2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 14:43:58 +08:00
linux-next/mm/highmem.c
Arun KS ca79b0c211 mm: convert totalram_pages and totalhigh_pages variables to atomic
totalram_pages and totalhigh_pages are made static inline function.

Main motivation was that managed_page_count_lock handling was complicating
things.  It was discussed in length here,
https://lore.kernel.org/patchwork/patch/995739/#1181785 So it seemes
better to remove the lock and convert variables to atomic, with preventing
poteintial store-to-read tearing as a bonus.

[akpm@linux-foundation.org: coding style fixes]
Link: http://lkml.kernel.org/r/1542090790-21750-4-git-send-email-arunks@codeaurora.org
Signed-off-by: Arun KS <arunks@codeaurora.org>
Suggested-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:47 -08:00

485 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* High memory handling common code and variables.
*
* (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
* Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
*
*
* Redesigned the x86 32-bit VM architecture to deal with
* 64-bit physical space. With current x86 CPUs this
* means up to 64 Gigabytes physical RAM.
*
* Rewrote high memory support to move the page cache into
* high memory. Implemented permanent (schedulable) kmaps
* based on Linus' idea.
*
* Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
*/
#include <linux/mm.h>
#include <linux/export.h>
#include <linux/swap.h>
#include <linux/bio.h>
#include <linux/pagemap.h>
#include <linux/mempool.h>
#include <linux/blkdev.h>
#include <linux/init.h>
#include <linux/hash.h>
#include <linux/highmem.h>
#include <linux/kgdb.h>
#include <asm/tlbflush.h>
#if defined(CONFIG_HIGHMEM) || defined(CONFIG_X86_32)
DEFINE_PER_CPU(int, __kmap_atomic_idx);
#endif
/*
* Virtual_count is not a pure "count".
* 0 means that it is not mapped, and has not been mapped
* since a TLB flush - it is usable.
* 1 means that there are no users, but it has been mapped
* since the last TLB flush - so we can't use it.
* n means that there are (n-1) current users of it.
*/
#ifdef CONFIG_HIGHMEM
/*
* Architecture with aliasing data cache may define the following family of
* helper functions in its asm/highmem.h to control cache color of virtual
* addresses where physical memory pages are mapped by kmap.
*/
#ifndef get_pkmap_color
/*
* Determine color of virtual address where the page should be mapped.
*/
static inline unsigned int get_pkmap_color(struct page *page)
{
return 0;
}
#define get_pkmap_color get_pkmap_color
/*
* Get next index for mapping inside PKMAP region for page with given color.
*/
static inline unsigned int get_next_pkmap_nr(unsigned int color)
{
static unsigned int last_pkmap_nr;
last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
return last_pkmap_nr;
}
/*
* Determine if page index inside PKMAP region (pkmap_nr) of given color
* has wrapped around PKMAP region end. When this happens an attempt to
* flush all unused PKMAP slots is made.
*/
static inline int no_more_pkmaps(unsigned int pkmap_nr, unsigned int color)
{
return pkmap_nr == 0;
}
/*
* Get the number of PKMAP entries of the given color. If no free slot is
* found after checking that many entries, kmap will sleep waiting for
* someone to call kunmap and free PKMAP slot.
*/
static inline int get_pkmap_entries_count(unsigned int color)
{
return LAST_PKMAP;
}
/*
* Get head of a wait queue for PKMAP entries of the given color.
* Wait queues for different mapping colors should be independent to avoid
* unnecessary wakeups caused by freeing of slots of other colors.
*/
static inline wait_queue_head_t *get_pkmap_wait_queue_head(unsigned int color)
{
static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);
return &pkmap_map_wait;
}
#endif
atomic_long_t _totalhigh_pages __read_mostly;
EXPORT_SYMBOL(_totalhigh_pages);
EXPORT_PER_CPU_SYMBOL(__kmap_atomic_idx);
unsigned int nr_free_highpages (void)
{
struct zone *zone;
unsigned int pages = 0;
for_each_populated_zone(zone) {
if (is_highmem(zone))
pages += zone_page_state(zone, NR_FREE_PAGES);
}
return pages;
}
static int pkmap_count[LAST_PKMAP];
static __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock);
pte_t * pkmap_page_table;
/*
* Most architectures have no use for kmap_high_get(), so let's abstract
* the disabling of IRQ out of the locking in that case to save on a
* potential useless overhead.
