mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-18 18:43:59 +08:00
c2a4f3183a
Background writeback works by scanning the btree for dirty data and adding those keys into a fixed size buffer, then for each dirty key in the keybuf writing it to the backing device. When read_dirty() finishes and it's time to scan for more dirty data, we need to wait for the outstanding writeback IO to finish - they still take up slots in the keybuf (so that foreground writes can check for them to avoid races) - without that wait, we'll continually rescan when we'll be able to add at most a key or two to the keybuf, and that takes locks that starves foreground IO. Doh. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: linux-stable <stable@vger.kernel.org> # >= v3.10 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
590 lines
15 KiB
C
590 lines
15 KiB
C
|
|
#ifndef _BCACHE_UTIL_H
|
|
#define _BCACHE_UTIL_H
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/llist.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/workqueue.h>
|
|
|
|
#include "closure.h"
|
|
|
|
#define PAGE_SECTORS (PAGE_SIZE / 512)
|
|
|
|
struct closure;
|
|
|
|
#ifdef CONFIG_BCACHE_EDEBUG
|
|
|
|
#define atomic_dec_bug(v) BUG_ON(atomic_dec_return(v) < 0)
|
|
#define atomic_inc_bug(v, i) BUG_ON(atomic_inc_return(v) <= i)
|
|
|
|
#else /* EDEBUG */
|
|
|
|
#define atomic_dec_bug(v) atomic_dec(v)
|
|
#define atomic_inc_bug(v, i) atomic_inc(v)
|
|
|
|
#endif
|
|
|
|
#define BITMASK(name, type, field, offset, size) \
|
|
static inline uint64_t name(const type *k) \
|
|
{ return (k->field >> offset) & ~(((uint64_t) ~0) << size); } \
|
|
\
|
|
static inline void SET_##name(type *k, uint64_t v) \
|
|
{ \
|
|
k->field &= ~(~((uint64_t) ~0 << size) << offset); \
|
|
k->field |= v << offset; \
|
|
}
|
|
|
|
#define DECLARE_HEAP(type, name) \
|
|
struct { \
|
|
size_t size, used; \
|
|
type *data; \
|
|
} name
|
|
|
|
#define init_heap(heap, _size, gfp) \
|
|
({ \
|
|
size_t _bytes; \
|
|
(heap)->used = 0; \
|
|
(heap)->size = (_size); \
|
|
_bytes = (heap)->size * sizeof(*(heap)->data); \
|
|
(heap)->data = NULL; \
|
|
if (_bytes < KMALLOC_MAX_SIZE) \
|
|
(heap)->data = kmalloc(_bytes, (gfp)); \
|
|
if ((!(heap)->data) && ((gfp) & GFP_KERNEL)) \
|
|
(heap)->data = vmalloc(_bytes); \
|
|
(heap)->data; \
|
|
})
|
|
|
|
#define free_heap(heap) \
|
|
do { \
|
|
if (is_vmalloc_addr((heap)->data)) \
|
|
vfree((heap)->data); \
|
|
else \
|
|
kfree((heap)->data); \
|
|
(heap)->data = NULL; \
|
|
} while (0)
|
|
|
