2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-29 15:43:59 +08:00
linux-next/arch/arm64/kvm/handle_exit.c
Reiji Watanabe 370531d1e9 KVM: arm64: Clear PSTATE.SS when the Software Step state was Active-pending
While userspace enables single-step, if the Software Step state at the
last guest exit was "Active-pending", clear PSTATE.SS on guest entry
to restore the state.

Currently, KVM sets PSTATE.SS to 1 on every guest entry while userspace
enables single-step for the vCPU (with KVM_GUESTDBG_SINGLESTEP).
It means KVM always makes the vCPU's Software Step state
"Active-not-pending" on the guest entry, which lets the VCPU perform
single-step (then Software Step exception is taken). This could cause
extra single-step (without returning to userspace) if the Software Step
state at the last guest exit was "Active-pending" (i.e. the last
exit was triggered by an asynchronous exception after the single-step
is performed, but before the Software Step exception is taken.
See "Figure D2-3 Software step state machine" and "D2.12.7 Behavior
in the active-pending state" in ARM DDI 0487I.a for more info about
this behavior).

Fix this by clearing PSTATE.SS on guest entry if the Software Step state
at the last exit was "Active-pending" so that KVM restore the state (and
the exception is taken before further single-step is performed).

Fixes: 337b99bf7e ("KVM: arm64: guest debug, add support for single-step")
Signed-off-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220917010600.532642-3-reijiw@google.com
2022-09-19 10:48:53 +01:00

377 lines
9.9 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2012,2013 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*
* Derived from arch/arm/kvm/handle_exit.c:
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
*/
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <asm/esr.h>
#include <asm/exception.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_mmu.h>
#include <asm/debug-monitors.h>
#include <asm/stacktrace/nvhe.h>
#include <asm/traps.h>
#include <kvm/arm_hypercalls.h>
#define CREATE_TRACE_POINTS
#include "trace_handle_exit.h"
typedef int (*exit_handle_fn)(struct kvm_vcpu *);
static void kvm_handle_guest_serror(struct kvm_vcpu *vcpu, u64 esr)
{
if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(NULL, esr))
kvm_inject_vabt(vcpu);
}
static int handle_hvc(struct kvm_vcpu *vcpu)
{
int ret;
trace_kvm_hvc_arm64(*vcpu_pc(vcpu), vcpu_get_reg(vcpu, 0),
kvm_vcpu_hvc_get_imm(vcpu));
vcpu->stat.hvc_exit_stat++;
ret = kvm_hvc_call_handler(vcpu);
if (ret < 0) {
vcpu_set_reg(vcpu, 0, ~0UL);
return 1;
}
return ret;
}
static int handle_smc(struct kvm_vcpu *vcpu)
{
/*
* "If an SMC instruction executed at Non-secure EL1 is
* trapped to EL2 because HCR_EL2.TSC is 1, the exception is a
* Trap exception, not a Secure Monitor Call exception [...]"
*
* We need to advance the PC after the trap, as it would
* otherwise return to the same address...
*/
vcpu_set_reg(vcpu, 0, ~0UL);
kvm_incr_pc(vcpu);
return 1;
}
/*
* Guest access to FP/ASIMD registers are routed to this handler only
* when the system doesn't support FP/ASIMD.
*/
static int handle_no_fpsimd(struct kvm_vcpu *vcpu)
{
kvm_inject_undefined(vcpu);
return 1;
}
/**
* kvm_handle_wfx - handle a wait-for-interrupts or wait-for-event
* instruction executed by a guest
*
* @vcpu: the vcpu pointer
*
* WFE[T]: Yield the CPU and come back to this vcpu when the scheduler
* decides to.
* WFI: Simply call kvm_vcpu_halt(), which will halt execution of
* world-switches and schedule other host processes until there is an
* incoming IRQ or FIQ to the VM.
* WFIT: Same as WFI, with a timed wakeup implemented as a background timer
*
* WF{I,E}T can immediately return if the deadline has already expired.
*/
static int kvm_handle_wfx(struct kvm_vcpu *vcpu)
{
u64 esr = kvm_vcpu_get_esr(vcpu);
if (esr & ESR_ELx_WFx_ISS_WFE) {
trace_kvm_wfx_arm64(*vcpu_pc(vcpu), true);
vcpu->stat.wfe_exit_stat++;
} else {
trace_kvm_wfx_arm64(*vcpu_pc(vcpu), false);
vcpu->stat.wfi_exit_stat++;
}
if (esr & ESR_ELx_WFx_ISS_WFxT) {
if (esr & ESR_ELx_WFx_ISS_RV) {
u64 val, now;
now = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_TIMER_CNT);
val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
if (now >= val)
goto out;
} else {
/* Treat WFxT as WFx if RN is invalid */
esr &= ~ESR_ELx_WFx_ISS_WFxT;
}
}
if (esr & ESR_ELx_WFx_ISS_WFE) {
kvm_vcpu_on_spin(vcpu, vcpu_mode_priv(vcpu));
} else {
if (esr & ESR_ELx_WFx_ISS_WFxT)
vcpu_set_flag(vcpu, IN_WFIT);
kvm_vcpu_wfi(vcpu);
}
out:
kvm_incr_pc(vcpu);
return 1;
}
/**
* kvm_handle_guest_debug - handle a debug exception instruction
*
* @vcpu: the vcpu pointer
*
* We route all debug exceptions through the same handler. If both the
* guest and host are using the same debug facilities it will be up to
* userspace to re-inject the correct exception for guest delivery.
