2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-17 09:43:59 +08:00
linux-next/tools/perf/util/mem-events.c
Kajol Jain cae1d75906 tools/perf: Add mem_hops field in perf_mem_data_src structure
Going forward, future generation systems can have more hierarchy
within the node/package level but currently we don't have any data source
encoding field in perf, which can be used to represent this level of data.

Add a new field called 'mem_hops' in the perf_mem_data_src structure
which can be used to represent intra-node/package or inter-node/off-package
details. This field is of size 3 bits where PERF_MEM_HOPS_{NA, 0..6} value
can be used to present different hop levels data.

Also add corresponding macros to define mem_hop field values
and shift value.

Currently we define macro for HOPS_0 which corresponds
to data coming from another core but same node.

Add functionality to represent mem_hop field data in
perf_mem__lvl_scnprintf function with the help of added string
array called mem_hops.

For ex: Encodings for mem_hops fields with L2 cache:

L2                      - local L2
L2 | REMOTE | HOPS_0    - remote core, same node L2

Since with the addition of HOPS field, now remote can be used to
denote cache access from the same node but different core, a check
is added in the c2c_decode_stats function to set mrem only when HOPS
is zero along with set remote field.

Signed-off-by: Kajol Jain <kjain@linux.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20211006140654.298352-4-kjain@linux.ibm.com
2021-10-19 17:27:00 +02:00

