2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-17 09:43:59 +08:00
linux-next/tools/perf/util/evlist.c
Jin Yao 1d3351e631 perf tools: Enable on a list of CPUs for hybrid
The 'perf record' and 'perf stat' commands have supported the option
'-C/--cpus' to count or collect only on the list of CPUs provided. This
option needs to be supported for hybrid as well.

For hybrid support, it needs to check that the cpu list are available
on hybrid PMU. One example for AlderLake, cpu0-7 is 'cpu_core', cpu8-11
is 'cpu_atom'.

Before:

  # perf stat -e cpu_core/cycles/ -C11 -- sleep 1

   Performance counter stats for 'CPU(s) 11':

     <not supported>      cpu_core/cycles/

         1.006179431 seconds time elapsed

The 'perf stat' command silently returned "<not supported>" without any
helpful information. It should error out pointing out that that cpu11
was not 'cpu_core'.

After:

  # perf stat -e cpu_core/cycles/ -C11 -- sleep 1
  WARNING: 11 isn't a 'cpu_core', please use a CPU list in the 'cpu_core' range (0-7)
  failed to use cpu list 11

We also need to support the events without pmu prefix specified.

  # perf stat -e cycles -C11 -- sleep 1
  WARNING: 11 isn't a 'cpu_core', please use a CPU list in the 'cpu_core' range (0-7)

   Performance counter stats for 'CPU(s) 11':

           1,067,373      cpu_atom/cycles/

         1.005544738 seconds time elapsed

The perf tool creates two cycles events automatically, cpu_core/cycles/ and
cpu_atom/cycles/. It checks that cpu11 is not 'cpu_core', then shows a warning
for cpu_core/cycles/ and only count the cpu_atom/cycles/.

If part of cpus are 'cpu_core' and part of cpus are 'cpu_atom', for example,

  # perf stat -e cycles -C0,11 -- sleep 1
  WARNING: use 0 in 'cpu_core' for 'cycles', skip other cpus in list.
  WARNING: use 11 in 'cpu_atom' for 'cycles', skip other cpus in list.

   Performance counter stats for 'CPU(s) 0,11':

           1,914,704      cpu_core/cycles/
           2,036,983      cpu_atom/cycles/

         1.005815641 seconds time elapsed

It now automatically selects cpu0 for cpu_core/cycles/, selects cpu11 for
cpu_atom/cycles/, and output with some warnings.

Some more complex examples,

  # perf stat -e cycles,instructions -C0,11 -- sleep 1
  WARNING: use 0 in 'cpu_core' for 'cycles', skip other cpus in list.
  WARNING: use 11 in 'cpu_atom' for 'cycles', skip other cpus in list.
  WARNING: use 0 in 'cpu_core' for 'instructions', skip other cpus in list.
  WARNING: use 11 in 'cpu_atom' for 'instructions', skip other cpus in list.

   Performance counter stats for 'CPU(s) 0,11':

           2,780,387      cpu_core/cycles/
           1,583,432      cpu_atom/cycles/
           3,957,277      cpu_core/instructions/
           1,167,089      cpu_atom/instructions/

         1.006005124 seconds time elapsed

  # perf stat -e cycles,cpu_atom/instructions/ -C0,11 -- sleep 1
  WARNING: use 0 in 'cpu_core' for 'cycles', skip other cpus in list.
  WARNING: use 11 in 'cpu_atom' for 'cycles', skip other cpus in list.
  WARNING: use 11 in 'cpu_atom' for 'cpu_atom/instructions/', skip other cpus in list.

   Performance counter stats for 'CPU(s) 0,11':

           3,290,301      cpu_core/cycles/
           1,953,073      cpu_atom/cycles/
           1,407,869      cpu_atom/instructions/

         1.006260912 seconds time elapsed

Signed-off-by: Jin Yao <yao.jin@linux.intel.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jin Yao <yao.jin@intel.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https //lore.kernel.org/r/20210723063433.7318-4-yao.jin@linux.intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-08-11 16:07:32 -03:00