|
#define heap_swap(h, i, j) swap((h)->data[i], (h)->data[j])
|
|
|
|
#define heap_sift(h, i, cmp) \
|
|
do { \
|
|
size_t _r, _j = i; \
|
|
\
|
|
for (; _j * 2 + 1 < (h)->used; _j = _r) { \
|
|
_r = _j * 2 + 1; \
|
|
if (_r + 1 < (h)->used && \
|
|
cmp((h)->data[_r], (h)->data[_r + 1])) \
|
|
_r++; \
|
|
\
|
|
if (cmp((h)->data[_r], (h)->data[_j])) \
|
|
break; \
|
|
heap_swap(h, _r, _j); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define heap_sift_down(h, i, cmp) \
|
|
do { \
|
|
while (i) { \
|
|
size_t p = (i - 1) / 2; \
|
|
if (cmp((h)->data[i], (h)->data[p])) \
|
|
break; \
|
|
heap_swap(h, i, p); \
|
|
i = p; \
|
|
} \
|
|
} while (0)
|
|
|
|
#define heap_add(h, d, cmp) \
|
|
({ \
|
|
bool _r = !heap_full(h); \
|
|
if (_r) { \
|
|
size_t _i = (h)->used++; \
|
|
(h)->data[_i] = d; \
|
|
\
|
|
heap_sift_down(h, _i, cmp); \
|
|
heap_sift(h, _i, cmp); \
|
|
} \
|
|
_r; \
|
|
})
|
|
|
|
#define heap_pop(h, d, cmp) \
|
|
({ \
|
|
bool _r = (h)->used; \
|
|
if (_r) { \
|
|
(d) = (h)->data[0]; \
|
|
(h)->used--; \
|
|
heap_swap(h, 0, (h)->used); \
|
|
heap_sift(h, 0, cmp); \
|
|
} \
|
|
_r; \
|
|
})
|
|
|
|
#define heap_peek(h) ((h)->size ? (h)->data[0] : NULL)
|
|
|
|
#define heap_full(h) ((h)->used == (h)->size)
|
|
|
|
#define DECLARE_FIFO(type, name) \
|
|
struct { \
|
|
size_t front, back, size, mask; \
|
|
type *data; \
|
|
} name
|
|
|
|
#define fifo_for_each(c, fifo, iter) \
|
|
for (iter = (fifo)->front; \
|
|
c = (fifo)->data[iter], iter != (fifo)->back; \
|
|
iter = (iter + 1) & (fifo)->mask)
|
|
|
|
#define __init_fifo(fifo, gfp) \
|
|
({ \
|
|
size_t _allocated_size, _bytes; \
|
|
BUG_ON(!(fifo)->size); \
|
|
\
|
|
_allocated_size = roundup_pow_of_two((fifo)->size + 1); \
|
|
_bytes = _allocated_size * sizeof(*(fifo)->data); \
|
|
\
|
|
(fifo)->mask = _allocated_size - 1; \
|
|
(fifo)->front = (fifo)->back = 0; \
|
|
(fifo)->data = NULL; \
|
|
\
|
|
if (_bytes < KMALLOC_MAX_SIZE) \
|
|
(fifo)->data = kmalloc(_bytes, (gfp)); \
|
|
if ((!(fifo)->data) && ((gfp) & GFP_KERNEL)) \
|
|
(fifo)->data = vmalloc(_bytes); \
|
|
(fifo)->data; \
|
|
})
|
|
|
|
#define init_fifo_exact(fifo, _size, gfp) \
|
|
({ \
|
|
(fifo)->size = (_size); \
|
|
__init_fifo(fifo, gfp); \
|
|
})
|
|
|
|
#define init_fifo(fifo, _size, gfp) \
|
|
({ \
|
|
(fifo)->size = (_size); \
|
|
if ((fifo)->size > 4) \
|
|
(fifo)->size = roundup_pow_of_two((fifo)->size) - 1; \
|
|
__init_fifo(fifo, gfp); \
|
|
})
|
|
|
|
#define free_fifo(fifo) \
|
|
do { \
|
|
if (is_vmalloc_addr((fifo)->data)) \