*
* @return: 0 (while setting vcpu->run->exit_reason)
*/
static int kvm_handle_guest_debug(struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
u64 esr = kvm_vcpu_get_esr(vcpu);
run->exit_reason = KVM_EXIT_DEBUG;
run->debug.arch.hsr = lower_32_bits(esr);
run->debug.arch.hsr_high = upper_32_bits(esr);
run->flags = KVM_DEBUG_ARCH_HSR_HIGH_VALID;
switch (ESR_ELx_EC(esr)) {
case ESR_ELx_EC_WATCHPT_LOW:
run->debug.arch.far = vcpu->arch.fault.far_el2;
break;
case ESR_ELx_EC_SOFTSTP_LOW:
vcpu_clear_flag(vcpu, DBG_SS_ACTIVE_PENDING);
break;
}
return 0;
}
static int kvm_handle_unknown_ec(struct kvm_vcpu *vcpu)
{
u64 esr = kvm_vcpu_get_esr(vcpu);
kvm_pr_unimpl("Unknown exception class: esr: %#016llx -- %s\n",
esr, esr_get_class_string(esr));
kvm_inject_undefined(vcpu);
return 1;
}
/*
* Guest access to SVE registers should be routed to this handler only
* when the system doesn't support SVE.
*/
static int handle_sve(struct kvm_vcpu *vcpu)
{
kvm_inject_undefined(vcpu);
return 1;
}
/*
* Guest usage of a ptrauth instruction (which the guest EL1 did not turn into
* a NOP). If we get here, it is that we didn't fixup ptrauth on exit, and all
* that we can do is give the guest an UNDEF.
*/
static int kvm_handle_ptrauth(struct kvm_vcpu *vcpu)
{
kvm_inject_undefined(vcpu);
return 1;
}
static exit_handle_fn arm_exit_handlers[] = {
[0 ... ESR_ELx_EC_MAX] = kvm_handle_unknown_ec,
[ESR_ELx_EC_WFx] = kvm_handle_wfx,
[ESR_ELx_EC_CP15_32] = kvm_handle_cp15_32,
[ESR_ELx_EC_CP15_64] = kvm_handle_cp15_64,
[ESR_ELx_EC_CP14_MR] = kvm_handle_cp14_32,
[ESR_ELx_EC_CP14_LS] = kvm_handle_cp14_load_store,
[ESR_ELx_EC_CP10_ID] = kvm_handle_cp10_id,
[ESR_ELx_EC_CP14_64] = kvm_handle_cp14_64,
[ESR_ELx_EC_HVC32] = handle_hvc,
[ESR_ELx_EC_SMC32] = handle_smc,
[ESR_ELx_EC_HVC64] = handle_hvc,
[ESR_ELx_EC_SMC64] = handle_smc,
[ESR_ELx_EC_SYS64] = kvm_handle_sys_reg,
[ESR_ELx_EC_SVE] = handle_sve,
[ESR_ELx_EC_IABT_LOW] = kvm_handle_guest_abort,
[ESR_ELx_EC_DABT_LOW] = kvm_handle_guest_abort,
[ESR_ELx_EC_SOFTSTP_LOW]= kvm_handle_guest_debug,
[ESR_ELx_EC_WATCHPT_LOW]= kvm_handle_guest_debug,
[ESR_ELx_EC_BREAKPT_LOW]= kvm_handle_guest_debug,
[ESR_ELx_EC_BKPT32] = kvm_handle_guest_debug,
[ESR_ELx_EC_BRK64] = kvm_handle_guest_debug,
[ESR_ELx_EC_FP_ASIMD] = handle_no_fpsimd,
[ESR_ELx_EC_PAC] = kvm_handle_ptrauth,
};
static exit_handle_fn kvm_get_exit_handler(struct kvm_vcpu *vcpu)
{
u64 esr = kvm_vcpu_get_esr(vcpu);
u8 esr_ec = ESR_ELx_EC(esr);
return arm_exit_handlers[esr_ec];
}
/*
* We may be single-stepping an emulated instruction. If the emulation
* has been completed in the kernel, we can return to userspace with a
* KVM_EXIT_DEBUG, otherwise userspace needs to complete its
* emulation first.