*/
#ifdef ARCH_NEEDS_KMAP_HIGH_GET
#define lock_kmap() spin_lock_irq(&kmap_lock)
#define unlock_kmap() spin_unlock_irq(&kmap_lock)
#define lock_kmap_any(flags) spin_lock_irqsave(&kmap_lock, flags)
#define unlock_kmap_any(flags) spin_unlock_irqrestore(&kmap_lock, flags)
#else
#define lock_kmap() spin_lock(&kmap_lock)
#define unlock_kmap() spin_unlock(&kmap_lock)
#define lock_kmap_any(flags) \
do { spin_lock(&kmap_lock); (void)(flags); } while (0)
#define unlock_kmap_any(flags) \
do { spin_unlock(&kmap_lock); (void)(flags); } while (0)
#endif
struct page *kmap_to_page(void *vaddr)
{
unsigned long addr = (unsigned long)vaddr;
if (addr >= PKMAP_ADDR(0) && addr < PKMAP_ADDR(LAST_PKMAP)) {
int i = PKMAP_NR(addr);
return pte_page(pkmap_page_table[i]);
}
return virt_to_page(addr);
}
EXPORT_SYMBOL(kmap_to_page);
static void flush_all_zero_pkmaps(void)
{
int i;
int need_flush = 0;
flush_cache_kmaps();
for (i = 0; i < LAST_PKMAP; i++) {
struct page *page;
/*
* zero means we don't have anything to do,
* >1 means that it is still in use. Only
* a count of 1 means that it is free but
* needs to be unmapped
*/
if (pkmap_count[i] != 1)
continue;
pkmap_count[i] = 0;
/* sanity check */
BUG_ON(pte_none(pkmap_page_table[i]));
/*
* Don't need an atomic fetch-and-clear op here;
* no-one has the page mapped, and cannot get at
* its virtual address (and hence PTE) without first
* getting the kmap_lock (which is held here).
* So no dangers, even with speculative execution.
*/
page = pte_page(pkmap_page_table[i]);
pte_clear(&init_mm, PKMAP_ADDR(i), &pkmap_page_table[i]);
set_page_address(page, NULL);
need_flush = 1;
}
if (need_flush)
flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
}
/**
* kmap_flush_unused - flush all unused kmap mappings in order to remove stray mappings
*/
void kmap_flush_unused(void)
{
lock_kmap();
flush_all_zero_pkmaps();
unlock_kmap();
}
static inline unsigned long map_new_virtual(struct page *page)
{
unsigned long vaddr;
int count;
unsigned int last_pkmap_nr;
unsigned int color = get_pkmap_color(page);
start:
count = get_pkmap_entries_count(color);
/* Find an empty entry */
for (;;) {
last_pkmap_nr = get_next_pkmap_nr(color);
if (no_more_pkmaps(last_pkmap_nr, color)) {
flush_all_zero_pkmaps();
count = get_pkmap_entries_count(color);
}
if (!pkmap_count[last_pkmap_nr])
break; /* Found a usable entry */
if (--count)
continue;
/*
* Sleep for somebody else to unmap their entries
*/
{
DECLARE_WAITQUEUE(wait, current);
wait_queue_head_t *pkmap_map_wait =
get_pkmap_wait_queue_head(color);
__set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(pkmap_map_wait, &wait);
unlock_kmap();
schedule();
remove_wait_queue(pkmap_map_wait, &wait);
lock_kmap();
/* Somebody else might have mapped it while we slept */
if (page_address(page))
return (unsigned long)page_address(page);
/* Re-start */
goto start;
}
}
vaddr = PKMAP_ADDR(last_pkmap_nr);
set_pte_at(&init_mm, vaddr,
&(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));
pkmap_count[last_pkmap_nr] = 1;
set_page_address(page, (void *)vaddr);
return vaddr;
}
/**
* kmap_high - map a highmem page into memory
* @page: &struct page to map
*
* Returns the page's virtual memory address.
*
* We cannot call this from interrupts, as it may block.
*/
void *kmap_high(struct page *page)
{
unsigned long vaddr;
/*
* For highmem pages, we can't trust "virtual" until
* after we have the lock.
*/
lock_kmap();
vaddr = (unsigned long)page_address(page);
if (!vaddr)
vaddr = map_new_virtual(page);
pkmap_count[PKMAP_NR(vaddr)]++;
BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 2);
unlock_kmap();
return (void*) vaddr;
}
EXPORT_SYMBOL(kmap_high);
#ifdef ARCH_NEEDS_KMAP_HIGH_GET
/**
* kmap_high_get - pin a highmem page into memory
* @page: &struct page to pin
*
* Returns the page's current virtual memory address, or NULL if no mapping
* exists. If and only if a non null address is returned then a
* matching call to kunmap_high() is necessary.