|
|
vfree((fifo)->data); \
|
|
else \
|
|
kfree((fifo)->data); \
|
|
(fifo)->data = NULL; \
|
|
} while (0)
|
|
|
|
#define fifo_used(fifo) (((fifo)->back - (fifo)->front) & (fifo)->mask)
|
|
#define fifo_free(fifo) ((fifo)->size - fifo_used(fifo))
|
|
|
|
#define fifo_empty(fifo) (!fifo_used(fifo))
|
|
#define fifo_full(fifo) (!fifo_free(fifo))
|
|
|
|
#define fifo_front(fifo) ((fifo)->data[(fifo)->front])
|
|
#define fifo_back(fifo) \
|
|
((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
|
|
|
|
#define fifo_idx(fifo, p) (((p) - &fifo_front(fifo)) & (fifo)->mask)
|
|
|
|
#define fifo_push_back(fifo, i) \
|
|
({ \
|
|
bool _r = !fifo_full((fifo)); \
|
|
if (_r) { \
|
|
(fifo)->data[(fifo)->back++] = (i); \
|
|
(fifo)->back &= (fifo)->mask; \
|
|
} \
|
|
_r; \
|
|
})
|
|
|
|
#define fifo_pop_front(fifo, i) \
|
|
({ \
|
|
bool _r = !fifo_empty((fifo)); \
|
|
if (_r) { \
|
|
(i) = (fifo)->data[(fifo)->front++]; \
|
|
(fifo)->front &= (fifo)->mask; \
|
|
} \
|
|
_r; \
|
|
})
|
|
|
|
#define fifo_push_front(fifo, i) \
|
|
({ \
|
|
bool _r = !fifo_full((fifo)); \
|
|
if (_r) { \
|
|
--(fifo)->front; \
|
|
(fifo)->front &= (fifo)->mask; \
|
|
(fifo)->data[(fifo)->front] = (i); \
|
|
} \
|
|
_r; \
|
|
})
|
|
|
|
#define fifo_pop_back(fifo, i) \
|
|
({ \
|
|
bool _r = !fifo_empty((fifo)); \
|
|
if (_r) { \
|
|
--(fifo)->back; \
|
|
(fifo)->back &= (fifo)->mask; \
|
|
(i) = (fifo)->data[(fifo)->back] \
|
|
} \
|
|
_r; \
|
|
})
|
|
|
|
#define fifo_push(fifo, i) fifo_push_back(fifo, (i))
|
|
#define fifo_pop(fifo, i) fifo_pop_front(fifo, (i))
|
|
|
|
#define fifo_swap(l, r) \
|
|
do { \
|
|
swap((l)->front, (r)->front); \
|
|
swap((l)->back, (r)->back); \
|
|
swap((l)->size, (r)->size); \
|
|
swap((l)->mask, (r)->mask); \
|
|
swap((l)->data, (r)->data); \
|
|
} while (0)
|
|
|
|
#define fifo_move(dest, src) \
|
|
do { \
|
|
typeof(*((dest)->data)) _t; \
|
|
while (!fifo_full(dest) && \
|
|
fifo_pop(src, _t)) \
|
|
fifo_push(dest, _t); \
|
|
} while (0)
|
|
|
|
/*
|
|
* Simple array based allocator - preallocates a number of elements and you can
|
|
* never allocate more than that, also has no locking.
|
|
*
|
|
* Handy because if you know you only need a fixed number of elements you don't
|
|
* have to worry about memory allocation failure, and sometimes a mempool isn't
|
|
* what you want.
|
|
*
|
|
* We treat the free elements as entries in a singly linked list, and the
|
|
* freelist as a stack - allocating and freeing push and pop off the freelist.