626 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <api/fs/fs.h>
#include <linux/kernel.h>
#include "map_symbol.h"
#include "mem-events.h"
#include "debug.h"
#include "symbol.h"
#include "pmu.h"
#include "pmu-hybrid.h"
unsigned int perf_mem_events__loads_ldlat = 30;
#define E(t, n, s) { .tag = t, .name = n, .sysfs_name = s }
static struct perf_mem_event perf_mem_events[PERF_MEM_EVENTS__MAX] = {
E("ldlat-loads", "cpu/mem-loads,ldlat=%u/P", "cpu/events/mem-loads"),
E("ldlat-stores", "cpu/mem-stores/P", "cpu/events/mem-stores"),
E(NULL, NULL, NULL),
};
#undef E
static char mem_loads_name[100];
static bool mem_loads_name__init;
struct perf_mem_event * __weak perf_mem_events__ptr(int i)
{
if (i >= PERF_MEM_EVENTS__MAX)
return NULL;
return &perf_mem_events[i];
}
char * __weak perf_mem_events__name(int i, char *pmu_name __maybe_unused)
{
struct perf_mem_event *e = perf_mem_events__ptr(i);
if (!e)
return NULL;
if (i == PERF_MEM_EVENTS__LOAD) {
if (!mem_loads_name__init) {
mem_loads_name__init = true;
scnprintf(mem_loads_name, sizeof(mem_loads_name),
e->name, perf_mem_events__loads_ldlat);
}
return mem_loads_name;
}
return (char *)e->name;
}
__weak bool is_mem_loads_aux_event(struct evsel *leader __maybe_unused)
{
return false;
}
int perf_mem_events__parse(const char *str)
{
char *tok, *saveptr = NULL;
bool found = false;
char *buf;
int j;
/* We need buffer that we know we can write to. */
buf = malloc(strlen(str) + 1);
if (!buf)
return -ENOMEM;
strcpy(buf, str);
tok = strtok_r((char *)buf, ",", &saveptr);
while (tok) {
for (j = 0; j < PERF_MEM_EVENTS__MAX; j++) {
struct perf_mem_event *e = perf_mem_events__ptr(j);
if (!e->tag)
continue;
if (strstr(e->tag, tok))
e->record = found = true;
}
tok = strtok_r(NULL, ",", &saveptr);
}
free(buf);
if (found)
return 0;
pr_err("failed: event '%s' not found, use '-e list' to get list of available events\n", str);
return -1;
}
static bool perf_mem_event__supported(const char *mnt, char *sysfs_name)
{
char path[PATH_MAX];
struct stat st;
scnprintf(path, PATH_MAX, "%s/devices/%s", mnt, sysfs_name);
return !stat(path, &st);
}
int perf_mem_events__init(void)
{
const char *mnt = sysfs__mount();
bool found = false;
int j;
if (!mnt)
return -ENOENT;
for (j = 0; j < PERF_MEM_EVENTS__MAX; j++) {
struct perf_mem_event *e = perf_mem_events__ptr(j);
struct perf_pmu *pmu;
char sysfs_name[100];
/*
* If the event entry isn't valid, skip initialization
* and "e->supported" will keep false.
*/
if (!e->tag)
continue;
if (!perf_pmu__has_hybrid()) {
scnprintf(sysfs_name, sizeof(sysfs_name),
e->sysfs_name, "cpu");
e->supported = perf_mem_event__supported(mnt, sysfs_name);
} else {
perf_pmu__for_each_hybrid_pmu(pmu) {
scnprintf(sysfs_name, sizeof(sysfs_name),
e->sysfs_name, pmu->name);
e->supported |= perf_mem_event__supported(mnt, sysfs_name);
}
}
if (e->supported)
found = true;
}
return found ? 0 : -ENOENT;
}
void perf_mem_events__list(void)
{
int j;
for (j = 0; j < PERF_MEM_EVENTS__MAX; j++) {
struct perf_mem_event *e = perf_mem_events__ptr(j);
fprintf(stderr, "%-13s%-*s%s\n",
e->tag ?: "",
verbose > 0 ? 25 : 0,
verbose > 0 ? perf_mem_events__name(j, NULL) : "",
e->supported ? ": available" : "");
}
}
static void perf_mem_events__print_unsupport_hybrid(struct perf_mem_event *e,
int idx)
{
const char *mnt = sysfs__mount();
char sysfs_name[100];
struct perf_pmu *pmu;
perf_pmu__for_each_hybrid_pmu(pmu) {
scnprintf(sysfs_name, sizeof(sysfs_name), e->sysfs_name,
pmu->name);
if (!perf_mem_event__supported(mnt, sysfs_name)) {
pr_err("failed: event '%s' not supported\n",
perf_mem_events__name(idx, pmu->name));
}
}
}
int perf_mem_events__record_args(const char **rec_argv, int *argv_nr,
char **rec_tmp, int *tmp_nr)
{
int i = *argv_nr, k = 0;
struct perf_mem_event *e;
struct perf_pmu *pmu;
char *s;
for (int j = 0; j < PERF_MEM_EVENTS__MAX; j++) {
e = perf_mem_events__ptr(j);
if (!e->record)
continue;
if (!perf_pmu__has_hybrid()) {
if (!e->supported) {
pr_err("failed: event '%s' not supported\n",
perf_mem_events__name(j, NULL));
return -1;
}
rec_argv[i++] = "-e";
rec_argv[i++] = perf_mem_events__name(j, NULL);
} else {
if (!e->supported) {
perf_mem_events__print_unsupport_hybrid(e, j);
