2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 12:43:55 +08:00
linux-next/fs/f2fs/recovery.c
Chao Yu 275b66b09e f2fs: support async discard
Like most filesystems, f2fs will issue discard command synchronously, so
when user trigger fstrim through ioctl, multiple discard commands will be
issued serially with sync mode, which makes poor performance.

In this patch we try to support async discard, so that all discard
commands can be issued and be waited for endio in batch to improve
performance.

Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-09-07 17:27:38 -07:00

666 lines
16 KiB
C

/*
* fs/f2fs/recovery.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include "f2fs.h"
#include "node.h"
#include "segment.h"
/*
* Roll forward recovery scenarios.
*
* [Term] F: fsync_mark, D: dentry_mark
*
* 1. inode(x) | CP | inode(x) | dnode(F)
* -> Update the latest inode(x).
*
* 2. inode(x) | CP | inode(F) | dnode(F)
* -> No problem.
*
* 3. inode(x) | CP | dnode(F) | inode(x)
* -> Recover to the latest dnode(F), and drop the last inode(x)
*
* 4. inode(x) | CP | dnode(F) | inode(F)
* -> No problem.
*
* 5. CP | inode(x) | dnode(F)
* -> The inode(DF) was missing. Should drop this dnode(F).
*
* 6. CP | inode(DF) | dnode(F)
* -> No problem.
*
* 7. CP | dnode(F) | inode(DF)
* -> If f2fs_iget fails, then goto next to find inode(DF).
*
* 8. CP | dnode(F) | inode(x)
* -> If f2fs_iget fails, then goto next to find inode(DF).
* But it will fail due to no inode(DF).
*/
static struct kmem_cache *fsync_entry_slab;
bool space_for_roll_forward(struct f2fs_sb_info *sbi)
{
s64 nalloc = percpu_counter_sum_positive(&sbi->alloc_valid_block_count);
if (sbi->last_valid_block_count + nalloc > sbi->user_block_count)
return false;
return true;
}
static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
nid_t ino)
{
struct fsync_inode_entry *entry;
list_for_each_entry(entry, head, list)
if (entry->inode->i_ino == ino)
return entry;
return NULL;
}
static struct fsync_inode_entry *add_fsync_inode(struct list_head *head,
struct inode *inode)
{
struct fsync_inode_entry *entry;
entry = kmem_cache_alloc(fsync_entry_slab, GFP_F2FS_ZERO);
if (!entry)
return NULL;
entry->inode = inode;
list_add_tail(&entry->list, head);
return entry;
}
static void del_fsync_inode(struct fsync_inode_entry *entry)
{
iput(entry->inode);
list_del(&entry->list);
kmem_cache_free(fsync_entry_slab, entry);
}
static int recover_dentry(struct inode *inode, struct page *ipage,
struct list_head *dir_list)
{
struct f2fs_inode *raw_inode = F2FS_INODE(ipage);
nid_t pino = le32_to_cpu(raw_inode->i_pino);
struct f2fs_dir_entry *de;
struct qstr name;
struct page *page;
struct inode *dir, *einode;
struct fsync_inode_entry *entry;
int err = 0;
entry = get_fsync_inode(dir_list, pino);
if (!entry) {
dir = f2fs_iget(inode->i_sb, pino);
if (IS_ERR(dir)) {
err = PTR_ERR(dir);
goto out;
}
entry = add_fsync_inode(dir_list, dir);
if (!entry) {
err = -ENOMEM;
iput(dir);
goto out;
}
}
dir = entry->inode;
if (file_enc_name(inode))
return 0;
name.len = le32_to_cpu(raw_inode->i_namelen);
name.name = raw_inode->i_name;
if (unlikely(name.len > F2FS_NAME_LEN)) {
WARN_ON(1);
err = -ENAMETOOLONG;
goto out;
}
retry:
de = f2fs_find_entry(dir, &name, &page);
if (de && inode->i_ino == le32_to_cpu(de->ino))
goto out_unmap_put;
if (de) {
einode = f2fs_iget(inode->i_sb, le32_to_cpu(de->ino));
if (IS_ERR(einode)) {
WARN_ON(1);
err = PTR_ERR(einode);
if (err == -ENOENT)
err = -EEXIST;
goto out_unmap_put;
}
err = acquire_orphan_inode(F2FS_I_SB(inode));
if (err) {
iput(einode);
goto out_unmap_put;
}
f2fs_delete_entry(de, page, dir, einode);
iput(einode);
goto retry;
} else if (IS_ERR(page)) {
err = PTR_ERR(page);
} else {
err = __f2fs_add_link(dir, &name, inode,
inode->i_ino, inode->i_mode);
}
goto out;
out_unmap_put:
f2fs_dentry_kunmap(dir, page);
f2fs_put_page(page, 0);
out:
f2fs_msg(inode->i_sb, KERN_NOTICE,
"%s: ino = %x, name = %s, dir = %lx, err = %d",
__func__, ino_of_node(ipage), raw_inode->i_name,
IS_ERR(dir) ? 0 : dir->i_ino, err);
return err;
}
static void recover_inode(struct inode *inode, struct page *page)
{
struct f2fs_inode *raw = F2FS_INODE(page);
char *name;
inode->i_mode = le16_to_cpu(raw->i_mode);
f2fs_i_size_write(inode, le64_to_cpu(raw->i_size));
inode->i_atime.tv_sec = le64_to_cpu(raw->i_mtime);
inode->i_ctime.tv_sec = le64_to_cpu(raw->i_ctime);
inode->i_mtime.tv_sec = le64_to_cpu(raw->i_mtime);