|
|
*/
|
|
|
|
#define DECLARE_ARRAY_ALLOCATOR(type, name, size) \
|
|
struct { \
|
|
type *freelist; \
|
|
type data[size]; \
|
|
} name
|
|
|
|
#define array_alloc(array) \
|
|
({ \
|
|
typeof((array)->freelist) _ret = (array)->freelist; \
|
|
\
|
|
if (_ret) \
|
|
(array)->freelist = *((typeof((array)->freelist) *) _ret);\
|
|
\
|
|
_ret; \
|
|
})
|
|
|
|
#define array_free(array, ptr) \
|
|
do { \
|
|
typeof((array)->freelist) _ptr = ptr; \
|
|
\
|
|
*((typeof((array)->freelist) *) _ptr) = (array)->freelist; \
|
|
(array)->freelist = _ptr; \
|
|
} while (0)
|
|
|
|
#define array_allocator_init(array) \
|
|
do { \
|
|
typeof((array)->freelist) _i; \
|
|
\
|
|
BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *)); \
|
|
(array)->freelist = NULL; \
|
|
\
|
|
for (_i = (array)->data; \
|
|
_i < (array)->data + ARRAY_SIZE((array)->data); \
|
|
_i++) \
|
|
array_free(array, _i); \
|
|
} while (0)
|
|
|
|
#define array_freelist_empty(array) ((array)->freelist == NULL)
|
|
|
|
#define ANYSINT_MAX(t) \
|
|
((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
|
|
|
|
int bch_strtoint_h(const char *, int *);
|
|
int bch_strtouint_h(const char *, unsigned int *);
|
|
int bch_strtoll_h(const char *, long long *);
|
|
int bch_strtoull_h(const char *, unsigned long long *);
|
|
|
|
static inline int bch_strtol_h(const char *cp, long *res)
|
|
{
|
|
#if BITS_PER_LONG == 32
|
|
return bch_strtoint_h(cp, (int *) res);
|
|
#else
|
|
return bch_strtoll_h(cp, (long long *) res);
|
|
#endif
|
|
}
|
|
|
|
static inline int bch_strtoul_h(const char *cp, long *res)
|
|
{
|
|
#if BITS_PER_LONG == 32
|
|
return bch_strtouint_h(cp, (unsigned int *) res);
|
|
#else
|
|
return bch_strtoull_h(cp, (unsigned long long *) res);
|
|
#endif
|
|
}
|
|
|
|
#define strtoi_h(cp, res) \
|
|
(__builtin_types_compatible_p(typeof(*res), int) \
|
|
? bch_strtoint_h(cp, (void *) res) \
|
|
: __builtin_types_compatible_p(typeof(*res), long) \
|
|
? bch_strtol_h(cp, (void *) res) \
|
|
: __builtin_types_compatible_p(typeof(*res), long long) \
|
|
? bch_strtoll_h(cp, (void *) res) \
|
|
: __builtin_types_compatible_p(typeof(*res), unsigned int) \
|
|
? bch_strtouint_h(cp, (void *) res) \
|
|
: __builtin_types_compatible_p(typeof(*res), unsigned long) \
|
|
? bch_strtoul_h(cp, (void *) res) \
|
|
: __builtin_types_compatible_p(typeof(*res), unsigned long long)\
|
|
? bch_strtoull_h(cp, (void *) res) : -EINVAL)
|
|
|
|
#define strtoul_safe(cp, var) \
|
|
({ \
|
|
unsigned long _v; \
|
|
int _r = kstrtoul(cp, 10, &_v); \
|
|
if (!_r) \
|
|
var = _v; \
|
|
_r; \
|
|
})
|
|
|
|
#define strtoul_safe_clamp(cp, var, min, max) \
|
|
({ \
|
|
unsigned long _v; \
|
|
int _r = kstrtoul(cp, 10, &_v); \
|
|
if (!_r) \
|
|
var = clamp_t(typeof(var), _v, min, max); \
|
|
_r; \
|
|
})
|
|
|
|
#define snprint(buf, size, var) \
|
|
snprintf(buf, size, \
|
|
__builtin_types_compatible_p(typeof(var), int) \
|
|
? "%i\n" : \
|
|
__builtin_types_compatible_p(typeof(var), unsigned) \
|
|
? "%u\n" : \
|
|
__builtin_types_compatible_p(typeof(var), long) \
|
|