return -1;
}
perf_pmu__for_each_hybrid_pmu(pmu) {
rec_argv[i++] = "-e";
s = perf_mem_events__name(j, pmu->name);
if (s) {
s = strdup(s);
if (!s)
return -1;
rec_argv[i++] = s;
rec_tmp[k++] = s;
}
}
}
}
*argv_nr = i;
*tmp_nr = k;
return 0;
}
static const char * const tlb_access[] = {
"N/A",
"HIT",
"MISS",
"L1",
"L2",
"Walker",
"Fault",
};
int perf_mem__tlb_scnprintf(char *out, size_t sz, struct mem_info *mem_info)
{
size_t l = 0, i;
u64 m = PERF_MEM_TLB_NA;
u64 hit, miss;
sz -= 1; /* -1 for null termination */
out[0] = '\0';
if (mem_info)
m = mem_info->data_src.mem_dtlb;
hit = m & PERF_MEM_TLB_HIT;
miss = m & PERF_MEM_TLB_MISS;
/* already taken care of */
m &= ~(PERF_MEM_TLB_HIT|PERF_MEM_TLB_MISS);
for (i = 0; m && i < ARRAY_SIZE(tlb_access); i++, m >>= 1) {
if (!(m & 0x1))
continue;
if (l) {
strcat(out, " or ");
l += 4;
}
l += scnprintf(out + l, sz - l, tlb_access[i]);
}
if (*out == '\0')
l += scnprintf(out, sz - l, "N/A");
if (hit)
l += scnprintf(out + l, sz - l, " hit");
if (miss)
l += scnprintf(out + l, sz - l, " miss");
return l;
}
static const char * const mem_lvl[] = {
"N/A",
"HIT",
"MISS",
"L1",
"LFB",
"L2",
"L3",
"Local RAM",
"Remote RAM (1 hop)",
"Remote RAM (2 hops)",
"Remote Cache (1 hop)",
"Remote Cache (2 hops)",
"I/O",
"Uncached",
};
static const char * const mem_lvlnum[] = {
[PERF_MEM_LVLNUM_ANY_CACHE] = "Any cache",
[PERF_MEM_LVLNUM_LFB] = "LFB",
[PERF_MEM_LVLNUM_RAM] = "RAM",
[PERF_MEM_LVLNUM_PMEM] = "PMEM",
[PERF_MEM_LVLNUM_NA] = "N/A",
};
static const char * const mem_hops[] = {
"N/A",
/*
* While printing, 'Remote' will be added to represent
* 'Remote core, same node' accesses as remote field need
* to be set with mem_hops field.
*/
"core, same node",
};
int perf_mem__lvl_scnprintf(char *out, size_t sz, struct mem_info *mem_info)
{
size_t i, l = 0;
u64 m = PERF_MEM_LVL_NA;
u64 hit, miss;
int printed;
if (mem_info)
m = mem_info->data_src.mem_lvl;
sz -= 1; /* -1 for null termination */
out[0] = '\0';
hit = m & PERF_MEM_LVL_HIT;
miss = m & PERF_MEM_LVL_MISS;
/* already taken care of */
m &= ~(PERF_MEM_LVL_HIT|PERF_MEM_LVL_MISS);
if (mem_info && mem_info->data_src.mem_remote) {
strcat(out, "Remote ");
l += 7;
}
if (mem_info && mem_info->data_src.mem_hops)
l += scnprintf(out + l, sz - l, "%s ", mem_hops[mem_info->data_src.mem_hops]);
printed = 0;
for (i = 0; m && i < ARRAY_SIZE(mem_lvl); i++, m >>= 1) {
if (!(m & 0x1))
continue;
if (printed++) {
strcat(out, " or ");
l += 4;
}
l += scnprintf(out + l, sz - l, mem_lvl[i]);
}
if (mem_info && mem_info->data_src.mem_lvl_num) {
int lvl = mem_info->data_src.mem_lvl_num;
if (printed++) {
strcat(out, " or ");
l += 4;
}
if (mem_lvlnum[lvl])
l += scnprintf(out + l, sz - l, mem_lvlnum[lvl]);
else
l += scnprintf(out + l, sz - l, "L%d", lvl);
}
if (l == 0)
l += scnprintf(out + l, sz - l, "N/A");
if (hit)
l += scnprintf(out + l, sz - l, " hit");
if (miss)
l += scnprintf(out + l, sz - l, " miss");
return l;
}
static const char * const snoop_access[] = {
"N/A",
"None",
"Hit",
"Miss",
"HitM",
};
int perf_mem__snp_scnprintf(char *out, size_t sz, struct mem_info *mem_info)
{
size_t i, l = 0;
u64 m = PERF_MEM_SNOOP_NA;
sz -= 1; /* -1 for null termination */
out[0] = '\0';
if (mem_info)
m = mem_info->data_src.mem_snoop;
for (i = 0; m && i < ARRAY_SIZE(snoop_access); i++, m >>= 1) {
if (!(m & 0x1))
continue;
if (l) {
strcat(out, " or ");
l += 4;
}
l += scnprintf(out + l, sz - l, snoop_access[i]);
}
if (mem_info &&
(mem_info->data_src.mem_snoopx & PERF_MEM_SNOOPX_FWD)) {
if (l) {
strcat(out, " or ");
l += 4;
}
l += scnprintf(out + l, sz - l, "Fwd");
}
if (*out == '\0')
l += scnprintf(out, sz - l, "N/A");
return l;
}
int perf_mem__lck_scnprintf(char *out, size_t sz, struct mem_info *mem_info)
{
u64 mask = PERF_MEM_LOCK_NA;
int l;
if (mem_info)
mask = mem_info->data_src.mem_lock;
if (mask & PERF_MEM_LOCK_NA)
l = scnprintf(out, sz, "N/A");
else if (mask & PERF_MEM_LOCK_LOCKED)
l = scnprintf(out, sz, "Yes");
else
l = scnprintf(out, sz, "No");
return l;
}
int perf_mem__blk_scnprintf(char *out, size_t sz, struct mem_info *mem_info)
{
size_t l = 0;
u64 mask = PERF_MEM_BLK_NA;
sz -= 1; /* -1 for null termination */
out[0] = '\0';
if (mem_info)