2172 lines
48 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
*
* Parts came from builtin-{top,stat,record}.c, see those files for further
* copyright notes.
*/
#include <api/fs/fs.h>
#include <errno.h>
#include <inttypes.h>
#include <poll.h>
#include "cpumap.h"
#include "util/mmap.h"
#include "thread_map.h"
#include "target.h"
#include "evlist.h"
#include "evsel.h"
#include "debug.h"
#include "units.h"
#include "bpf_counter.h"
#include <internal/lib.h> // page_size
#include "affinity.h"
#include "../perf.h"
#include "asm/bug.h"
#include "bpf-event.h"
#include "util/string2.h"
#include "util/perf_api_probe.h"
#include "util/evsel_fprintf.h"
#include "util/evlist-hybrid.h"
#include "util/pmu.h"
#include <signal.h>
#include <unistd.h>
#include <sched.h>
#include <stdlib.h>
#include "parse-events.h"
#include <subcmd/parse-options.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/prctl.h>
#include <linux/bitops.h>
#include <linux/hash.h>
#include <linux/log2.h>
#include <linux/err.h>
#include <linux/string.h>
#include <linux/zalloc.h>
#include <perf/evlist.h>
#include <perf/evsel.h>
#include <perf/cpumap.h>
#include <perf/mmap.h>
#include <internal/xyarray.h>
#ifdef LACKS_SIGQUEUE_PROTOTYPE
int sigqueue(pid_t pid, int sig, const union sigval value);
#endif
#define FD(e, x, y) (*(int *)xyarray__entry(e->core.fd, x, y))
#define SID(e, x, y) xyarray__entry(e->core.sample_id, x, y)
void evlist__init(struct evlist *evlist, struct perf_cpu_map *cpus,
struct perf_thread_map *threads)
{
perf_evlist__init(&evlist->core);
perf_evlist__set_maps(&evlist->core, cpus, threads);
evlist->workload.pid = -1;
evlist->bkw_mmap_state = BKW_MMAP_NOTREADY;
evlist->ctl_fd.fd = -1;
evlist->ctl_fd.ack = -1;
evlist->ctl_fd.pos = -1;
}
struct evlist *evlist__new(void)
{
struct evlist *evlist = zalloc(sizeof(*evlist));
if (evlist != NULL)
evlist__init(evlist, NULL, NULL);
return evlist;
}
struct evlist *evlist__new_default(void)
{
struct evlist *evlist = evlist__new();
if (evlist && evlist__add_default(evlist)) {
evlist__delete(evlist);
evlist = NULL;
}
return evlist;
}
struct evlist *evlist__new_dummy(void)
{
struct evlist *evlist = evlist__new();
if (evlist && evlist__add_dummy(evlist)) {
evlist__delete(evlist);
evlist = NULL;
}
return evlist;
}
/**
* evlist__set_id_pos - set the positions of event ids.
* @evlist: selected event list
*
* Events with compatible sample types all have the same id_pos
* and is_pos. For convenience, put a copy on evlist.
*/
void evlist__set_id_pos(struct evlist *evlist)
{
struct evsel *first = evlist__first(evlist);
evlist->id_pos = first->id_pos;
evlist->is_pos = first->is_pos;
}
static void evlist__update_id_pos(struct evlist *evlist)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel)
evsel__calc_id_pos(evsel);
evlist__set_id_pos(evlist);
}
static void evlist__purge(struct evlist *evlist)
{
struct evsel *pos, *n;
evlist__for_each_entry_safe(evlist, n, pos) {
list_del_init(&pos->core.node);
pos->evlist = NULL;
evsel__delete(pos);
}
evlist->core.nr_entries = 0;
}
void evlist__exit(struct evlist *evlist)
{
zfree(&evlist->mmap);
zfree(&evlist->overwrite_mmap);
perf_evlist__exit(&evlist->core);
}
void evlist__delete(struct evlist *evlist)
{
if (evlist == NULL)
return;
evlist__munmap(evlist);
evlist__close(evlist);
evlist__purge(evlist);
evlist__exit(evlist);
free(evlist);
}
void evlist__add(struct evlist *evlist, struct evsel *entry)
{
perf_evlist__add(&evlist->core, &entry->core);
entry->evlist = evlist;
entry->tracking = !entry->core.idx;
if (evlist->core.nr_entries == 1)
evlist__set_id_pos(evlist);
}
void evlist__remove(struct evlist *evlist, struct evsel *evsel)
{
evsel->evlist = NULL;
perf_evlist__remove(&evlist->core, &evsel->core);
}
void evlist__splice_list_tail(struct evlist *evlist, struct list_head *list)
{
while (!list_empty(list)) {
struct evsel *evsel, *temp, *leader = NULL;
__evlist__for_each_entry_safe(list, temp, evsel) {
list_del_init(&evsel->core.node);
evlist__add(evlist, evsel);
leader = evsel;
break;
}
__evlist__for_each_entry_safe(list, temp, evsel) {
if (evsel__has_leader(evsel, leader)) {
list_del_init(&evsel->core.node);
evlist__add(evlist, evsel);
}
}
}
}
int __evlist__set_tracepoints_handlers(struct evlist *evlist,
const struct evsel_str_handler *assocs, size_t nr_assocs)
{
size_t i;
int err;
for (i = 0; i < nr_assocs; i++) {
// Adding a handler for an event not in this evlist, just ignore it.
struct evsel *evsel = evlist__find_tracepoint_by_name(evlist, assocs[i].name);
if (evsel == NULL)
continue;
err = -EEXIST;
if (evsel->handler != NULL)
goto out;
evsel->handler = assocs[i].handler;
}
err = 0;
out:
return err;
}
void evlist__set_leader(struct evlist *evlist)
{
perf_evlist__set_leader(&evlist->core);
}
int __evlist__add_default(struct evlist *evlist, bool precise)
{
struct evsel *evsel;
evsel = evsel__new_cycles(precise, PERF_TYPE_HARDWARE,
PERF_COUNT_HW_CPU_CYCLES);
if (evsel == NULL)
return -ENOMEM;
evlist__add(evlist, evsel);
return 0;
}
int evlist__add_dummy(struct evlist *evlist)
{
struct perf_event_attr attr = {
.type = PERF_TYPE_SOFTWARE,
.config = PERF_COUNT_SW_DUMMY,
.size = sizeof(attr), /* to capture ABI version */
};
struct evsel *evsel = evsel__new_idx(&attr, evlist->core.nr_entries);
if (evsel == NULL)
return -ENOMEM;
evlist__add(evlist, evsel);
return 0;
}
static int evlist__add_attrs(struct evlist *evlist, struct perf_event_attr *attrs, size_t nr_attrs)
{
struct evsel *evsel, *n;
LIST_HEAD(head);
size_t i;
for (i = 0; i < nr_attrs; i++) {
evsel = evsel__new_idx(attrs + i, evlist->core.nr_entries + i);
if (evsel == NULL)
goto out_delete_partial_list;
list_add_tail(&evsel->core.node, &head);
}
evlist__splice_list_tail(evlist, &head);
return 0;
out_delete_partial_list:
__evlist__for_each_entry_safe(&head, n, evsel)
evsel__delete(evsel);
return -1;
}
int __evlist__add_default_attrs(struct evlist *evlist, struct perf_event_attr *attrs, size_t nr_attrs)
{
size_t i;
for (i = 0; i < nr_attrs; i++)
event_attr_init(attrs + i);
return evlist__add_attrs(evlist, attrs, nr_attrs);
}
__weak int arch_evlist__add_default_attrs(struct evlist *evlist __maybe_unused)
{
return 0;
}
struct evsel *evlist__find_tracepoint_by_id(struct evlist *evlist, int id)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel) {
if (evsel->core.attr.type == PERF_TYPE_TRACEPOINT &&
(int)evsel->core.attr.config == id)
return evsel;
}
return NULL;
}
struct evsel *evlist__find_tracepoint_by_name(struct evlist *evlist, const char *name)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel) {
if ((evsel->core.attr.type == PERF_TYPE_TRACEPOINT) &&
(strcmp(evsel->name, name) == 0))