? "%li\n" : \
|
|
__builtin_types_compatible_p(typeof(var), unsigned long)\
|
|
? "%lu\n" : \
|
|
__builtin_types_compatible_p(typeof(var), int64_t) \
|
|
? "%lli\n" : \
|
|
__builtin_types_compatible_p(typeof(var), uint64_t) \
|
|
? "%llu\n" : \
|
|
__builtin_types_compatible_p(typeof(var), const char *) \
|
|
? "%s\n" : "%i\n", var)
|
|
|
|
ssize_t bch_hprint(char *buf, int64_t v);
|
|
|
|
bool bch_is_zero(const char *p, size_t n);
|
|
int bch_parse_uuid(const char *s, char *uuid);
|
|
|
|
ssize_t bch_snprint_string_list(char *buf, size_t size, const char * const list[],
|
|
size_t selected);
|
|
|
|
ssize_t bch_read_string_list(const char *buf, const char * const list[]);
|
|
|
|
struct time_stats {
|
|
/*
|
|
* all fields are in nanoseconds, averages are ewmas stored left shifted
|
|
* by 8
|
|
*/
|
|
uint64_t max_duration;
|
|
uint64_t average_duration;
|
|
uint64_t average_frequency;
|
|
uint64_t last;
|
|
};
|
|
|
|
void bch_time_stats_update(struct time_stats *stats, uint64_t time);
|
|
|
|
#define NSEC_PER_ns 1L
|
|
#define NSEC_PER_us NSEC_PER_USEC
|
|
#define NSEC_PER_ms NSEC_PER_MSEC
|
|
#define NSEC_PER_sec NSEC_PER_SEC
|
|
|
|
#define __print_time_stat(stats, name, stat, units) \
|
|
sysfs_print(name ## _ ## stat ## _ ## units, \
|
|
div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
|
|
|
|
#define sysfs_print_time_stats(stats, name, \
|
|
frequency_units, \
|
|
duration_units) \
|
|
do { \
|
|
__print_time_stat(stats, name, \
|
|
average_frequency, frequency_units); \
|
|
__print_time_stat(stats, name, \
|
|
average_duration, duration_units); \
|
|
__print_time_stat(stats, name, \
|
|
max_duration, duration_units); \
|
|
\
|
|
sysfs_print(name ## _last_ ## frequency_units, (stats)->last \
|
|
? div_s64(local_clock() - (stats)->last, \
|
|
NSEC_PER_ ## frequency_units) \
|
|
: -1LL); \
|
|
} while (0)
|
|
|
|
#define sysfs_time_stats_attribute(name, \
|
|
frequency_units, \
|
|
duration_units) \
|
|
read_attribute(name ## _average_frequency_ ## frequency_units); \
|
|
read_attribute(name ## _average_duration_ ## duration_units); \
|
|
read_attribute(name ## _max_duration_ ## duration_units); \
|
|
read_attribute(name ## _last_ ## frequency_units)
|
|
|
|
#define sysfs_time_stats_attribute_list(name, \
|
|
frequency_units, \
|
|
duration_units) \
|
|
&sysfs_ ## name ## _average_frequency_ ## frequency_units, \
|
|
&sysfs_ ## name ## _average_duration_ ## duration_units, \
|
|
&sysfs_ ## name ## _max_duration_ ## duration_units, \
|
|
&sysfs_ ## name ## _last_ ## frequency_units,
|
|
|
|
#define ewma_add(ewma, val, weight, factor) \
|
|
({ \
|
|
(ewma) *= (weight) - 1; \
|
|
(ewma) += (val) << factor; \
|
|
(ewma) /= (weight); \
|
|
(ewma) >> factor; \
|
|
})
|
|
|
|
struct bch_ratelimit {
|
|
/* Next time we want to do some work, in nanoseconds */
|
|
uint64_t next;
|
|
|
|
/*
|
|
* Rate at which we want to do work, in units per nanosecond
|
|
* The units here correspond to the units passed to bch_next_delay()
|
|
*/
|
|
unsigned rate;
|
|
};
|
|
|
|
static inline void bch_ratelimit_reset(struct bch_ratelimit *d)