inode->i_atime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec);
inode->i_ctime.tv_nsec = le32_to_cpu(raw->i_ctime_nsec);
inode->i_mtime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec);
if (file_enc_name(inode))
name = "<encrypted>";
else
name = F2FS_INODE(page)->i_name;
f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s",
ino_of_node(page), name);
}
static bool is_same_inode(struct inode *inode, struct page *ipage)
{
struct f2fs_inode *ri = F2FS_INODE(ipage);
struct timespec disk;
if (!IS_INODE(ipage))
return true;
disk.tv_sec = le64_to_cpu(ri->i_ctime);
disk.tv_nsec = le32_to_cpu(ri->i_ctime_nsec);
if (timespec_compare(&inode->i_ctime, &disk) > 0)
return false;
disk.tv_sec = le64_to_cpu(ri->i_atime);
disk.tv_nsec = le32_to_cpu(ri->i_atime_nsec);
if (timespec_compare(&inode->i_atime, &disk) > 0)
return false;
disk.tv_sec = le64_to_cpu(ri->i_mtime);
disk.tv_nsec = le32_to_cpu(ri->i_mtime_nsec);
if (timespec_compare(&inode->i_mtime, &disk) > 0)
return false;
return true;
}
static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
{
unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
struct curseg_info *curseg;
struct inode *inode;
struct page *page = NULL;
block_t blkaddr;
int err = 0;
/* get node pages in the current segment */
curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
while (1) {
struct fsync_inode_entry *entry;
if (!is_valid_blkaddr(sbi, blkaddr, META_POR))
return 0;
page = get_tmp_page(sbi, blkaddr);
if (cp_ver != cpver_of_node(page))
break;
if (!is_fsync_dnode(page))
goto next;
entry = get_fsync_inode(head, ino_of_node(page));
if (entry) {
if (!is_same_inode(entry->inode, page))
goto next;
} else {
if (IS_INODE(page) && is_dent_dnode(page)) {
err = recover_inode_page(sbi, page);
if (err)
break;
}
/*
* CP | dnode(F) | inode(DF)
* For this case, we should not give up now.
*/
inode = f2fs_iget(sbi->sb, ino_of_node(page));
if (IS_ERR(inode)) {
err = PTR_ERR(inode);
if (err == -ENOENT) {
err = 0;
goto next;
}
break;
}
/* add this fsync inode to the list */
entry = add_fsync_inode(head, inode);
if (!entry) {
err = -ENOMEM;
iput(inode);
break;
}
}
entry->blkaddr = blkaddr;
if (IS_INODE(page) && is_dent_dnode(page))
entry->last_dentry = blkaddr;
next:
/* check next segment */
blkaddr = next_blkaddr_of_node(page);
f2fs_put_page(page, 1);
ra_meta_pages_cond(sbi, blkaddr);
}
f2fs_put_page(page, 1);
return err;
}
static void destroy_fsync_dnodes(struct list_head *head)
{
struct fsync_inode_entry *entry, *tmp;
list_for_each_entry_safe(entry, tmp, head, list)
del_fsync_inode(entry);
}
static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
block_t blkaddr, struct dnode_of_data *dn)
{
struct seg_entry *sentry;
unsigned int segno = GET_SEGNO(sbi, blkaddr);
unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
struct f2fs_summary_block *sum_node;
struct f2fs_summary sum;
struct page *sum_page, *node_page;
struct dnode_of_data tdn = *dn;
nid_t ino, nid;
struct inode *inode;
unsigned int offset;
block_t bidx;
int i;
sentry = get_seg_entry(sbi, segno);
if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
return 0;
/* Get the previous summary */
for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) {
struct curseg_info *curseg = CURSEG_I(sbi, i);
if (curseg->segno == segno) {
sum = curseg->sum_blk->entries[blkoff];
goto got_it;
}
}
sum_page = get_sum_page(sbi, segno);
sum_node = (struct f2fs_summary_block *)page_address(sum_page);
sum = sum_node->entries[blkoff];
f2fs_put_page(sum_page, 1);
got_it:
/* Use the locked dnode page and inode */
nid = le32_to_cpu(sum.nid);
if (dn->inode->i_ino == nid) {
tdn.nid = nid;
if (!dn->inode_page_locked)
lock_page(dn->inode_page);
tdn.node_page = dn->inode_page;
tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
goto truncate_out;
} else if (dn->nid == nid) {
tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
goto truncate_out;
}
/* Get the node page */
node_page = get_node_page(sbi, nid);
if (IS_ERR(node_page))
return PTR_ERR(node_page);
offset = ofs_of_node(node_page);
ino = ino_of_node(node_page);
f2fs_put_page(node_page, 1);
if (ino != dn->inode->i_ino) {
/* Deallocate previous index in the node page */
inode = f2fs_iget(sbi->sb, ino);
if (IS_ERR(inode))
return PTR_ERR(inode);
} else {
inode = dn->inode;
}
bidx = start_bidx_of_node(offset, inode) + le16_to_cpu(sum.ofs_in_node);
/*
* if inode page is locked, unlock temporarily, but its reference
* count keeps alive.