return evsel;
}
return NULL;
}
int evlist__add_newtp(struct evlist *evlist, const char *sys, const char *name, void *handler)
{
struct evsel *evsel = evsel__newtp(sys, name);
if (IS_ERR(evsel))
return -1;
evsel->handler = handler;
evlist__add(evlist, evsel);
return 0;
}
static int evlist__nr_threads(struct evlist *evlist, struct evsel *evsel)
{
if (evsel->core.system_wide)
return 1;
else
return perf_thread_map__nr(evlist->core.threads);
}
void evlist__cpu_iter_start(struct evlist *evlist)
{
struct evsel *pos;
/*
* Reset the per evsel cpu_iter. This is needed because
* each evsel's cpumap may have a different index space,
* and some operations need the index to modify
* the FD xyarray (e.g. open, close)
*/
evlist__for_each_entry(evlist, pos)
pos->cpu_iter = 0;
}
bool evsel__cpu_iter_skip_no_inc(struct evsel *ev, int cpu)
{
if (ev->cpu_iter >= ev->core.cpus->nr)
return true;
if (cpu >= 0 && ev->core.cpus->map[ev->cpu_iter] != cpu)
return true;
return false;
}
bool evsel__cpu_iter_skip(struct evsel *ev, int cpu)
{
if (!evsel__cpu_iter_skip_no_inc(ev, cpu)) {
ev->cpu_iter++;
return false;
}
return true;
}
static int evsel__strcmp(struct evsel *pos, char *evsel_name)
{
if (!evsel_name)
return 0;
if (evsel__is_dummy_event(pos))
return 1;
return strcmp(pos->name, evsel_name);
}
static int evlist__is_enabled(struct evlist *evlist)
{
struct evsel *pos;
evlist__for_each_entry(evlist, pos) {
if (!evsel__is_group_leader(pos) || !pos->core.fd)
continue;
/* If at least one event is enabled, evlist is enabled. */
if (!pos->disabled)
return true;
}
return false;
}
static void __evlist__disable(struct evlist *evlist, char *evsel_name)
{
struct evsel *pos;
struct affinity affinity;
int cpu, i, imm = 0;
bool has_imm = false;
if (affinity__setup(&affinity) < 0)
return;
/* Disable 'immediate' events last */
for (imm = 0; imm <= 1; imm++) {
evlist__for_each_cpu(evlist, i, cpu) {
affinity__set(&affinity, cpu);
evlist__for_each_entry(evlist, pos) {
if (evsel__strcmp(pos, evsel_name))
continue;
if (evsel__cpu_iter_skip(pos, cpu))
continue;
if (pos->disabled || !evsel__is_group_leader(pos) || !pos->core.fd)
continue;
if (pos->immediate)
has_imm = true;
if (pos->immediate != imm)
continue;
evsel__disable_cpu(pos, pos->cpu_iter - 1);
}
}
if (!has_imm)
break;
}
affinity__cleanup(&affinity);
evlist__for_each_entry(evlist, pos) {
if (evsel__strcmp(pos, evsel_name))
continue;
if (!evsel__is_group_leader(pos) || !pos->core.fd)
continue;
pos->disabled = true;
}
/*
* If we disabled only single event, we need to check
* the enabled state of the evlist manually.
*/
if (evsel_name)
evlist->enabled = evlist__is_enabled(evlist);
else
evlist->enabled = false;
}
void evlist__disable(struct evlist *evlist)
{
__evlist__disable(evlist, NULL);
}
void evlist__disable_evsel(struct evlist *evlist, char *evsel_name)
{
__evlist__disable(evlist, evsel_name);
}
static void __evlist__enable(struct evlist *evlist, char *evsel_name)
{
struct evsel *pos;
struct affinity affinity;
int cpu, i;
if (affinity__setup(&affinity) < 0)
return;
evlist__for_each_cpu(evlist, i, cpu) {
affinity__set(&affinity, cpu);
evlist__for_each_entry(evlist, pos) {
if (evsel__strcmp(pos, evsel_name))
continue;
if (evsel__cpu_iter_skip(pos, cpu))
continue;
if (!evsel__is_group_leader(pos) || !pos->core.fd)
continue;
evsel__enable_cpu(pos, pos->cpu_iter - 1);
}
}
affinity__cleanup(&affinity);
evlist__for_each_entry(evlist, pos) {
if (evsel__strcmp(pos, evsel_name))
continue;
if (!evsel__is_group_leader(pos) || !pos->core.fd)
continue;
pos->disabled = false;
}
/*
* Even single event sets the 'enabled' for evlist,
* so the toggle can work properly and toggle to
* 'disabled' state.
*/
evlist->enabled = true;
}
void evlist__enable(struct evlist *evlist)
{
__evlist__enable(evlist, NULL);
}
void evlist__enable_evsel(struct evlist *evlist, char *evsel_name)
{
__evlist__enable(evlist, evsel_name);
}
void evlist__toggle_enable(struct evlist *evlist)
{
(evlist->enabled ? evlist__disable : evlist__enable)(evlist);
}
static int evlist__enable_event_cpu(struct evlist *evlist, struct evsel *evsel, int cpu)
{
int thread;
int nr_threads = evlist__nr_threads(evlist, evsel);
if (!evsel->core.fd)
return -EINVAL;
for (thread = 0; thread < nr_threads; thread++) {
int err = ioctl(FD(evsel, cpu, thread), PERF_EVENT_IOC_ENABLE, 0);
if (err)
return err;
}
return 0;
}
static int evlist__enable_event_thread(struct evlist *evlist, struct evsel *evsel, int thread)
{
int cpu;
int nr_cpus = perf_cpu_map__nr(evlist->core.cpus);
if (!evsel->core.fd)
return -EINVAL;
for (cpu = 0; cpu < nr_cpus; cpu++) {
int err = ioctl(FD(evsel, cpu, thread), PERF_EVENT_IOC_ENABLE, 0);
if (err)
return err;
}
return 0;
}
int evlist__enable_event_idx(struct evlist *evlist, struct evsel *evsel, int idx)
{
bool per_cpu_mmaps = !perf_cpu_map__empty(evlist->core.cpus);
if (per_cpu_mmaps)
return evlist__enable_event_cpu(evlist, evsel, idx);
return evlist__enable_event_thread(evlist, evsel, idx);
}
int evlist__add_pollfd(struct evlist *evlist, int fd)
{
return perf_evlist__add_pollfd(&evlist->core, fd, NULL, POLLIN, fdarray_flag__default);
}
int evlist__filter_pollfd(struct evlist *evlist, short revents_and_mask)
{
return perf_evlist__filter_pollfd(&evlist->core, revents_and_mask);
}
#ifdef HAVE_EVENTFD_SUPPORT
int evlist__add_wakeup_eventfd(struct evlist *evlist, int fd)
{
return perf_evlist__add_pollfd(&evlist->core, fd, NULL, POLLIN,
fdarray_flag__nonfilterable);
}
#endif
int evlist__poll(struct evlist *evlist, int timeout)
{
return perf_evlist__poll(&evlist->core, timeout);
}
struct perf_sample_id *evlist__id2sid(struct evlist *evlist, u64 id)
{
struct hlist_head *head;
struct perf_sample_id *sid;
int hash;
hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
head = &evlist->core.heads[hash];
hlist_for_each_entry(sid, head, node)
if (sid->id == id)
return sid;
return NULL;
}
struct evsel *evlist__id2evsel(struct evlist *evlist, u64 id)
{
struct perf_sample_id *sid;
if (evlist->core.nr_entries == 1 || !id)
return evlist__first(evlist);
sid = evlist__id2sid(evlist, id);
if (sid)
return container_of(sid->evsel, struct evsel, core);
if (!evlist__sample_id_all(evlist))
return evlist__first(evlist);
return NULL;
}
struct evsel *evlist__id2evsel_strict(struct evlist *evlist, u64 id)
{
struct perf_sample_id *sid;
if (!id)
return NULL;
sid = evlist__id2sid(evlist, id);
if (sid)
return container_of(sid->evsel, struct evsel, core);
return NULL;
}
static int evlist__event2id(struct evlist *evlist, union perf_event *event, u64 *id)
{
const __u64 *array = event->sample.array;
ssize_t n;
n = (event->header.size - sizeof(event->header)) >> 3;