*/
static int handle_trap_exceptions(struct kvm_vcpu *vcpu)
{
int handled;
/*
* See ARM ARM B1.14.1: "Hyp traps on instructions
* that fail their condition code check"
*/
if (!kvm_condition_valid(vcpu)) {
kvm_incr_pc(vcpu);
handled = 1;
} else {
exit_handle_fn exit_handler;
exit_handler = kvm_get_exit_handler(vcpu);
handled = exit_handler(vcpu);
}
return handled;
}
/*
* Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on
* proper exit to userspace.
*/
int handle_exit(struct kvm_vcpu *vcpu, int exception_index)
{
struct kvm_run *run = vcpu->run;
if (ARM_SERROR_PENDING(exception_index)) {
/*
* The SError is handled by handle_exit_early(). If the guest
* survives it will re-execute the original instruction.
*/
return 1;
}
exception_index = ARM_EXCEPTION_CODE(exception_index);
switch (exception_index) {
case ARM_EXCEPTION_IRQ:
return 1;
case ARM_EXCEPTION_EL1_SERROR:
return 1;
case ARM_EXCEPTION_TRAP:
return handle_trap_exceptions(vcpu);
case ARM_EXCEPTION_HYP_GONE:
/*
* EL2 has been reset to the hyp-stub. This happens when a guest
* is pre-emptied by kvm_reboot()'s shutdown call.
*/
run->exit_reason = KVM_EXIT_FAIL_ENTRY;
return 0;
case ARM_EXCEPTION_IL:
/*
* We attempted an illegal exception return. Guest state must
* have been corrupted somehow. Give up.
*/
run->exit_reason = KVM_EXIT_FAIL_ENTRY;
return -EINVAL;
default:
kvm_pr_unimpl("Unsupported exception type: %d",
exception_index);
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
return 0;
}
}
/* For exit types that need handling before we can be preempted */
void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index)
{
if (ARM_SERROR_PENDING(exception_index)) {
if (this_cpu_has_cap(ARM64_HAS_RAS_EXTN)) {
u64 disr = kvm_vcpu_get_disr(vcpu);
kvm_handle_guest_serror(vcpu, disr_to_esr(disr));
} else {
kvm_inject_vabt(vcpu);
}
return;
}
exception_index = ARM_EXCEPTION_CODE(exception_index);
if (exception_index == ARM_EXCEPTION_EL1_SERROR)
kvm_handle_guest_serror(vcpu, kvm_vcpu_get_esr(vcpu));
}
void __noreturn __cold nvhe_hyp_panic_handler(u64 esr, u64 spsr,
u64 elr_virt, u64 elr_phys,
u64 par, uintptr_t vcpu,
u64 far, u64 hpfar) {
u64 elr_in_kimg = __phys_to_kimg(elr_phys);
u64 hyp_offset = elr_in_kimg - kaslr_offset() - elr_virt;
u64 mode = spsr & PSR_MODE_MASK;
u64 panic_addr = elr_virt + hyp_offset;
if (mode != PSR_MODE_EL2t && mode != PSR_MODE_EL2h) {
kvm_err("Invalid host exception to nVHE hyp!\n");
} else if (ESR_ELx_EC(esr) == ESR_ELx_EC_BRK64 &&
(esr & ESR_ELx_BRK64_ISS_COMMENT_MASK) == BUG_BRK_IMM) {
const char *file = NULL;
unsigned int line = 0;
/* All hyp bugs, including warnings, are treated as fatal. */
if (!is_protected_kvm_enabled() ||
IS_ENABLED(CONFIG_NVHE_EL2_DEBUG)) {
struct bug_entry *bug = find_bug(elr_in_kimg);
if (bug)
bug_get_file_line(bug, &file, &line);
}
if (file)
kvm_err("nVHE hyp BUG at: %s:%u!\n", file, line);
else
kvm_err("nVHE hyp BUG at: [<%016llx>] %pB!\n", panic_addr,
(void *)(panic_addr + kaslr_offset()));
} else {
kvm_err("nVHE hyp panic at: [<%016llx>] %pB!\n", panic_addr,
(void *)(panic_addr + kaslr_offset()));
}
/* Dump the nVHE hypervisor backtrace */
kvm_nvhe_dump_backtrace(hyp_offset);
/*
* Hyp has panicked and we're going to handle that by panicking the
* kernel. The kernel offset will be revealed in the panic so we're
* also safe to reveal the hyp offset as a debugging aid for translating
* hyp VAs to vmlinux addresses.
*/
kvm_err("Hyp Offset: 0x%llx\n", hyp_offset);
panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%016llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%016lx\n",
spsr, elr_virt, esr, far, hpfar, par, vcpu);
}