2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-29 15:43:59 +08:00
linux-next/drivers/gpu/drm/i915/intel_ringbuffer.h
Tvrtko Ursulin 27af5eea54 drm/i915: Move execlists irq handler to a bottom half
Doing a lot of work in the interrupt handler introduces huge
latencies to the system as a whole.

Most dramatic effect can be seen by running an all engine
stress test like igt/gem_exec_nop/all where, when the kernel
config is lean enough, the whole system can be brought into
multi-second periods of complete non-interactivty. That can
look for example like this:

 NMI watchdog: BUG: soft lockup - CPU#0 stuck for 23s! [kworker/u8:3:143]
 Modules linked in: [redacted for brevity]
 CPU: 0 PID: 143 Comm: kworker/u8:3 Tainted: G     U       L  4.5.0-160321+ #183
 Hardware name: Intel Corporation Broadwell Client platform/WhiteTip Mountain 1
 Workqueue: i915 gen6_pm_rps_work [i915]
 task: ffff8800aae88000 ti: ffff8800aae90000 task.ti: ffff8800aae90000
 RIP: 0010:[<ffffffff8104a3c2>]  [<ffffffff8104a3c2>] __do_softirq+0x72/0x1d0
 RSP: 0000:ffff88014f403f38  EFLAGS: 00000206
 RAX: ffff8800aae94000 RBX: 0000000000000000 RCX: 00000000000006e0
 RDX: 0000000000000020 RSI: 0000000004208060 RDI: 0000000000215d80
 RBP: ffff88014f403f80 R08: 0000000b1b42c180 R09: 0000000000000022
 R10: 0000000000000004 R11: 00000000ffffffff R12: 000000000000a030
 R13: 0000000000000082 R14: ffff8800aa4d0080 R15: 0000000000000082
 FS:  0000000000000000(0000) GS:ffff88014f400000(0000) knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: 00007fa53b90c000 CR3: 0000000001a0a000 CR4: 00000000001406f0
 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
 Stack:
  042080601b33869f ffff8800aae94000 00000000fffc2678 ffff88010000000a
  0000000000000000 000000000000a030 0000000000005302 ffff8800aa4d0080
  0000000000000206 ffff88014f403f90 ffffffff8104a716 ffff88014f403fa8
 Call Trace:
  <IRQ>
  [<ffffffff8104a716>] irq_exit+0x86/0x90
  [<ffffffff81031e7d>] smp_apic_timer_interrupt+0x3d/0x50
  [<ffffffff814f3eac>] apic_timer_interrupt+0x7c/0x90
  <EOI>
  [<ffffffffa01c5b40>] ? gen8_write64+0x1a0/0x1a0 [i915]
  [<ffffffff814f2b39>] ? _raw_spin_unlock_irqrestore+0x9/0x20
  [<ffffffffa01c5c44>] gen8_write32+0x104/0x1a0 [i915]
  [<ffffffff8132c6a2>] ? n_tty_receive_buf_common+0x372/0xae0
  [<ffffffffa017cc9e>] gen6_set_rps_thresholds+0x1be/0x330 [i915]
  [<ffffffffa017eaf0>] gen6_set_rps+0x70/0x200 [i915]
  [<ffffffffa0185375>] intel_set_rps+0x25/0x30 [i915]
  [<ffffffffa01768fd>] gen6_pm_rps_work+0x10d/0x2e0 [i915]
  [<ffffffff81063852>] ? finish_task_switch+0x72/0x1c0
  [<ffffffff8105ab29>] process_one_work+0x139/0x350
  [<ffffffff8105b186>] worker_thread+0x126/0x490
  [<ffffffff8105b060>] ? rescuer_thread+0x320/0x320
  [<ffffffff8105fa64>] kthread+0xc4/0xe0
  [<ffffffff8105f9a0>] ? kthread_create_on_node+0x170/0x170
  [<ffffffff814f351f>] ret_from_fork+0x3f/0x70
  [<ffffffff8105f9a0>] ? kthread_create_on_node+0x170/0x170

I could not explain, or find a code path, which would explain
a +20 second lockup, but from some instrumentation it was
apparent the interrupts off proportion of time was between
10-25% under heavy load which is quite bad.