if (event->header.type == PERF_RECORD_SAMPLE) {
if (evlist->id_pos >= n)
return -1;
*id = array[evlist->id_pos];
} else {
if (evlist->is_pos > n)
return -1;
n -= evlist->is_pos;
*id = array[n];
}
return 0;
}
struct evsel *evlist__event2evsel(struct evlist *evlist, union perf_event *event)
{
struct evsel *first = evlist__first(evlist);
struct hlist_head *head;
struct perf_sample_id *sid;
int hash;
u64 id;
if (evlist->core.nr_entries == 1)
return first;
if (!first->core.attr.sample_id_all &&
event->header.type != PERF_RECORD_SAMPLE)
return first;
if (evlist__event2id(evlist, event, &id))
return NULL;
/* Synthesized events have an id of zero */
if (!id)
return first;
hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
head = &evlist->core.heads[hash];
hlist_for_each_entry(sid, head, node) {
if (sid->id == id)
return container_of(sid->evsel, struct evsel, core);
}
return NULL;
}
static int evlist__set_paused(struct evlist *evlist, bool value)
{
int i;
if (!evlist->overwrite_mmap)
return 0;
for (i = 0; i < evlist->core.nr_mmaps; i++) {
int fd = evlist->overwrite_mmap[i].core.fd;
int err;
if (fd < 0)
continue;
err = ioctl(fd, PERF_EVENT_IOC_PAUSE_OUTPUT, value ? 1 : 0);
if (err)
return err;
}
return 0;
}
static int evlist__pause(struct evlist *evlist)
{
return evlist__set_paused(evlist, true);
}
static int evlist__resume(struct evlist *evlist)
{
return evlist__set_paused(evlist, false);
}
static void evlist__munmap_nofree(struct evlist *evlist)
{
int i;
if (evlist->mmap)
for (i = 0; i < evlist->core.nr_mmaps; i++)
perf_mmap__munmap(&evlist->mmap[i].core);
if (evlist->overwrite_mmap)
for (i = 0; i < evlist->core.nr_mmaps; i++)
perf_mmap__munmap(&evlist->overwrite_mmap[i].core);
}
void evlist__munmap(struct evlist *evlist)
{
evlist__munmap_nofree(evlist);
zfree(&evlist->mmap);
zfree(&evlist->overwrite_mmap);
}
static void perf_mmap__unmap_cb(struct perf_mmap *map)
{
struct mmap *m = container_of(map, struct mmap, core);
mmap__munmap(m);
}
static struct mmap *evlist__alloc_mmap(struct evlist *evlist,
bool overwrite)
{
int i;
struct mmap *map;
map = zalloc(evlist->core.nr_mmaps * sizeof(struct mmap));
if (!map)
return NULL;
for (i = 0; i < evlist->core.nr_mmaps; i++) {
struct perf_mmap *prev = i ? &map[i - 1].core : NULL;
/*
* When the perf_mmap() call is made we grab one refcount, plus
* one extra to let perf_mmap__consume() get the last
* events after all real references (perf_mmap__get()) are
* dropped.
*
* Each PERF_EVENT_IOC_SET_OUTPUT points to this mmap and
* thus does perf_mmap__get() on it.
*/
perf_mmap__init(&map[i].core, prev, overwrite, perf_mmap__unmap_cb);
}
return map;
}
static void
perf_evlist__mmap_cb_idx(struct perf_evlist *_evlist,
struct perf_mmap_param *_mp,
int idx, bool per_cpu)
{
struct evlist *evlist = container_of(_evlist, struct evlist, core);
struct mmap_params *mp = container_of(_mp, struct mmap_params, core);
auxtrace_mmap_params__set_idx(&mp->auxtrace_mp, evlist, idx, per_cpu);
}
static struct perf_mmap*
perf_evlist__mmap_cb_get(struct perf_evlist *_evlist, bool overwrite, int idx)
{
struct evlist *evlist = container_of(_evlist, struct evlist, core);
struct mmap *maps;
maps = overwrite ? evlist->overwrite_mmap : evlist->mmap;
if (!maps) {
maps = evlist__alloc_mmap(evlist, overwrite);
if (!maps)
return NULL;
if (overwrite) {
evlist->overwrite_mmap = maps;
if (evlist->bkw_mmap_state == BKW_MMAP_NOTREADY)
evlist__toggle_bkw_mmap(evlist, BKW_MMAP_RUNNING);
} else {
evlist->mmap = maps;
}
}
return &maps[idx].core;
}
static int
perf_evlist__mmap_cb_mmap(struct perf_mmap *_map, struct perf_mmap_param *_mp,
int output, int cpu)
{
struct mmap *map = container_of(_map, struct mmap, core);
struct mmap_params *mp = container_of(_mp, struct mmap_params, core);
return mmap__mmap(map, mp, output, cpu);
}
unsigned long perf_event_mlock_kb_in_pages(void)
{
unsigned long pages;
int max;
if (sysctl__read_int("kernel/perf_event_mlock_kb", &max) < 0) {
/*
* Pick a once upon a time good value, i.e. things look
* strange since we can't read a sysctl value, but lets not
* die yet...
*/
max = 512;
} else {
max -= (page_size / 1024);
}
pages = (max * 1024) / page_size;
if (!is_power_of_2(pages))
pages = rounddown_pow_of_two(pages);
return pages;
}
size_t evlist__mmap_size(unsigned long pages)
{
if (pages == UINT_MAX)
pages = perf_event_mlock_kb_in_pages();
else if (!is_power_of_2(pages))
return 0;
return (pages + 1) * page_size;
}
static long parse_pages_arg(const char *str, unsigned long min,
unsigned long max)
{
unsigned long pages, val;
static struct parse_tag tags[] = {
{ .tag = 'B', .mult = 1 },
{ .tag = 'K', .mult = 1 << 10 },
{ .tag = 'M', .mult = 1 << 20 },
{ .tag = 'G', .mult = 1 << 30 },
{ .tag = 0 },
};
if (str == NULL)
return -EINVAL;
val = parse_tag_value(str, tags);
if (val != (unsigned long) -1) {
/* we got file size value */
pages = PERF_ALIGN(val, page_size) / page_size;
} else {
/* we got pages count value */
char *eptr;
pages = strtoul(str, &eptr, 10);
if (*eptr != '\0')
return -EINVAL;
}
if (pages == 0 && min == 0) {
/* leave number of pages at 0 */
} else if (!is_power_of_2(pages)) {
char buf[100];
/* round pages up to next power of 2 */
pages = roundup_pow_of_two(pages);
if (!pages)
return -EINVAL;
unit_number__scnprintf(buf, sizeof(buf), pages * page_size);
pr_info("rounding mmap pages size to %s (%lu pages)\n",
buf, pages);
}
if (pages > max)
return -EINVAL;
return pages;
}
int __evlist__parse_mmap_pages(unsigned int *mmap_pages, const char *str)
{
unsigned long max = UINT_MAX;
long pages;
if (max > SIZE_MAX / page_size)
max = SIZE_MAX / page_size;
pages = parse_pages_arg(str, 1, max);
if (pages < 0) {
pr_err("Invalid argument for --mmap_pages/-m\n");
return -1;
}
*mmap_pages = pages;
return 0;
}
int evlist__parse_mmap_pages(const struct option *opt, const char *str, int unset __maybe_unused)
{
return __evlist__parse_mmap_pages(opt->value, str);
}
/**
* evlist__mmap_ex - Create mmaps to receive events.
* @evlist: list of events
* @pages: map length in pages
* @overwrite: overwrite older events?
* @auxtrace_pages - auxtrace map length in pages
* @auxtrace_overwrite - overwrite older auxtrace data?
*
* If @overwrite is %false the user needs to signal event consumption using
* perf_mmap__write_tail(). Using evlist__mmap_read() does this
* automatically.
*
* Similarly, if @auxtrace_overwrite is %false the user needs to signal data
* consumption using auxtrace_mmap__write_tail().
*
* Return: %0 on success, negative error code otherwise.
*/
int evlist__mmap_ex(struct evlist *evlist, unsigned int pages,
unsigned int auxtrace_pages,
