck_read(regs, regs->di, size);
goto out;
}
/*
* If the opcode isn't special in any way, we use the data from the
* page fault handler to determine the address and type of memory
* access.
*/
switch (fallback_method) {
case KMEMCHECK_READ:
kmemcheck_read(regs, fallback_address, size);
goto out;
case KMEMCHECK_WRITE:
kmemcheck_write(regs, fallback_address, size);
goto out;
}
out:
data->busy = false;
}
bool kmemcheck_fault(struct pt_regs *regs, unsigned long address,
unsigned long error_code)
{
pte_t *pte;
/*
* XXX: Is it safe to assume that memory accesses from virtual 86
* mode or non-kernel code segments will _never_ access kernel
* memory (e.g. tracked pages)? For now, we need this to avoid
* invoking kmemcheck for PnP BIOS calls.
*/
if (regs->flags & X86_VM_MASK)
return false;
if (regs->cs != __KERNEL_CS)
return false;
pte = kmemcheck_pte_lookup(address);
if (!pte)
return false;
WARN_ON_ONCE(in_nmi());
if (error_code & 2)
kmemcheck_access(regs, address, KMEMCHECK_WRITE);
else
kmemcheck_access(regs, address, KMEMCHECK_READ);
kmemcheck_show(regs);
return true;
}
bool kmemcheck_trap(struct pt_regs *regs)
{
if (!kmemcheck_active(regs))
return false;
/* We're done. */
kmemcheck_hide(regs);
return true;
}