When a interrupt "cliff" is reached, which was >~320k irq/s on
my machine, the whole system goes into a terrible state of the
above described multi-second lockups.

By moving the GT interrupt handling to a tasklet in a most
simple way, the problem above disappears completely.

Testing the effect on sytem-wide latencies using
igt/gem_syslatency shows the following before this patch:

gem_syslatency: cycles=1532739, latency mean=416531.829us max=2499237us
gem_syslatency: cycles=1839434, latency mean=1458099.157us max=4998944us
gem_syslatency: cycles=1432570, latency mean=2688.451us max=1201185us
gem_syslatency: cycles=1533543, latency mean=416520.499us max=2498886us

This shows that the unrelated process is experiencing huge
delays in its wake-up latency. After the patch the results
look like this:

gem_syslatency: cycles=808907, latency mean=53.133us max=1640us
gem_syslatency: cycles=862154, latency mean=62.778us max=2117us
gem_syslatency: cycles=856039, latency mean=58.079us max=2123us
gem_syslatency: cycles=841683, latency mean=56.914us max=1667us

Showing a huge improvement in the unrelated process wake-up
latency. It also shows an approximate halving in the number
of total empty batches submitted during the test. This may
not be worrying since the test puts the driver under
a very unrealistic load with ncpu threads doing empty batch
submission to all GPU engines each.

Another benefit compared to the hard-irq handling is that now
work on all engines can be dispatched in parallel since we can
have up to number of CPUs active tasklets. (While previously
a single hard-irq would serially dispatch on one engine after
another.)

More interesting scenario with regards to throughput is
"gem_latency -n 100" which  shows 25% better throughput and
CPU usage, and 14% better dispatch latencies.

I did not find any gains or regressions with Synmark2 or
GLbench under light testing. More benchmarking is certainly
required.

v2:
   * execlists_lock should be taken as spin_lock_bh when
     queuing work from userspace now. (Chris Wilson)
   * uncore.lock must be taken with spin_lock_irq when
     submitting requests since that now runs from either
     softirq or process context.

v3:
   * Expanded commit message with more testing data;
   * converted missed locking sites to _bh;
   * added execlist_lock comment. (Chris Wilson)

v4:
   * Mention dispatch parallelism in commit. (Chris Wilson)
   * Do not hold uncore.lock over MMIO reads since the block
     is already serialised per-engine via the tasklet itself.
     (Chris Wilson)
   * intel_lrc_irq_handler should be static. (Chris Wilson)
   * Cancel/sync the tasklet on GPU reset. (Chris Wilson)
   * Document and WARN that tasklet cannot be active/pending
     on engine cleanup. (Chris Wilson/Imre Deak)

Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Imre Deak <imre.deak@intel.com>
Testcase: igt/gem_exec_nop/all
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=94350
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: http://patchwork.freedesktop.org/patch/msgid/1459768316-6670-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-04-04 14:08:52 +01:00