bool auxtrace_overwrite, int nr_cblocks, int affinity, int flush,
int comp_level)
{
/*
* Delay setting mp.prot: set it before calling perf_mmap__mmap.
* Its value is decided by evsel's write_backward.
* So &mp should not be passed through const pointer.
*/
struct mmap_params mp = {
.nr_cblocks = nr_cblocks,
.affinity = affinity,
.flush = flush,
.comp_level = comp_level
};
struct perf_evlist_mmap_ops ops = {
.idx = perf_evlist__mmap_cb_idx,
.get = perf_evlist__mmap_cb_get,
.mmap = perf_evlist__mmap_cb_mmap,
};
evlist->core.mmap_len = evlist__mmap_size(pages);
pr_debug("mmap size %zuB\n", evlist->core.mmap_len);
auxtrace_mmap_params__init(&mp.auxtrace_mp, evlist->core.mmap_len,
auxtrace_pages, auxtrace_overwrite);
return perf_evlist__mmap_ops(&evlist->core, &ops, &mp.core);
}
int evlist__mmap(struct evlist *evlist, unsigned int pages)
{
return evlist__mmap_ex(evlist, pages, 0, false, 0, PERF_AFFINITY_SYS, 1, 0);
}
int evlist__create_maps(struct evlist *evlist, struct target *target)
{
bool all_threads = (target->per_thread && target->system_wide);
struct perf_cpu_map *cpus;
struct perf_thread_map *threads;
/*
* If specify '-a' and '--per-thread' to perf record, perf record
* will override '--per-thread'. target->per_thread = false and
* target->system_wide = true.
*
* If specify '--per-thread' only to perf record,
* target->per_thread = true and target->system_wide = false.
*
* So target->per_thread && target->system_wide is false.
* For perf record, thread_map__new_str doesn't call
* thread_map__new_all_cpus. That will keep perf record's
* current behavior.
*
* For perf stat, it allows the case that target->per_thread and
* target->system_wide are all true. It means to collect system-wide
* per-thread data. thread_map__new_str will call
* thread_map__new_all_cpus to enumerate all threads.
*/
threads = thread_map__new_str(target->pid, target->tid, target->uid,
all_threads);
if (!threads)
return -1;
if (target__uses_dummy_map(target))
cpus = perf_cpu_map__dummy_new();
else
cpus = perf_cpu_map__new(target->cpu_list);
if (!cpus)
goto out_delete_threads;
evlist->core.has_user_cpus = !!target->cpu_list && !target->hybrid;
perf_evlist__set_maps(&evlist->core, cpus, threads);
/* as evlist now has references, put count here */
perf_cpu_map__put(cpus);
perf_thread_map__put(threads);
return 0;
out_delete_threads:
perf_thread_map__put(threads);
return -1;
}
int evlist__apply_filters(struct evlist *evlist, struct evsel **err_evsel)
{
struct evsel *evsel;
int err = 0;
evlist__for_each_entry(evlist, evsel) {
if (evsel->filter == NULL)
continue;
/*
* filters only work for tracepoint event, which doesn't have cpu limit.
* So evlist and evsel should always be same.
*/
err = perf_evsel__apply_filter(&evsel->core, evsel->filter);
if (err) {
*err_evsel = evsel;
break;
}
}
return err;
}
int evlist__set_tp_filter(struct evlist *evlist, const char *filter)
{
struct evsel *evsel;
int err = 0;
if (filter == NULL)
return -1;
evlist__for_each_entry(evlist, evsel) {
if (evsel->core.attr.type != PERF_TYPE_TRACEPOINT)
continue;
err = evsel__set_filter(evsel, filter);
if (err)
break;
}
return err;
}
int evlist__append_tp_filter(struct evlist *evlist, const char *filter)
{
struct evsel *evsel;
int err = 0;
if (filter == NULL)
return -1;
evlist__for_each_entry(evlist, evsel) {
if (evsel->core.attr.type != PERF_TYPE_TRACEPOINT)
continue;
err = evsel__append_tp_filter(evsel, filter);
if (err)
break;
}
return err;
}
char *asprintf__tp_filter_pids(size_t npids, pid_t *pids)
{
char *filter;
size_t i;
for (i = 0; i < npids; ++i) {
if (i == 0) {
if (asprintf(&filter, "common_pid != %d", pids[i]) < 0)
return NULL;
} else {
char *tmp;
if (asprintf(&tmp, "%s && common_pid != %d", filter, pids[i]) < 0)
goto out_free;
free(filter);
filter = tmp;
}
}
return filter;
out_free:
free(filter);
return NULL;
}
int evlist__set_tp_filter_pids(struct evlist *evlist, size_t npids, pid_t *pids)
{
char *filter = asprintf__tp_filter_pids(npids, pids);
int ret = evlist__set_tp_filter(evlist, filter);
free(filter);
return ret;
}
int evlist__set_tp_filter_pid(struct evlist *evlist, pid_t pid)
{
return evlist__set_tp_filter_pids(evlist, 1, &pid);
}
int evlist__append_tp_filter_pids(struct evlist *evlist, size_t npids, pid_t *pids)
{
char *filter = asprintf__tp_filter_pids(npids, pids);
int ret = evlist__append_tp_filter(evlist, filter);
free(filter);
return ret;
}
int evlist__append_tp_filter_pid(struct evlist *evlist, pid_t pid)
{
return evlist__append_tp_filter_pids(evlist, 1, &pid);
}
bool evlist__valid_sample_type(struct evlist *evlist)
{
struct evsel *pos;
if (evlist->core.nr_entries == 1)
return true;
if (evlist->id_pos < 0 || evlist->is_pos < 0)
return false;
evlist__for_each_entry(evlist, pos) {
if (pos->id_pos != evlist->id_pos ||
pos->is_pos != evlist->is_pos)
return false;
}
return true;
}
u64 __evlist__combined_sample_type(struct evlist *evlist)
{
struct evsel *evsel;
if (evlist->combined_sample_type)
return evlist->combined_sample_type;
evlist__for_each_entry(evlist, evsel)
evlist->combined_sample_type |= evsel->core.attr.sample_type;
return evlist->combined_sample_type;
}
u64 evlist__combined_sample_type(struct evlist *evlist)
{
evlist->combined_sample_type = 0;
return __evlist__combined_sample_type(evlist);
}
u64 evlist__combined_branch_type(struct evlist *evlist)
{
struct evsel *evsel;
u64 branch_type = 0;
evlist__for_each_entry(evlist, evsel)
branch_type |= evsel->core.attr.branch_sample_type;
return branch_type;
}
bool evlist__valid_read_format(struct evlist *evlist)
{
struct evsel *first = evlist__first(evlist), *pos = first;
u64 read_format = first->core.attr.read_format;
u64 sample_type = first->core.attr.sample_type;
evlist__for_each_entry(evlist, pos) {
if (read_format != pos->core.attr.read_format) {
pr_debug("Read format differs %#" PRIx64 " vs %#" PRIx64 "\n",
read_format, (u64)pos->core.attr.read_format);
}
}
/* PERF_SAMPLE_READ implies PERF_FORMAT_ID. */
if ((sample_type & PERF_SAMPLE_READ) &&
!(read_format & PERF_FORMAT_ID)) {
return false;
}
return true;
}
u16 evlist__id_hdr_size(struct evlist *evlist)
{
struct evsel *first = evlist__first(evlist);
struct perf_sample *data;
u64 sample_type;
u16 size = 0;
if (!first->core.attr.sample_id_all)
goto out;
sample_type = first->core.attr.sample_type;
if (sample_type & PERF_SAMPLE_TID)
size += sizeof(data->tid) * 2;
if (sample_type & PERF_SAMPLE_TIME)
size += sizeof(data->time);
if (sample_type & PERF_SAMPLE_ID)
size += sizeof(data->id);
if (sample_type & PERF_SAMPLE_STREAM_ID)
size += sizeof(data->stream_id);
if (sample_type & PERF_SAMPLE_CPU)
size += sizeof(data->cpu) * 2;
if (sample_type & PERF_SAMPLE_IDENTIFIER)
