2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-19 10:44:14 +08:00
linux-next/arch/s390/kernel/fpu.c
Sven Schnelle 56e62a7370 s390: convert to generic entry
This patch converts s390 to use the generic entry infrastructure from
kernel/entry/*.

There are a few special things on s390:

- PIF_PER_TRAP is moved to TIF_PER_TRAP as the generic code doesn't
  know about our PIF flags in exit_to_user_mode_loop().

- The old code had several ways to restart syscalls:

  a) PIF_SYSCALL_RESTART, which was only set during execve to force a
     restart after upgrading a process (usually qemu-kvm) to pgste page
     table extensions.

  b) PIF_SYSCALL, which is set by do_signal() to indicate that the
     current syscall should be restarted. This is changed so that
     do_signal() now also uses PIF_SYSCALL_RESTART. Continuing to use
     PIF_SYSCALL doesn't work with the generic code, and changing it
     to PIF_SYSCALL_RESTART makes PIF_SYSCALL and PIF_SYSCALL_RESTART
     more unique.

- On s390 calling sys_sigreturn or sys_rt_sigreturn is implemented by
executing a svc instruction on the process stack which causes a fault.
While handling that fault the fault code sets PIF_SYSCALL to hand over
processing to the syscall code on exit to usermode.

The patch introduces PIF_SYSCALL_RET_SET, which is set if ptrace sets
a return value for a syscall. The s390x ptrace ABI uses r2 both for the
syscall number and return value, so ptrace cannot set the syscall number +
return value at the same time. The flag makes handling that a bit easier.
do_syscall() will just skip executing the syscall if PIF_SYSCALL_RET_SET
is set.

CONFIG_DEBUG_ASCE was removd in favour of the generic CONFIG_DEBUG_ENTRY.
CR1/7/13 will be checked both on kernel entry and exit to contain the
correct asces.

Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2021-01-19 12:29:26 +01:00

266 lines
8.4 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* In-kernel vector facility support functions
*
* Copyright IBM Corp. 2015
* Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
*/
#include <linux/kernel.h>
#include <linux/cpu.h>
#include <linux/sched.h>
#include <asm/fpu/types.h>
#include <asm/fpu/api.h>
asm(".include \"asm/vx-insn.h\"\n");
void __kernel_fpu_begin(struct kernel_fpu *state, u32 flags)
{
/*
* Limit the save to the FPU/vector registers already
* in use by the previous context
*/
flags &= state->mask;
if (flags & KERNEL_FPC)
/* Save floating point control */
asm volatile("stfpc %0" : "=Q" (state->fpc));
if (!MACHINE_HAS_VX) {
if (flags & KERNEL_VXR_V0V7) {
/* Save floating-point registers */
asm volatile("std 0,%0" : "=Q" (state->fprs[0]));
asm volatile("std 1,%0" : "=Q" (state->fprs[1]));
asm volatile("std 2,%0" : "=Q" (state->fprs[2]));
asm volatile("std 3,%0" : "=Q" (state->fprs[3]));
asm volatile("std 4,%0" : "=Q" (state->fprs[4]));
asm volatile("std 5,%0" : "=Q" (state->fprs[5]));
asm volatile("std 6,%0" : "=Q" (state->fprs[6]));
asm volatile("std 7,%0" : "=Q" (state->fprs[7]));
asm volatile("std 8,%0" : "=Q" (state->fprs[8]));
asm volatile("std 9,%0" : "=Q" (state->fprs[9]));
asm volatile("std 10,%0" : "=Q" (state->fprs[10]));
asm volatile("std 11,%0" : "=Q" (state->fprs[11]));
asm volatile("std 12,%0" : "=Q" (state->fprs[12]));
asm volatile("std 13,%0" : "=Q" (state->fprs[13]));
asm volatile("std 14,%0" : "=Q" (state->fprs[14]));
asm volatile("std 15,%0" : "=Q" (state->fprs[15]));
}
return;
}
/* Test and save vector registers */
asm volatile (
/*
* Test if any vector register must be saved and, if so,
* test if all register can be saved.
*/
" la 1,%[vxrs]\n" /* load save area */
" tmll %[m],30\n" /* KERNEL_VXR */
" jz 7f\n" /* no work -> done */
" jo 5f\n" /* -> save V0..V31 */
/*
* Test for special case KERNEL_FPU_MID only. In this
* case a vstm V8..V23 is the best instruction
*/
" chi %[m],12\n" /* KERNEL_VXR_MID */
" jne 0f\n" /* -> save V8..V23 */
" VSTM 8,23,128,1\n" /* vstm %v8,%v23,128(%r1) */
" j 7f\n"
/* Test and save the first half of 16 vector registers */
"0: tmll %[m],6\n" /* KERNEL_VXR_LOW */
" jz 3f\n" /* -> KERNEL_VXR_HIGH */
" jo 2f\n" /* 11 -> save V0..V15 */
" brc 2,1f\n" /* 10 -> save V8..V15 */
" VSTM 0,7,0,1\n" /* vstm %v0,%v7,0(%r1) */
" j 3f\n"
"1: VSTM 8,15,128,1\n" /* vstm %v8,%v15,128(%r1) */
" j 3f\n"
"2: VSTM 0,15,0,1\n" /* vstm %v0,%v15,0(%r1) */
/* Test and save the second half of 16 vector registers */
"3: tmll %[m],24\n" /* KERNEL_VXR_HIGH */
" jz 7f\n"
" jo 6f\n" /* 11 -> save V16..V31 */
" brc 2,4f\n" /* 10 -> save V24..V31 */
" VSTM 16,23,256,1\n" /* vstm %v16,%v23,256(%r1) */
" j 7f\n"
"4: VSTM 24,31,384,1\n" /* vstm %v24,%v31,384(%r1) */
" j 7f\n"
"5: VSTM 0,15,0,1\n" /* vstm %v0,%v15,0(%r1) */
"6: VSTM 16,31,256,1\n" /* vstm %v16,%v31,256(%r1) */
"7:"
: [vxrs] "=Q" (*(struct vx_array *) &state->vxrs)
: [m] "d" (flags)
: "1", "cc");
}
EXPORT_SYMBOL(__kernel_fpu_begin);
void __kernel_fpu_end(struct kernel_fpu *state, u32 flags)
{
/*
* Limit the restore to the FPU/vector registers of the
* previous context that have been overwritte by the
* current context
*/
flags &= state->mask;
if (flags & KERNEL_FPC)
/* Restore floating-point controls */
asm volatile("lfpc %0" : : "Q" (state->fpc));
if (!MACHINE_HAS_VX) {
if (flags & KERNEL_VXR_V0V7) {
/* Restore floating-point registers */
asm volatile("ld 0,%0" : : "Q" (state->fprs[0]));
asm volatile("ld 1,%0" : : "Q" (state->fprs[1]));
asm volatile("ld 2,%0" : : "Q" (state->fprs[2]));
asm volatile("ld 3,%0" : : "Q" (state->fprs[3]));
asm volatile("ld 4,%0" : : "Q" (state->fprs[4]));
asm volatile("ld 5,%0" : : "Q" (state->fprs[5]));
asm volatile("ld 6,%0" : : "Q" (state->fprs[6]));
asm volatile("ld 7,%0" : : "Q" (state->fprs[7]));
asm volatile("ld 8,%0" : : "Q" (state->fprs[8]));
asm volatile("ld 9,%0" : : "Q" (state->fprs[9]));
asm volatile("ld 10,%0" : : "Q" (state->fprs[10]));
asm volatile("ld 11,%0" : : "Q" (state->fprs[11]));