513 lines
17 KiB
C

#ifndef _INTEL_RINGBUFFER_H_
#define _INTEL_RINGBUFFER_H_
#include <linux/hashtable.h>
#include "i915_gem_batch_pool.h"
#define I915_CMD_HASH_ORDER 9
/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
* but keeps the logic simple. Indeed, the whole purpose of this macro is just
* to give some inclination as to some of the magic values used in the various
* workarounds!
*/
#define CACHELINE_BYTES 64
#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
/*
* Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
* Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
* Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
*
* "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
* cacheline, the Head Pointer must not be greater than the Tail
* Pointer."
*/
#define I915_RING_FREE_SPACE 64
struct intel_hw_status_page {
u32 *page_addr;
unsigned int gfx_addr;
struct drm_i915_gem_object *obj;
};
#define I915_READ_TAIL(ring) I915_READ(RING_TAIL((ring)->mmio_base))
#define I915_WRITE_TAIL(ring, val) I915_WRITE(RING_TAIL((ring)->mmio_base), val)
#define I915_READ_START(ring) I915_READ(RING_START((ring)->mmio_base))
#define I915_WRITE_START(ring, val) I915_WRITE(RING_START((ring)->mmio_base), val)
#define I915_READ_HEAD(ring) I915_READ(RING_HEAD((ring)->mmio_base))
#define I915_WRITE_HEAD(ring, val) I915_WRITE(RING_HEAD((ring)->mmio_base), val)
#define I915_READ_CTL(ring) I915_READ(RING_CTL((ring)->mmio_base))
#define I915_WRITE_CTL(ring, val) I915_WRITE(RING_CTL((ring)->mmio_base), val)
#define I915_READ_IMR(ring) I915_READ(RING_IMR((ring)->mmio_base))
#define I915_WRITE_IMR(ring, val) I915_WRITE(RING_IMR((ring)->mmio_base), val)
#define I915_READ_MODE(ring) I915_READ(RING_MI_MODE((ring)->mmio_base))
#define I915_WRITE_MODE(ring, val) I915_WRITE(RING_MI_MODE((ring)->mmio_base), val)
/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
* do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
*/
#define i915_semaphore_seqno_size sizeof(uint64_t)
#define GEN8_SIGNAL_OFFSET(__ring, to) \
(i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
((__ring)->id * I915_NUM_ENGINES * i915_semaphore_seqno_size) + \
(i915_semaphore_seqno_size * (to)))
#define GEN8_WAIT_OFFSET(__ring, from) \
(i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
((from) * I915_NUM_ENGINES * i915_semaphore_seqno_size) + \
(i915_semaphore_seqno_size * (__ring)->id))
#define GEN8_RING_SEMAPHORE_INIT(e) do { \
if (!dev_priv->semaphore_obj) { \
break; \
} \
(e)->semaphore.signal_ggtt[RCS] = GEN8_SIGNAL_OFFSET((e), RCS); \
(e)->semaphore.signal_ggtt[VCS] = GEN8_SIGNAL_OFFSET((e), VCS); \
(e)->semaphore.signal_ggtt[BCS] = GEN8_SIGNAL_OFFSET((e), BCS); \
(e)->semaphore.signal_ggtt[VECS] = GEN8_SIGNAL_OFFSET((e), VECS); \
(e)->semaphore.signal_ggtt[VCS2] = GEN8_SIGNAL_OFFSET((e), VCS2); \
(e)->semaphore.signal_ggtt[(e)->id] = MI_SEMAPHORE_SYNC_INVALID; \
} while(0)
enum intel_ring_hangcheck_action {
HANGCHECK_IDLE = 0,
HANGCHECK_WAIT,
HANGCHECK_ACTIVE,
HANGCHECK_KICK,
HANGCHECK_HUNG,
};
#define HANGCHECK_SCORE_RING_HUNG 31
struct intel_ring_hangcheck {
u64 acthd;
u32 seqno;
int score;
enum intel_ring_hangcheck_action action;
int deadlock;
u32 instdone[I915_NUM_INSTDONE_REG];
};
struct intel_ringbuffer {
struct drm_i915_gem_object *obj;
void __iomem *virtual_start;
struct i915_vma *vma;
struct intel_engine_cs *engine;
struct list_head link;
u32 head;
u32 tail;
int space;
int size;
int effective_size;
int reserved_size;
int reserved_tail;
bool reserved_in_use;
/** We track the position of the requests in the ring buffer, and
* when each is retired we increment last_retired_head as the GPU
* must have finished processing the request and so we know we
* can advance the ringbuffer up to that position.
*
* last_retired_head is set to -1 after the value is consumed so
* we can detect new retirements.
*/
u32 last_retired_head;
};
struct intel_context;
struct drm_i915_reg_table;
/*
* we use a single page to load ctx workarounds so all of these
* values are referred in terms of dwords
*
* struct i915_wa_ctx_bb:
* offset: specifies batch starting position, also helpful in case