size += sizeof(data->id);
out:
return size;
}
bool evlist__valid_sample_id_all(struct evlist *evlist)
{
struct evsel *first = evlist__first(evlist), *pos = first;
evlist__for_each_entry_continue(evlist, pos) {
if (first->core.attr.sample_id_all != pos->core.attr.sample_id_all)
return false;
}
return true;
}
bool evlist__sample_id_all(struct evlist *evlist)
{
struct evsel *first = evlist__first(evlist);
return first->core.attr.sample_id_all;
}
void evlist__set_selected(struct evlist *evlist, struct evsel *evsel)
{
evlist->selected = evsel;
}
void evlist__close(struct evlist *evlist)
{
struct evsel *evsel;
struct affinity affinity;
int cpu, i;
/*
* With perf record core.cpus is usually NULL.
* Use the old method to handle this for now.
*/
if (!evlist->core.cpus) {
evlist__for_each_entry_reverse(evlist, evsel)
evsel__close(evsel);
return;
}
if (affinity__setup(&affinity) < 0)
return;
evlist__for_each_cpu(evlist, i, cpu) {
affinity__set(&affinity, cpu);
evlist__for_each_entry_reverse(evlist, evsel) {
if (evsel__cpu_iter_skip(evsel, cpu))
continue;
perf_evsel__close_cpu(&evsel->core, evsel->cpu_iter - 1);
}
}
affinity__cleanup(&affinity);
evlist__for_each_entry_reverse(evlist, evsel) {
perf_evsel__free_fd(&evsel->core);
perf_evsel__free_id(&evsel->core);
}
perf_evlist__reset_id_hash(&evlist->core);
}
static int evlist__create_syswide_maps(struct evlist *evlist)
{
struct perf_cpu_map *cpus;
struct perf_thread_map *threads;
int err = -ENOMEM;
/*
* Try reading /sys/devices/system/cpu/online to get
* an all cpus map.
*
* FIXME: -ENOMEM is the best we can do here, the cpu_map
* code needs an overhaul to properly forward the
* error, and we may not want to do that fallback to a
* default cpu identity map :-\
*/
cpus = perf_cpu_map__new(NULL);
if (!cpus)
goto out;
threads = perf_thread_map__new_dummy();
if (!threads)
goto out_put;
perf_evlist__set_maps(&evlist->core, cpus, threads);
perf_thread_map__put(threads);
out_put:
perf_cpu_map__put(cpus);
out:
return err;
}
int evlist__open(struct evlist *evlist)
{
struct evsel *evsel;
int err;
/*
* Default: one fd per CPU, all threads, aka systemwide
* as sys_perf_event_open(cpu = -1, thread = -1) is EINVAL
*/
if (evlist->core.threads == NULL && evlist->core.cpus == NULL) {
err = evlist__create_syswide_maps(evlist);
if (err < 0)
goto out_err;
}
evlist__update_id_pos(evlist);
evlist__for_each_entry(evlist, evsel) {
err = evsel__open(evsel, evsel->core.cpus, evsel->core.threads);
if (err < 0)
goto out_err;
}
return 0;
out_err:
evlist__close(evlist);
errno = -err;
return err;
}
int evlist__prepare_workload(struct evlist *evlist, struct target *target, const char *argv[],
bool pipe_output, void (*exec_error)(int signo, siginfo_t *info, void *ucontext))
{
int child_ready_pipe[2], go_pipe[2];
char bf;
if (pipe(child_ready_pipe) < 0) {
perror("failed to create 'ready' pipe");
return -1;
}
if (pipe(go_pipe) < 0) {
perror("failed to create 'go' pipe");
goto out_close_ready_pipe;
}
evlist->workload.pid = fork();
if (evlist->workload.pid < 0) {
perror("failed to fork");
goto out_close_pipes;
}
if (!evlist->workload.pid) {
int ret;
if (pipe_output)
dup2(2, 1);
signal(SIGTERM, SIG_DFL);
close(child_ready_pipe[0]);
close(go_pipe[1]);
fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
/*
* Change the name of this process not to confuse --exclude-perf users
* that sees 'perf' in the window up to the execvp() and thinks that
* perf samples are not being excluded.
*/
prctl(PR_SET_NAME, "perf-exec");
/*
* Tell the parent we're ready to go
*/
close(child_ready_pipe[1]);
/*
* Wait until the parent tells us to go.
*/
ret = read(go_pipe[0], &bf, 1);
/*
* The parent will ask for the execvp() to be performed by
* writing exactly one byte, in workload.cork_fd, usually via
* evlist__start_workload().
*
* For cancelling the workload without actually running it,
* the parent will just close workload.cork_fd, without writing
* anything, i.e. read will return zero and we just exit()
* here.
*/
if (ret != 1) {
if (ret == -1)
perror("unable to read pipe");
exit(ret);
}
execvp(argv[0], (char **)argv);
if (exec_error) {
union sigval val;
val.sival_int = errno;
if (sigqueue(getppid(), SIGUSR1, val))
perror(argv[0]);
} else
perror(argv[0]);
exit(-1);
}
if (exec_error) {
struct sigaction act = {
.sa_flags = SA_SIGINFO,
.sa_sigaction = exec_error,
};
sigaction(SIGUSR1, &act, NULL);
}
if (target__none(target)) {
if (evlist->core.threads == NULL) {
fprintf(stderr, "FATAL: evlist->threads need to be set at this point (%s:%d).\n",
__func__, __LINE__);
goto out_close_pipes;
}
perf_thread_map__set_pid(evlist->core.threads, 0, evlist->workload.pid);
}
close(child_ready_pipe[1]);
close(go_pipe[0]);
/*
* wait for child to settle
*/
if (read(child_ready_pipe[0], &bf, 1) == -1) {
perror("unable to read pipe");
goto out_close_pipes;
}
fcntl(go_pipe[1], F_SETFD, FD_CLOEXEC);
evlist->workload.cork_fd = go_pipe[1];
close(child_ready_pipe[0]);
return 0;
out_close_pipes:
close(go_pipe[0]);
close(go_pipe[1]);
out_close_ready_pipe:
close(child_ready_pipe[0]);
close(child_ready_pipe[1]);
return -1;
}
int evlist__start_workload(struct evlist *evlist)
{
if (evlist->workload.cork_fd > 0) {
char bf = 0;
int ret;
/*
* Remove the cork, let it rip!
*/
ret = write(evlist->workload.cork_fd, &bf, 1);
if (ret < 0)
perror("unable to write to pipe");
close(evlist->workload.cork_fd);
return ret;
}
return 0;
}
int evlist__parse_sample(struct evlist *evlist, union perf_event *event, struct perf_sample *sample)
{
struct evsel *evsel = evlist__event2evsel(evlist, event);
if (!evsel)
return -EFAULT;
return evsel__parse_sample(evsel, event, sample);
}
int evlist__parse_sample_timestamp(struct evlist *evlist, union perf_event *event, u64 *timestamp)
{
struct evsel *evsel = evlist__event2evsel(evlist, event);
if (!evsel)
return -EFAULT;
return evsel__parse_sample_timestamp(evsel, event, timestamp);
}
int evlist__strerror_open(struct evlist *evlist, int err, char *buf, size_t size)
{
int printed, value;
char sbuf[STRERR_BUFSIZE], *emsg = str_error_r(err, sbuf, sizeof(sbuf));
switch (err) {
case EACCES:
case EPERM:
printed = scnprintf(buf, size,
"Error:\t%s.\n"
"Hint:\tCheck /proc/sys/kernel/perf_event_paranoid setting.", emsg);
value = perf_event_paranoid();
printed += scnprintf(buf + printed, size - printed, "\nHint:\t");
if (value >= 2) {
printed += scnprintf(buf + printed, size - printed,
"For your workloads it needs to be <= 1\nHint:\t");
}
printed += scnprintf(buf + printed, size - printed,
"For system wide tracing it needs to be set to -1.\n");
printed += scnprintf(buf + printed, size - printed,