|
|
{
|
|
d->next = local_clock();
|
|
}
|
|
|
|
uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done);
|
|
|
|
#define __DIV_SAFE(n, d, zero) \
|
|
({ \
|
|
typeof(n) _n = (n); \
|
|
typeof(d) _d = (d); \
|
|
_d ? _n / _d : zero; \
|
|
})
|
|
|
|
#define DIV_SAFE(n, d) __DIV_SAFE(n, d, 0)
|
|
|
|
#define container_of_or_null(ptr, type, member) \
|
|
({ \
|
|
typeof(ptr) _ptr = ptr; \
|
|
_ptr ? container_of(_ptr, type, member) : NULL; \
|
|
})
|
|
|
|
#define RB_INSERT(root, new, member, cmp) \
|
|
({ \
|
|
__label__ dup; \
|
|
struct rb_node **n = &(root)->rb_node, *parent = NULL; \
|
|
typeof(new) this; \
|
|
int res, ret = -1; \
|
|
\
|
|
while (*n) { \
|
|
parent = *n; \
|
|
this = container_of(*n, typeof(*(new)), member); \
|
|
res = cmp(new, this); \
|
|
if (!res) \
|
|
goto dup; \
|
|
n = res < 0 \
|
|
? &(*n)->rb_left \
|
|
: &(*n)->rb_right; \
|
|
} \
|
|
\
|
|
rb_link_node(&(new)->member, parent, n); \
|
|
rb_insert_color(&(new)->member, root); \
|
|
ret = 0; \
|
|
dup: \
|
|
ret; \
|
|
})
|
|
|
|
#define RB_SEARCH(root, search, member, cmp) \
|
|
({ \
|
|
struct rb_node *n = (root)->rb_node; \
|
|
typeof(&(search)) this, ret = NULL; \
|
|
int res; \
|
|
\
|
|
while (n) { \
|
|
this = container_of(n, typeof(search), member); \
|
|
res = cmp(&(search), this); \
|
|
if (!res) { \
|
|
ret = this; \
|
|
break; \
|
|
} \
|
|
n = res < 0 \
|
|
? n->rb_left \
|
|
: n->rb_right; \
|
|
} \
|
|
ret; \
|
|
})
|
|
|
|
#define RB_GREATER(root, search, member, cmp) \
|
|
({ \
|
|
struct rb_node *n = (root)->rb_node; \
|
|
typeof(&(search)) this, ret = NULL; \
|
|
int res; \
|
|
\
|
|
while (n) { \
|
|
this = container_of(n, typeof(search), member); \
|
|
res = cmp(&(search), this); \
|
|
if (res < 0) { \
|
|
ret = this; \
|
|
n = n->rb_left; \
|
|
} else \
|
|
n = n->rb_right; \
|
|
} \
|
|
ret; \
|
|
})
|
|
|
|
#define RB_FIRST(root, type, member) \
|
|
container_of_or_null(rb_first(root), type, member)
|
|
|
|
#define RB_LAST(root, type, member) \
|
|
container_of_or_null(rb_last(root), type, member)
|
|
|
|
#define RB_NEXT(ptr, member) \
|
|
container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
|
|
|
|
#define RB_PREV(ptr, member) \
|
|
container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
|
|
|
|
/* Does linear interpolation between powers of two */
|
|
static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits)
|
|
{
|
|
unsigned fract = x & ~(~0 << fract_bits);
|
|
|
|
x >>= fract_bits;
|
|
x = 1 << x;
|
|
x += (x * fract) >> fract_bits;
|
|
|
|
return x;
|
|
}
|
|
|
|
void bch_bio_map(struct bio *bio, void *base);
|
|
|
|
static inline sector_t bdev_sectors(struct block_device *bdev)
|
|
{
|
|
return bdev->bd_inode->i_size >> 9;
|
|
}
|
|
|
|
#define closure_bio_submit(bio, cl, dev) \
|
|
do { \
|
|
closure_get(cl); \
|
|
bch_generic_make_request(bio, &(dev)->bio_split_hook); \
|
|
} while (0)
|
|
|
|
uint64_t bch_crc64_update(uint64_t, const void *, size_t);
|
|
uint64_t bch_crc64(const void *, size_t);
|
|
|
|
#endif /* _BCACHE_UTIL_H */
|