*
* This can be called from any context.
*/
void *kmap_high_get(struct page *page)
{
unsigned long vaddr, flags;
lock_kmap_any(flags);
vaddr = (unsigned long)page_address(page);
if (vaddr) {
BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 1);
pkmap_count[PKMAP_NR(vaddr)]++;
}
unlock_kmap_any(flags);
return (void*) vaddr;
}
#endif
/**
* kunmap_high - unmap a highmem page into memory
* @page: &struct page to unmap
*
* If ARCH_NEEDS_KMAP_HIGH_GET is not defined then this may be called
* only from user context.
*/
void kunmap_high(struct page *page)
{
unsigned long vaddr;
unsigned long nr;
unsigned long flags;
int need_wakeup;
unsigned int color = get_pkmap_color(page);
wait_queue_head_t *pkmap_map_wait;
lock_kmap_any(flags);
vaddr = (unsigned long)page_address(page);
BUG_ON(!vaddr);
nr = PKMAP_NR(vaddr);
/*
* A count must never go down to zero
* without a TLB flush!
*/
need_wakeup = 0;
switch (--pkmap_count[nr]) {
case 0:
BUG();
case 1:
/*
* Avoid an unnecessary wake_up() function call.
* The common case is pkmap_count[] == 1, but
* no waiters.
* The tasks queued in the wait-queue are guarded
* by both the lock in the wait-queue-head and by
* the kmap_lock. As the kmap_lock is held here,
* no need for the wait-queue-head's lock. Simply
* test if the queue is empty.
*/
pkmap_map_wait = get_pkmap_wait_queue_head(color);
need_wakeup = waitqueue_active(pkmap_map_wait);
}
unlock_kmap_any(flags);
/* do wake-up, if needed, race-free outside of the spin lock */
if (need_wakeup)
wake_up(pkmap_map_wait);
}
EXPORT_SYMBOL(kunmap_high);
#endif
#if defined(HASHED_PAGE_VIRTUAL)
#define PA_HASH_ORDER 7
/*
* Describes one page->virtual association
*/
struct page_address_map {
struct page *page;
void *virtual;
struct list_head list;
};
static struct page_address_map page_address_maps[LAST_PKMAP];
/*
* Hash table bucket
*/
static struct page_address_slot {
struct list_head lh; /* List of page_address_maps */
spinlock_t lock; /* Protect this bucket's list */
} ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER];
static struct page_address_slot *page_slot(const struct page *page)
{
return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)];
}
/**
* page_address - get the mapped virtual address of a page
* @page: &struct page to get the virtual address of
*
* Returns the page's virtual address.
*/
void *page_address(const struct page *page)
{
unsigned long flags;
void *ret;
struct page_address_slot *pas;
if (!PageHighMem(page))
return lowmem_page_address(page);
pas = page_slot(page);
ret = NULL;
spin_lock_irqsave(&pas->lock, flags);
if (!list_empty(&pas->lh)) {
struct page_address_map *pam;
list_for_each_entry(pam, &pas->lh, list) {
if (pam->page == page) {
ret = pam->virtual;
goto done;
}
}
}
done:
spin_unlock_irqrestore(&pas->lock, flags);
return ret;
}
EXPORT_SYMBOL(page_address);
/**
* set_page_address - set a page's virtual address
* @page: &struct page to set
* @virtual: virtual address to use
*/
void set_page_address(struct page *page, void *virtual)
{
unsigned long flags;
struct page_address_slot *pas;
struct page_address_map *pam;
BUG_ON(!PageHighMem(page));
pas = page_slot(page);
if (virtual) { /* Add */
pam = &page_address_maps[PKMAP_NR((unsigned long)virtual)];
pam->page = page;
pam->virtual = virtual;
spin_lock_irqsave(&pas->lock, flags);
list_add_tail(&pam->list, &pas->lh);
spin_unlock_irqrestore(&pas->lock, flags);
} else { /* Remove */
spin_lock_irqsave(&pas->lock, flags);
list_for_each_entry(pam, &pas->lh, list) {
if (pam->page == page) {
list_del(&pam->list);
spin_unlock_irqrestore(&pas->lock, flags);
goto done;
}
}
spin_unlock_irqrestore(&pas->lock, flags);
}
done:
return;
}
void __init page_address_init(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) {
INIT_LIST_HEAD(&page_address_htable[i].lh);
spin_lock_init(&page_address_htable[i].lock);
}
}
#endif /* defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) */