"Hint:\tTry: 'sudo sh -c \"echo -1 > /proc/sys/kernel/perf_event_paranoid\"'\n"
"Hint:\tThe current value is %d.", value);
break;
case EINVAL: {
struct evsel *first = evlist__first(evlist);
int max_freq;
if (sysctl__read_int("kernel/perf_event_max_sample_rate", &max_freq) < 0)
goto out_default;
if (first->core.attr.sample_freq < (u64)max_freq)
goto out_default;
printed = scnprintf(buf, size,
"Error:\t%s.\n"
"Hint:\tCheck /proc/sys/kernel/perf_event_max_sample_rate.\n"
"Hint:\tThe current value is %d and %" PRIu64 " is being requested.",
emsg, max_freq, first->core.attr.sample_freq);
break;
}
default:
out_default:
scnprintf(buf, size, "%s", emsg);
break;
}
return 0;
}
int evlist__strerror_mmap(struct evlist *evlist, int err, char *buf, size_t size)
{
char sbuf[STRERR_BUFSIZE], *emsg = str_error_r(err, sbuf, sizeof(sbuf));
int pages_attempted = evlist->core.mmap_len / 1024, pages_max_per_user, printed = 0;
switch (err) {
case EPERM:
sysctl__read_int("kernel/perf_event_mlock_kb", &pages_max_per_user);
printed += scnprintf(buf + printed, size - printed,
"Error:\t%s.\n"
"Hint:\tCheck /proc/sys/kernel/perf_event_mlock_kb (%d kB) setting.\n"
"Hint:\tTried using %zd kB.\n",
emsg, pages_max_per_user, pages_attempted);
if (pages_attempted >= pages_max_per_user) {
printed += scnprintf(buf + printed, size - printed,
"Hint:\tTry 'sudo sh -c \"echo %d > /proc/sys/kernel/perf_event_mlock_kb\"', or\n",
pages_max_per_user + pages_attempted);
}
printed += scnprintf(buf + printed, size - printed,
"Hint:\tTry using a smaller -m/--mmap-pages value.");
break;
default:
scnprintf(buf, size, "%s", emsg);
break;
}
return 0;
}
void evlist__to_front(struct evlist *evlist, struct evsel *move_evsel)
{
struct evsel *evsel, *n;
LIST_HEAD(move);
if (move_evsel == evlist__first(evlist))
return;
evlist__for_each_entry_safe(evlist, n, evsel) {
if (evsel__leader(evsel) == evsel__leader(move_evsel))
list_move_tail(&evsel->core.node, &move);
}
list_splice(&move, &evlist->core.entries);
}
struct evsel *evlist__get_tracking_event(struct evlist *evlist)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel) {
if (evsel->tracking)
return evsel;
}
return evlist__first(evlist);
}
void evlist__set_tracking_event(struct evlist *evlist, struct evsel *tracking_evsel)
{
struct evsel *evsel;
if (tracking_evsel->tracking)
return;
evlist__for_each_entry(evlist, evsel) {
if (evsel != tracking_evsel)
evsel->tracking = false;
}
tracking_evsel->tracking = true;
}
struct evsel *evlist__find_evsel_by_str(struct evlist *evlist, const char *str)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel) {
if (!evsel->name)
continue;
if (strcmp(str, evsel->name) == 0)
return evsel;
}
return NULL;
}
void evlist__toggle_bkw_mmap(struct evlist *evlist, enum bkw_mmap_state state)
{
enum bkw_mmap_state old_state = evlist->bkw_mmap_state;
enum action {
NONE,
PAUSE,
RESUME,
} action = NONE;
if (!evlist->overwrite_mmap)
return;
switch (old_state) {
case BKW_MMAP_NOTREADY: {
if (state != BKW_MMAP_RUNNING)
goto state_err;
break;
}
case BKW_MMAP_RUNNING: {
if (state != BKW_MMAP_DATA_PENDING)
goto state_err;
action = PAUSE;
break;
}
case BKW_MMAP_DATA_PENDING: {
if (state != BKW_MMAP_EMPTY)
goto state_err;
break;
}
case BKW_MMAP_EMPTY: {
if (state != BKW_MMAP_RUNNING)
goto state_err;
action = RESUME;
break;
}
default:
WARN_ONCE(1, "Shouldn't get there\n");
}
evlist->bkw_mmap_state = state;
switch (action) {
case PAUSE:
evlist__pause(evlist);
break;
case RESUME:
evlist__resume(evlist);
break;
case NONE:
default:
break;
}
state_err:
return;
}
bool evlist__exclude_kernel(struct evlist *evlist)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel) {
if (!evsel->core.attr.exclude_kernel)
return false;
}
return true;
}
/*
* Events in data file are not collect in groups, but we still want
* the group display. Set the artificial group and set the leader's
* forced_leader flag to notify the display code.
*/
void evlist__force_leader(struct evlist *evlist)
{
if (!evlist->core.nr_groups) {
struct evsel *leader = evlist__first(evlist);
evlist__set_leader(evlist);
leader->forced_leader = true;
}
}
struct evsel *evlist__reset_weak_group(struct evlist *evsel_list, struct evsel *evsel, bool close)
{
struct evsel *c2, *leader;
bool is_open = true;
leader = evsel__leader(evsel);
pr_debug("Weak group for %s/%d failed\n",
leader->name, leader->core.nr_members);
/*
* for_each_group_member doesn't work here because it doesn't
* include the first entry.
*/
evlist__for_each_entry(evsel_list, c2) {
if (c2 == evsel)
is_open = false;
if (evsel__has_leader(c2, leader)) {
if (is_open && close)
perf_evsel__close(&c2->core);
evsel__set_leader(c2, c2);
c2->core.nr_members = 0;
/*
* Set this for all former members of the group
* to indicate they get reopened.
*/
c2->reset_group = true;
}
}
return leader;
}
static int evlist__parse_control_fifo(const char *str, int *ctl_fd, int *ctl_fd_ack, bool *ctl_fd_close)
{
char *s, *p;
int ret = 0, fd;
if (strncmp(str, "fifo:", 5))
return -EINVAL;
str += 5;
if (!*str || *str == ',')
return -EINVAL;
s = strdup(str);
if (!s)
return -ENOMEM;
p = strchr(s, ',');
if (p)
*p = '\0';
/*
* O_RDWR avoids POLLHUPs which is necessary to allow the other
* end of a FIFO to be repeatedly opened and closed.
*/
fd = open(s, O_RDWR | O_NONBLOCK | O_CLOEXEC);
if (fd < 0) {
pr_err("Failed to open '%s'\n", s);
ret = -errno;
goto out_free;
}
*ctl_fd = fd;
*ctl_fd_close = true;
if (p && *++p) {
/* O_RDWR | O_NONBLOCK means the other end need not be open */
fd = open(p, O_RDWR | O_NONBLOCK | O_CLOEXEC);
if (fd < 0) {
pr_err("Failed to open '%s'\n", p);
ret = -errno;
goto out_free;
}
*ctl_fd_ack = fd;
}
out_free:
free(s);
return ret;
}
int evlist__parse_control(const char *str, int *ctl_fd, int *ctl_fd_ack, bool *ctl_fd_close)
{
char *comma = NULL, *endptr = NULL;
*ctl_fd_close = false;
if (strncmp(str, "fd:", 3))
return evlist__parse_control_fifo(str, ctl_fd, ctl_fd_ack, ctl_fd_close);
*ctl_fd = strtoul(&str[3], &endptr, 0);
if (endptr == &str[3])
return -EINVAL;
comma = strchr(str, ',');
if (comma) {
if (endptr != comma)
return -EINVAL;
*ctl_fd_ack = strtoul(comma + 1, &endptr, 0);
if (endptr == comma + 1 || *endptr != '\0')
return -EINVAL;
}
return 0;
}
void evlist__close_control(int ctl_fd, int ctl_fd_ack, bool *ctl_fd_close)
{
if (*ctl_fd_close) {
*ctl_fd_close = false;
close(ctl_fd);
if (ctl_fd_ack >= 0)
close(ctl_fd_ack);
}
}
int evlist__initialize_ctlfd(struct evlist *evlist, int fd, int ack)
{
if (fd == -1) {
pr_debug("Control descriptor is not initialized\n");
return 0;
}
evlist->ctl_fd.pos = perf_evlist__add_pollfd(&evlist->core, fd, NULL, POLLIN,
fdarray_flag__nonfilterable);