* if we want to have multiple batches at different offsets based on
* some criteria. It is not a requirement at the moment but provides
* an option for future use.
* size: size of the batch in DWORDS
*/
struct i915_ctx_workarounds {
struct i915_wa_ctx_bb {
u32 offset;
u32 size;
} indirect_ctx, per_ctx;
struct drm_i915_gem_object *obj;
};
struct intel_engine_cs {
const char *name;
enum intel_engine_id {
RCS = 0,
BCS,
VCS,
VCS2, /* Keep instances of the same type engine together. */
VECS
} id;
#define I915_NUM_ENGINES 5
#define _VCS(n) (VCS + (n))
unsigned int exec_id;
unsigned int guc_id;
u32 mmio_base;
struct drm_device *dev;
struct intel_ringbuffer *buffer;
struct list_head buffers;
/*
* A pool of objects to use as shadow copies of client batch buffers
* when the command parser is enabled. Prevents the client from
* modifying the batch contents after software parsing.
*/
struct i915_gem_batch_pool batch_pool;
struct intel_hw_status_page status_page;
struct i915_ctx_workarounds wa_ctx;
unsigned irq_refcount; /* protected by dev_priv->irq_lock */
u32 irq_enable_mask; /* bitmask to enable ring interrupt */
struct drm_i915_gem_request *trace_irq_req;
bool __must_check (*irq_get)(struct intel_engine_cs *ring);
void (*irq_put)(struct intel_engine_cs *ring);
int (*init_hw)(struct intel_engine_cs *ring);
int (*init_context)(struct drm_i915_gem_request *req);
void (*write_tail)(struct intel_engine_cs *ring,
u32 value);
int __must_check (*flush)(struct drm_i915_gem_request *req,
u32 invalidate_domains,
u32 flush_domains);
int (*add_request)(struct drm_i915_gem_request *req);
/* Some chipsets are not quite as coherent as advertised and need
* an expensive kick to force a true read of the up-to-date seqno.
* However, the up-to-date seqno is not always required and the last
* seen value is good enough. Note that the seqno will always be
* monotonic, even if not coherent.
*/
u32 (*get_seqno)(struct intel_engine_cs *ring,
bool lazy_coherency);
void (*set_seqno)(struct intel_engine_cs *ring,
u32 seqno);
int (*dispatch_execbuffer)(struct drm_i915_gem_request *req,
u64 offset, u32 length,
unsigned dispatch_flags);
#define I915_DISPATCH_SECURE 0x1
#define I915_DISPATCH_PINNED 0x2
#define I915_DISPATCH_RS 0x4
void (*cleanup)(struct intel_engine_cs *ring);
/* GEN8 signal/wait table - never trust comments!
* signal to signal to signal to signal to signal to
* RCS VCS BCS VECS VCS2
* --------------------------------------------------------------------
* RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
* |-------------------------------------------------------------------
* VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
* |-------------------------------------------------------------------
* BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
* |-------------------------------------------------------------------
* VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) |
* |-------------------------------------------------------------------
* VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) |
* |-------------------------------------------------------------------
*
* Generalization:
* f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
* ie. transpose of g(x, y)
*
* sync from sync from sync from sync from sync from
* RCS VCS BCS VECS VCS2
* --------------------------------------------------------------------
* RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
* |-------------------------------------------------------------------
* VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
* |-------------------------------------------------------------------
* BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
* |-------------------------------------------------------------------
* VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) |
* |-------------------------------------------------------------------
* VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) |
* |-------------------------------------------------------------------
*
* Generalization:
* g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