*/
if (ino == dn->inode->i_ino && dn->inode_page_locked)
unlock_page(dn->inode_page);
set_new_dnode(&tdn, inode, NULL, NULL, 0);
if (get_dnode_of_data(&tdn, bidx, LOOKUP_NODE))
goto out;
if (tdn.data_blkaddr == blkaddr)
truncate_data_blocks_range(&tdn, 1);
f2fs_put_dnode(&tdn);
out:
if (ino != dn->inode->i_ino)
iput(inode);
else if (dn->inode_page_locked)
lock_page(dn->inode_page);
return 0;
truncate_out:
if (datablock_addr(tdn.node_page, tdn.ofs_in_node) == blkaddr)
truncate_data_blocks_range(&tdn, 1);
if (dn->inode->i_ino == nid && !dn->inode_page_locked)
unlock_page(dn->inode_page);
return 0;
}
static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
struct page *page, block_t blkaddr)
{
struct dnode_of_data dn;
struct node_info ni;
unsigned int start, end;
int err = 0, recovered = 0;
/* step 1: recover xattr */
if (IS_INODE(page)) {
recover_inline_xattr(inode, page);
} else if (f2fs_has_xattr_block(ofs_of_node(page))) {
/*
* Deprecated; xattr blocks should be found from cold log.
* But, we should remain this for backward compatibility.
*/
recover_xattr_data(inode, page, blkaddr);
goto out;
}
/* step 2: recover inline data */
if (recover_inline_data(inode, page))
goto out;
/* step 3: recover data indices */
start = start_bidx_of_node(ofs_of_node(page), inode);
end = start + ADDRS_PER_PAGE(page, inode);
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = get_dnode_of_data(&dn, start, ALLOC_NODE);
if (err)
goto out;
f2fs_wait_on_page_writeback(dn.node_page, NODE, true);
get_node_info(sbi, dn.nid, &ni);
f2fs_bug_on(sbi, ni.ino != ino_of_node(page));
f2fs_bug_on(sbi, ofs_of_node(dn.node_page) != ofs_of_node(page));
for (; start < end; start++, dn.ofs_in_node++) {
block_t src, dest;
src = datablock_addr(dn.node_page, dn.ofs_in_node);
dest = datablock_addr(page, dn.ofs_in_node);
/* skip recovering if dest is the same as src */
if (src == dest)
continue;
/* dest is invalid, just invalidate src block */
if (dest == NULL_ADDR) {
truncate_data_blocks_range(&dn, 1);
continue;
}
if ((start + 1) << PAGE_SHIFT > i_size_read(inode))
f2fs_i_size_write(inode, (start + 1) << PAGE_SHIFT);
/*
* dest is reserved block, invalidate src block
* and then reserve one new block in dnode page.