if (evlist->ctl_fd.pos < 0) {
evlist->ctl_fd.pos = -1;
pr_err("Failed to add ctl fd entry: %m\n");
return -1;
}
evlist->ctl_fd.fd = fd;
evlist->ctl_fd.ack = ack;
return 0;
}
bool evlist__ctlfd_initialized(struct evlist *evlist)
{
return evlist->ctl_fd.pos >= 0;
}
int evlist__finalize_ctlfd(struct evlist *evlist)
{
struct pollfd *entries = evlist->core.pollfd.entries;
if (!evlist__ctlfd_initialized(evlist))
return 0;
entries[evlist->ctl_fd.pos].fd = -1;
entries[evlist->ctl_fd.pos].events = 0;
entries[evlist->ctl_fd.pos].revents = 0;
evlist->ctl_fd.pos = -1;
evlist->ctl_fd.ack = -1;
evlist->ctl_fd.fd = -1;
return 0;
}
static int evlist__ctlfd_recv(struct evlist *evlist, enum evlist_ctl_cmd *cmd,
char *cmd_data, size_t data_size)
{
int err;
char c;
size_t bytes_read = 0;
*cmd = EVLIST_CTL_CMD_UNSUPPORTED;
memset(cmd_data, 0, data_size);
data_size--;
do {
err = read(evlist->ctl_fd.fd, &c, 1);
if (err > 0) {
if (c == '\n' || c == '\0')
break;
cmd_data[bytes_read++] = c;
if (bytes_read == data_size)
break;
continue;
} else if (err == -1) {
if (errno == EINTR)
continue;
if (errno == EAGAIN || errno == EWOULDBLOCK)
err = 0;
else
pr_err("Failed to read from ctlfd %d: %m\n", evlist->ctl_fd.fd);
}
break;
} while (1);
pr_debug("Message from ctl_fd: \"%s%s\"\n", cmd_data,
bytes_read == data_size ? "" : c == '\n' ? "\\n" : "\\0");
if (bytes_read > 0) {
if (!strncmp(cmd_data, EVLIST_CTL_CMD_ENABLE_TAG,
(sizeof(EVLIST_CTL_CMD_ENABLE_TAG)-1))) {
*cmd = EVLIST_CTL_CMD_ENABLE;
} else if (!strncmp(cmd_data, EVLIST_CTL_CMD_DISABLE_TAG,
(sizeof(EVLIST_CTL_CMD_DISABLE_TAG)-1))) {
*cmd = EVLIST_CTL_CMD_DISABLE;
} else if (!strncmp(cmd_data, EVLIST_CTL_CMD_SNAPSHOT_TAG,
(sizeof(EVLIST_CTL_CMD_SNAPSHOT_TAG)-1))) {
*cmd = EVLIST_CTL_CMD_SNAPSHOT;
pr_debug("is snapshot\n");
} else if (!strncmp(cmd_data, EVLIST_CTL_CMD_EVLIST_TAG,
(sizeof(EVLIST_CTL_CMD_EVLIST_TAG)-1))) {
*cmd = EVLIST_CTL_CMD_EVLIST;
} else if (!strncmp(cmd_data, EVLIST_CTL_CMD_STOP_TAG,
(sizeof(EVLIST_CTL_CMD_STOP_TAG)-1))) {
*cmd = EVLIST_CTL_CMD_STOP;
} else if (!strncmp(cmd_data, EVLIST_CTL_CMD_PING_TAG,
(sizeof(EVLIST_CTL_CMD_PING_TAG)-1))) {
*cmd = EVLIST_CTL_CMD_PING;
}
}
return bytes_read ? (int)bytes_read : err;
}
int evlist__ctlfd_ack(struct evlist *evlist)
{
int err;
if (evlist->ctl_fd.ack == -1)
return 0;
err = write(evlist->ctl_fd.ack, EVLIST_CTL_CMD_ACK_TAG,
sizeof(EVLIST_CTL_CMD_ACK_TAG));
if (err == -1)
pr_err("failed to write to ctl_ack_fd %d: %m\n", evlist->ctl_fd.ack);
return err;
}
static int get_cmd_arg(char *cmd_data, size_t cmd_size, char **arg)
{
char *data = cmd_data + cmd_size;
/* no argument */
if (!*data)
return 0;
/* there's argument */
if (*data == ' ') {
*arg = data + 1;
return 1;
}
/* malformed */
return -1;
}
static int evlist__ctlfd_enable(struct evlist *evlist, char *cmd_data, bool enable)
{
struct evsel *evsel;
char *name;
int err;
err = get_cmd_arg(cmd_data,
enable ? sizeof(EVLIST_CTL_CMD_ENABLE_TAG) - 1 :
sizeof(EVLIST_CTL_CMD_DISABLE_TAG) - 1,
&name);
if (err < 0) {
pr_info("failed: wrong command\n");
return -1;
}
if (err) {
evsel = evlist__find_evsel_by_str(evlist, name);
if (evsel) {
if (enable)
evlist__enable_evsel(evlist, name);
else
evlist__disable_evsel(evlist, name);
pr_info("Event %s %s\n", evsel->name,
enable ? "enabled" : "disabled");
} else {
pr_info("failed: can't find '%s' event\n", name);
}
} else {
if (enable) {
evlist__enable(evlist);
pr_info(EVLIST_ENABLED_MSG);
} else {
evlist__disable(evlist);
pr_info(EVLIST_DISABLED_MSG);
}
}
return 0;
}
static int evlist__ctlfd_list(struct evlist *evlist, char *cmd_data)
{
struct perf_attr_details details = { .verbose = false, };
struct evsel *evsel;
char *arg;
int err;
err = get_cmd_arg(cmd_data,
sizeof(EVLIST_CTL_CMD_EVLIST_TAG) - 1,
&arg);
if (err < 0) {
pr_info("failed: wrong command\n");
return -1;
}
if (err) {
if (!strcmp(arg, "-v")) {
details.verbose = true;
} else if (!strcmp(arg, "-g")) {
details.event_group = true;
} else if (!strcmp(arg, "-F")) {
details.freq = true;
} else {
pr_info("failed: wrong command\n");
return -1;
}
}
evlist__for_each_entry(evlist, evsel)
evsel__fprintf(evsel, &details, stderr);
return 0;
}
int evlist__ctlfd_process(struct evlist *evlist, enum evlist_ctl_cmd *cmd)
{
int err = 0;
char cmd_data[EVLIST_CTL_CMD_MAX_LEN];
int ctlfd_pos = evlist->ctl_fd.pos;
struct pollfd *entries = evlist->core.pollfd.entries;
if (!evlist__ctlfd_initialized(evlist) || !entries[ctlfd_pos].revents)
return 0;
if (entries[ctlfd_pos].revents & POLLIN) {
err = evlist__ctlfd_recv(evlist, cmd, cmd_data,
EVLIST_CTL_CMD_MAX_LEN);
if (err > 0) {
switch (*cmd) {
case EVLIST_CTL_CMD_ENABLE:
case EVLIST_CTL_CMD_DISABLE:
err = evlist__ctlfd_enable(evlist, cmd_data,
*cmd == EVLIST_CTL_CMD_ENABLE);
break;
case EVLIST_CTL_CMD_EVLIST:
err = evlist__ctlfd_list(evlist, cmd_data);
break;
case EVLIST_CTL_CMD_SNAPSHOT:
case EVLIST_CTL_CMD_STOP:
case EVLIST_CTL_CMD_PING:
break;
case EVLIST_CTL_CMD_ACK:
case EVLIST_CTL_CMD_UNSUPPORTED:
default:
pr_debug("ctlfd: unsupported %d\n", *cmd);
break;
}
if (!(*cmd == EVLIST_CTL_CMD_ACK || *cmd == EVLIST_CTL_CMD_UNSUPPORTED ||
*cmd == EVLIST_CTL_CMD_SNAPSHOT))
evlist__ctlfd_ack(evlist);
}
}
if (entries[ctlfd_pos].revents & (POLLHUP | POLLERR))
evlist__finalize_ctlfd(evlist);
else
entries[ctlfd_pos].revents = 0;
return err;
}
struct evsel *evlist__find_evsel(struct evlist *evlist, int idx)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel) {
if (evsel->core.idx == idx)
return evsel;
}
return NULL;
}
int evlist__scnprintf_evsels(struct evlist *evlist, size_t size, char *bf)
{
struct evsel *evsel;
int printed = 0;
evlist__for_each_entry(evlist, evsel) {
if (evsel__is_dummy_event(evsel))
continue;
if (size > (strlen(evsel__name(evsel)) + (printed ? 2 : 1))) {
printed += scnprintf(bf + printed, size - printed, "%s%s", printed ? "," : "", evsel__name(evsel));
} else {
printed += scnprintf(bf + printed, size - printed, "%s...", printed ? "," : "");
break;
}
}
return printed;
}
void evlist__check_mem_load_aux(struct evlist *evlist)
{
struct evsel *leader, *evsel, *pos;
/*
* For some platforms, the 'mem-loads' event is required to use
* together with 'mem-loads-aux' within a group and 'mem-loads-aux'
* must be the group leader. Now we disable this group before reporting
* because 'mem-loads-aux' is just an auxiliary event. It doesn't carry
* any valid memory load information.
*/
evlist__for_each_entry(evlist, evsel) {
leader = evsel__leader(evsel);
if (leader == evsel)
continue;
if (leader->name && strstr(leader->name, "mem-loads-aux")) {
for_each_group_evsel(pos, leader) {
evsel__set_leader(pos, pos);
pos->core.nr_members = 0;
}
}
}
}