asm volatile("ld 12,%0" : : "Q" (state->fprs[12]));
asm volatile("ld 13,%0" : : "Q" (state->fprs[13]));
asm volatile("ld 14,%0" : : "Q" (state->fprs[14]));
asm volatile("ld 15,%0" : : "Q" (state->fprs[15]));
}
return;
}
/* Test and restore (load) vector registers */
asm volatile (
/*
* Test if any vector register must be loaded and, if so,
* test if all registers can be loaded at once.
*/
" la 1,%[vxrs]\n" /* load restore area */
" tmll %[m],30\n" /* KERNEL_VXR */
" jz 7f\n" /* no work -> done */
" jo 5f\n" /* -> restore V0..V31 */
/*
* Test for special case KERNEL_FPU_MID only. In this
* case a vlm V8..V23 is the best instruction
*/
" chi %[m],12\n" /* KERNEL_VXR_MID */
" jne 0f\n" /* -> restore V8..V23 */
" VLM 8,23,128,1\n" /* vlm %v8,%v23,128(%r1) */
" j 7f\n"
/* Test and restore the first half of 16 vector registers */
"0: tmll %[m],6\n" /* KERNEL_VXR_LOW */
" jz 3f\n" /* -> KERNEL_VXR_HIGH */
" jo 2f\n" /* 11 -> restore V0..V15 */
" brc 2,1f\n" /* 10 -> restore V8..V15 */
" VLM 0,7,0,1\n" /* vlm %v0,%v7,0(%r1) */
" j 3f\n"
"1: VLM 8,15,128,1\n" /* vlm %v8,%v15,128(%r1) */
" j 3f\n"
"2: VLM 0,15,0,1\n" /* vlm %v0,%v15,0(%r1) */
/* Test and restore the second half of 16 vector registers */
"3: tmll %[m],24\n" /* KERNEL_VXR_HIGH */
" jz 7f\n"
" jo 6f\n" /* 11 -> restore V16..V31 */
" brc 2,4f\n" /* 10 -> restore V24..V31 */
" VLM 16,23,256,1\n" /* vlm %v16,%v23,256(%r1) */
" j 7f\n"
"4: VLM 24,31,384,1\n" /* vlm %v24,%v31,384(%r1) */
" j 7f\n"
"5: VLM 0,15,0,1\n" /* vlm %v0,%v15,0(%r1) */
"6: VLM 16,31,256,1\n" /* vlm %v16,%v31,256(%r1) */
"7:"
: [vxrs] "=Q" (*(struct vx_array *) &state->vxrs)
: [m] "d" (flags)
: "1", "cc");
}
EXPORT_SYMBOL(__kernel_fpu_end);
void __load_fpu_regs(void)
{
struct fpu *state = &current->thread.fpu;
unsigned long *regs = current->thread.fpu.regs;
asm volatile("lfpc %0" : : "Q" (state->fpc));
if (likely(MACHINE_HAS_VX)) {
asm volatile("lgr 1,%0\n"
"VLM 0,15,0,1\n"
"VLM 16,31,256,1\n"
:
: "d" (regs)
: "1", "cc", "memory");
} else {
asm volatile("ld 0,%0" : : "Q" (regs[0]));
asm volatile("ld 1,%0" : : "Q" (regs[1]));
asm volatile("ld 2,%0" : : "Q" (regs[2]));
asm volatile("ld 3,%0" : : "Q" (regs[3]));
asm volatile("ld 4,%0" : : "Q" (regs[4]));
asm volatile("ld 5,%0" : : "Q" (regs[5]));
asm volatile("ld 6,%0" : : "Q" (regs[6]));
asm volatile("ld 7,%0" : : "Q" (regs[7]));
asm volatile("ld 8,%0" : : "Q" (regs[8]));
asm volatile("ld 9,%0" : : "Q" (regs[9]));
asm volatile("ld 10,%0" : : "Q" (regs[10]));
asm volatile("ld 11,%0" : : "Q" (regs[11]));
asm volatile("ld 12,%0" : : "Q" (regs[12]));
asm volatile("ld 13,%0" : : "Q" (regs[13]));
asm volatile("ld 14,%0" : : "Q" (regs[14]));
asm volatile("ld 15,%0" : : "Q" (regs[15]));
}
clear_cpu_flag(CIF_FPU);
}
EXPORT_SYMBOL(__load_fpu_regs);
void load_fpu_regs(void)
{
raw_local_irq_disable();
__load_fpu_regs();
raw_local_irq_enable();
}
EXPORT_SYMBOL(load_fpu_regs);
void save_fpu_regs(void)
{
unsigned long flags, *regs;
struct fpu *state;
local_irq_save(flags);
if (test_cpu_flag(CIF_FPU))
goto out;
state = &current->thread.fpu;
regs = current->thread.fpu.regs;
asm volatile("stfpc %0" : "=Q" (state->fpc));
if (likely(MACHINE_HAS_VX)) {
asm volatile("lgr 1,%0\n"
"VSTM 0,15,0,1\n"
"VSTM 16,31,256,1\n"
:
: "d" (regs)
: "1", "cc", "memory");
} else {
asm volatile("std 0,%0" : "=Q" (regs[0]));
asm volatile("std 1,%0" : "=Q" (regs[1]));
asm volatile("std 2,%0" : "=Q" (regs[2]));
asm volatile("std 3,%0" : "=Q" (regs[3]));
asm volatile("std 4,%0" : "=Q" (regs[4]));
asm volatile("std 5,%0" : "=Q" (regs[5]));
asm volatile("std 6,%0" : "=Q" (regs[6]));
asm volatile("std 7,%0" : "=Q" (regs[7]));
asm volatile("std 8,%0" : "=Q" (regs[8]));
asm volatile("std 9,%0" : "=Q" (regs[9]));
asm volatile("std 10,%0" : "=Q" (regs[10]));
asm volatile("std 11,%0" : "=Q" (regs[11]));
asm volatile("std 12,%0" : "=Q" (regs[12]));
asm volatile("std 13,%0" : "=Q" (regs[13]));
asm volatile("std 14,%0" : "=Q" (regs[14]));
asm volatile("std 15,%0" : "=Q" (regs[15]));
}
set_cpu_flag(CIF_FPU);
out:
local_irq_restore(flags);
}
EXPORT_SYMBOL(save_fpu_regs);