mask = mem_info->data_src.mem_blk;
if (!mask || (mask & PERF_MEM_BLK_NA)) {
l += scnprintf(out + l, sz - l, " N/A");
return l;
}
if (mask & PERF_MEM_BLK_DATA)
l += scnprintf(out + l, sz - l, " Data");
if (mask & PERF_MEM_BLK_ADDR)
l += scnprintf(out + l, sz - l, " Addr");
return l;
}
int perf_script__meminfo_scnprintf(char *out, size_t sz, struct mem_info *mem_info)
{
int i = 0;
i += perf_mem__lvl_scnprintf(out, sz, mem_info);
i += scnprintf(out + i, sz - i, "|SNP ");
i += perf_mem__snp_scnprintf(out + i, sz - i, mem_info);
i += scnprintf(out + i, sz - i, "|TLB ");
i += perf_mem__tlb_scnprintf(out + i, sz - i, mem_info);
i += scnprintf(out + i, sz - i, "|LCK ");
i += perf_mem__lck_scnprintf(out + i, sz - i, mem_info);
i += scnprintf(out + i, sz - i, "|BLK ");
i += perf_mem__blk_scnprintf(out + i, sz - i, mem_info);
return i;
}
int c2c_decode_stats(struct c2c_stats *stats, struct mem_info *mi)
{
union perf_mem_data_src *data_src = &mi->data_src;
u64 daddr = mi->daddr.addr;
u64 op = data_src->mem_op;
u64 lvl = data_src->mem_lvl;
u64 snoop = data_src->mem_snoop;
u64 lock = data_src->mem_lock;
u64 blk = data_src->mem_blk;
/*
* Skylake might report unknown remote level via this
* bit, consider it when evaluating remote HITMs.
*
* Incase of power, remote field can also be used to denote cache
* accesses from the another core of same node. Hence, setting
* mrem only when HOPS is zero along with set remote field.
*/
bool mrem = (data_src->mem_remote && !data_src->mem_hops);
int err = 0;
#define HITM_INC(__f) \
do { \
stats->__f++; \
stats->tot_hitm++; \
} while (0)
#define P(a, b) PERF_MEM_##a##_##b
stats->nr_entries++;
if (lock & P(LOCK, LOCKED)) stats->locks++;
if (blk & P(BLK, DATA)) stats->blk_data++;
if (blk & P(BLK, ADDR)) stats->blk_addr++;
if (op & P(OP, LOAD)) {
/* load */
stats->load++;
if (!daddr) {
stats->ld_noadrs++;
return -1;
}
if (lvl & P(LVL, HIT)) {
if (lvl & P(LVL, UNC)) stats->ld_uncache++;
if (lvl & P(LVL, IO)) stats->ld_io++;
if (lvl & P(LVL, LFB)) stats->ld_fbhit++;
if (lvl & P(LVL, L1 )) stats->ld_l1hit++;
if (lvl & P(LVL, L2 )) stats->ld_l2hit++;
if (lvl & P(LVL, L3 )) {
if (snoop & P(SNOOP, HITM))
HITM_INC(lcl_hitm);
else
stats->ld_llchit++;
}
if (lvl & P(LVL, LOC_RAM)) {
stats->lcl_dram++;
if (snoop & P(SNOOP, HIT))
stats->ld_shared++;
else
stats->ld_excl++;
}
if ((lvl & P(LVL, REM_RAM1)) ||
(lvl & P(LVL, REM_RAM2)) ||
mrem) {
stats->rmt_dram++;
if (snoop & P(SNOOP, HIT))
stats->ld_shared++;
else
stats->ld_excl++;
}
}
if ((lvl & P(LVL, REM_CCE1)) ||
(lvl & P(LVL, REM_CCE2)) ||
mrem) {
if (snoop & P(SNOOP, HIT))
stats->rmt_hit++;
else if (snoop & P(SNOOP, HITM))
HITM_INC(rmt_hitm);
}
if ((lvl & P(LVL, MISS)))
stats->ld_miss++;
} else if (op & P(OP, STORE)) {
/* store */
stats->store++;
if (!daddr) {
stats->st_noadrs++;
return -1;
}
if (lvl & P(LVL, HIT)) {
if (lvl & P(LVL, UNC)) stats->st_uncache++;
if (lvl & P(LVL, L1 )) stats->st_l1hit++;
}
if (lvl & P(LVL, MISS))
if (lvl & P(LVL, L1)) stats->st_l1miss++;
} else {
/* unparsable data_src? */
stats->noparse++;
return -1;
}
if (!mi->daddr.ms.map || !mi->iaddr.ms.map) {
stats->nomap++;
return -1;
}
#undef P
#undef HITM_INC
return err;
}
void c2c_add_stats(struct c2c_stats *stats, struct c2c_stats *add)
{
stats->nr_entries += add->nr_entries;
stats->locks += add->locks;
stats->store += add->store;
stats->st_uncache += add->st_uncache;
stats->st_noadrs += add->st_noadrs;
stats->st_l1hit += add->st_l1hit;
stats->st_l1miss += add->st_l1miss;
stats->load += add->load;
stats->ld_excl += add->ld_excl;
stats->ld_shared += add->ld_shared;
stats->ld_uncache += add->ld_uncache;
stats->ld_io += add->ld_io;
stats->ld_miss += add->ld_miss;
stats->ld_noadrs += add->ld_noadrs;
stats->ld_fbhit += add->ld_fbhit;
stats->ld_l1hit += add->ld_l1hit;
stats->ld_l2hit += add->ld_l2hit;
stats->ld_llchit += add->ld_llchit;
stats->lcl_hitm += add->lcl_hitm;
stats->rmt_hitm += add->rmt_hitm;
stats->tot_hitm += add->tot_hitm;
stats->rmt_hit += add->rmt_hit;
stats->lcl_dram += add->lcl_dram;
stats->rmt_dram += add->rmt_dram;
stats->blk_data += add->blk_data;
stats->blk_addr += add->blk_addr;
stats->nomap += add->nomap;
stats->noparse += add->noparse;
}