*/
if (dest == NEW_ADDR) {
truncate_data_blocks_range(&dn, 1);
reserve_new_block(&dn);
continue;
}
/* dest is valid block, try to recover from src to dest */
if (is_valid_blkaddr(sbi, dest, META_POR)) {
if (src == NULL_ADDR) {
err = reserve_new_block(&dn);
#ifdef CONFIG_F2FS_FAULT_INJECTION
while (err)
err = reserve_new_block(&dn);
#endif
/* We should not get -ENOSPC */
f2fs_bug_on(sbi, err);
if (err)
goto err;
}
/* Check the previous node page having this index */
err = check_index_in_prev_nodes(sbi, dest, &dn);
if (err)
goto err;
/* write dummy data page */
f2fs_replace_block(sbi, &dn, src, dest,
ni.version, false, false);
recovered++;
}
}
copy_node_footer(dn.node_page, page);
fill_node_footer(dn.node_page, dn.nid, ni.ino,
ofs_of_node(page), false);
set_page_dirty(dn.node_page);
err:
f2fs_put_dnode(&dn);
out:
f2fs_msg(sbi->sb, KERN_NOTICE,
"recover_data: ino = %lx, recovered = %d blocks, err = %d",
inode->i_ino, recovered, err);
return err;
}
static int recover_data(struct f2fs_sb_info *sbi, struct list_head *inode_list,
struct list_head *dir_list)
{
unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
struct curseg_info *curseg;
struct page *page = NULL;
int err = 0;
block_t blkaddr;
/* get node pages in the current segment */
curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
while (1) {
struct fsync_inode_entry *entry;
if (!is_valid_blkaddr(sbi, blkaddr, META_POR))
break;
ra_meta_pages_cond(sbi, blkaddr);
page = get_tmp_page(sbi, blkaddr);
if (cp_ver != cpver_of_node(page)) {
f2fs_put_page(page, 1);
break;
}
entry = get_fsync_inode(inode_list, ino_of_node(page));
if (!entry)
goto next;
/*
* inode(x) | CP | inode(x) | dnode(F)
* In this case, we can lose the latest inode(x).
* So, call recover_inode for the inode update.
*/
if (IS_INODE(page))
recover_inode(entry->inode, page);
if (entry->last_dentry == blkaddr) {
err = recover_dentry(entry->inode, page, dir_list);
if (err) {
f2fs_put_page(page, 1);
break;
}
}
err = do_recover_data(sbi, entry->inode, page, blkaddr);
if (err) {
f2fs_put_page(page, 1);
break;
}
if (entry->blkaddr == blkaddr)
del_fsync_inode(entry);
next:
/* check next segment */
blkaddr = next_blkaddr_of_node(page);
f2fs_put_page(page, 1);
}
if (!err)
allocate_new_segments(sbi);
return err;
}
int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only)
{
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
struct list_head inode_list;
struct list_head dir_list;
block_t blkaddr;
int err;
int ret = 0;
bool need_writecp = false;
fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
sizeof(struct fsync_inode_entry));
if (!fsync_entry_slab)
return -ENOMEM;
INIT_LIST_HEAD(&inode_list);
INIT_LIST_HEAD(&dir_list);
/* prevent checkpoint */
mutex_lock(&sbi->cp_mutex);
blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
/* step #1: find fsynced inode numbers */
err = find_fsync_dnodes(sbi, &inode_list);
if (err || list_empty(&inode_list))
goto out;
if (check_only) {
ret = 1;
goto out;
}
need_writecp = true;
/* step #2: recover data */
err = recover_data(sbi, &inode_list, &dir_list);
if (!err)
f2fs_bug_on(sbi, !list_empty(&inode_list));
out:
destroy_fsync_dnodes(&inode_list);
/* truncate meta pages to be used by the recovery */
truncate_inode_pages_range(META_MAPPING(sbi),
(loff_t)MAIN_BLKADDR(sbi) << PAGE_SHIFT, -1);
if (err) {
truncate_inode_pages_final(NODE_MAPPING(sbi));
truncate_inode_pages_final(META_MAPPING(sbi));
}
clear_sbi_flag(sbi, SBI_POR_DOING);
if (err) {
bool invalidate = false;
if (test_opt(sbi, LFS)) {
update_meta_page(sbi, NULL, blkaddr);
invalidate = true;
} else if (discard_next_dnode(sbi, blkaddr)) {
invalidate = true;
}
f2fs_wait_all_discard_bio(sbi);
/* Flush all the NAT/SIT pages */
while (get_pages(sbi, F2FS_DIRTY_META))
sync_meta_pages(sbi, META, LONG_MAX);
/* invalidate temporary meta page */
if (invalidate)
invalidate_mapping_pages(META_MAPPING(sbi),
blkaddr, blkaddr);
set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
mutex_unlock(&sbi->cp_mutex);
} else if (need_writecp) {
struct cp_control cpc = {
.reason = CP_RECOVERY,
};
mutex_unlock(&sbi->cp_mutex);
err = write_checkpoint(sbi, &cpc);
} else {
mutex_unlock(&sbi->cp_mutex);
}
destroy_fsync_dnodes(&dir_list);
kmem_cache_destroy(fsync_entry_slab);
return ret ? ret: err;
}