* ie. transpose of f(x, y)
*/
struct {
u32 sync_seqno[I915_NUM_ENGINES-1];
union {
struct {
/* our mbox written by others */
u32 wait[I915_NUM_ENGINES];
/* mboxes this ring signals to */
i915_reg_t signal[I915_NUM_ENGINES];
} mbox;
u64 signal_ggtt[I915_NUM_ENGINES];
};
/* AKA wait() */
int (*sync_to)(struct drm_i915_gem_request *to_req,
struct intel_engine_cs *from,
u32 seqno);
int (*signal)(struct drm_i915_gem_request *signaller_req,
/* num_dwords needed by caller */
unsigned int num_dwords);
} semaphore;
/* Execlists */
struct tasklet_struct irq_tasklet;
spinlock_t execlist_lock; /* used inside tasklet, use spin_lock_bh */
struct list_head execlist_queue;
struct list_head execlist_retired_req_list;
unsigned int next_context_status_buffer;
unsigned int idle_lite_restore_wa;
bool disable_lite_restore_wa;
u32 ctx_desc_template;
u32 irq_keep_mask; /* bitmask for interrupts that should not be masked */
int (*emit_request)(struct drm_i915_gem_request *request);
int (*emit_flush)(struct drm_i915_gem_request *request,
u32 invalidate_domains,
u32 flush_domains);
int (*emit_bb_start)(struct drm_i915_gem_request *req,
u64 offset, unsigned dispatch_flags);
/**
* List of objects currently involved in rendering from the
* ringbuffer.
*
* Includes buffers having the contents of their GPU caches
* flushed, not necessarily primitives. last_read_req
* represents when the rendering involved will be completed.
*
* A reference is held on the buffer while on this list.
*/
struct list_head active_list;
/**
* List of breadcrumbs associated with GPU requests currently
* outstanding.
*/
struct list_head request_list;
/**
* Seqno of request most recently submitted to request_list.
* Used exclusively by hang checker to avoid grabbing lock while
* inspecting request list.
*/
u32 last_submitted_seqno;
bool gpu_caches_dirty;
wait_queue_head_t irq_queue;
struct intel_context *last_context;
struct intel_ring_hangcheck hangcheck;
struct {
struct drm_i915_gem_object *obj;
u32 gtt_offset;
volatile u32 *cpu_page;
} scratch;
bool needs_cmd_parser;
/*
* Table of commands the command parser needs to know about
* for this ring.
*/
DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
/*
* Table of registers allowed in commands that read/write registers.
*/
const struct drm_i915_reg_table *reg_tables;
int reg_table_count;
/*
* Returns the bitmask for the length field of the specified command.
* Return 0 for an unrecognized/invalid command.
*
* If the command parser finds an entry for a command in the ring's
* cmd_tables, it gets the command's length based on the table entry.
* If not, it calls this function to determine the per-ring length field
* encoding for the command (i.e. certain opcode ranges use certain bits
* to encode the command length in the header).
*/
u32 (*get_cmd_length_mask)(u32 cmd_header);
};
static inline bool
intel_engine_initialized(struct intel_engine_cs *engine)
{
return engine->dev != NULL;
}
static inline unsigned
intel_engine_flag(struct intel_engine_cs *engine)
{
return 1 << engine->id;
}
static inline u32
intel_ring_sync_index(struct intel_engine_cs *engine,
struct intel_engine_cs *other)
{
int idx;
/*
* rcs -> 0 = vcs, 1 = bcs, 2 = vecs, 3 = vcs2;
* vcs -> 0 = bcs, 1 = vecs, 2 = vcs2, 3 = rcs;
* bcs -> 0 = vecs, 1 = vcs2. 2 = rcs, 3 = vcs;
* vecs -> 0 = vcs2, 1 = rcs, 2 = vcs, 3 = bcs;
* vcs2 -> 0 = rcs, 1 = vcs, 2 = bcs, 3 = vecs;
*/
idx = (other - engine) - 1;
if (idx < 0)
idx += I915_NUM_ENGINES;
return idx;
}
static inline void
intel_flush_status_page(struct intel_engine_cs *engine, int reg)
{
drm_clflush_virt_range(&engine->status_page.page_addr[reg],
sizeof(uint32_t));
}
static inline u32
intel_read_status_page(struct intel_engine_cs *engine,
int reg)
{
/* Ensure that the compiler doesn't optimize away the load. */
barrier();
return engine->status_page.page_addr[reg];
}
static inline void
intel_write_status_page(struct intel_engine_cs *engine,
int reg, u32 value)
{
engine->status_page.page_addr[reg] = value;
}
/*
* Reads a dword out of the status page, which is written to from the command
* queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
* MI_STORE_DATA_IMM.
*
* The following dwords have a reserved meaning:
* 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
* 0x04: ring 0 head pointer
* 0x05: ring 1 head pointer (915-class)
* 0x06: ring 2 head pointer (915-class)
* 0x10-0x1b: Context status DWords (GM45)
* 0x1f: Last written status offset. (GM45)
* 0x20-0x2f: Reserved (Gen6+)
*
* The area from dword 0x30 to 0x3ff is available for driver usage.
*/
#define I915_GEM_HWS_INDEX 0x30
#define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
#define I915_GEM_HWS_SCRATCH_INDEX 0x40
#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
struct intel_ringbuffer *
intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size);
int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
struct intel_ringbuffer *ringbuf);
void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf);
void intel_ringbuffer_free(struct intel_ringbuffer *ring);
void intel_stop_engine(struct intel_engine_cs *engine);
void intel_cleanup_engine(struct intel_engine_cs *engine);
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request);
int __must_check intel_ring_begin(struct drm_i915_gem_request *req, int n);
int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
static inline void intel_ring_emit(struct intel_engine_cs *engine,
u32 data)
{
struct intel_ringbuffer *ringbuf = engine->buffer;
iowrite32(data, ringbuf->virtual_start + ringbuf->tail);
ringbuf->tail += 4;
}
static inline void intel_ring_emit_reg(struct intel_engine_cs *engine,
i915_reg_t reg)
{
intel_ring_emit(engine, i915_mmio_reg_offset(reg));
}
static inline void intel_ring_advance(struct intel_engine_cs *engine)
{
struct intel_ringbuffer *ringbuf = engine->buffer;
ringbuf->tail &= ringbuf->size - 1;
}
int __intel_ring_space(int head, int tail, int size);
void intel_ring_update_space(struct intel_ringbuffer *ringbuf);
int intel_ring_space(struct intel_ringbuffer *ringbuf);
bool intel_engine_stopped(struct intel_engine_cs *engine);
int __must_check intel_engine_idle(struct intel_engine_cs *engine);
void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno);
int intel_ring_flush_all_caches(struct drm_i915_gem_request *req);
int intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req);
void intel_fini_pipe_control(struct intel_engine_cs *engine);
int intel_init_pipe_control(struct intel_engine_cs *engine);
int intel_init_render_ring_buffer(struct drm_device *dev);
int intel_init_bsd_ring_buffer(struct drm_device *dev);
int intel_init_bsd2_ring_buffer(struct drm_device *dev);
int intel_init_blt_ring_buffer(struct drm_device *dev);
int intel_init_vebox_ring_buffer(struct drm_device *dev);
u64 intel_ring_get_active_head(struct intel_engine_cs *engine);
int init_workarounds_ring(struct intel_engine_cs *engine);
static inline u32 intel_ring_get_tail(struct intel_ringbuffer *ringbuf)
{
return ringbuf->tail;
}
/*
* Arbitrary size for largest possible 'add request' sequence. The code paths
* are complex and variable. Empirical measurement shows that the worst case
* is ILK at 136 words. Reserving too much is better than reserving too little
* as that allows for corner cases that might have been missed. So the figure
* has been rounded up to 160 words.
*/
#define MIN_SPACE_FOR_ADD_REQUEST 160
/*
* Reserve space in the ring to guarantee that the i915_add_request() call
* will always have sufficient room to do its stuff. The request creation
* code calls this automatically.
*/
void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size);
/* Cancel the reservation, e.g. because the request is being discarded. */
void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf);
/* Use the reserved space - for use by i915_add_request() only. */
void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf);
/* Finish with the reserved space - for use by i915_add_request() only. */
void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf);
/* Legacy ringbuffer specific portion of reservation code: */
int intel_ring_reserve_space(struct drm_i915_gem_request *request);
#endif /* _INTEL_RINGBUFFER_H_ */