2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 06:34:11 +08:00
linux-next/sound/pci/hda/alc_quirks.c
Takashi Iwai 1d045db96a ALSA: hda - Split quirk codes from patch_realtek.c
Put the all static quirk codes out of patch_realtek.c, split into the
file for each codec model.  For controlling the build of quirk codes,
a new Kconfig, CONFIG_SND_HDA_ENABLE_REALTEK_QUIRKS is introduced.
By setting this off, all quirk codes won't be built, thus you can save
lots of memory.

The codes in patch_realtek.c are also shuffled and more comments are
given, but the contents aren't changed.  This is just a refactoring.

Signed-off-by: Takashi Iwai <tiwai@suse.de>
2011-07-07 18:27:29 +02:00

468 lines
15 KiB
C

/*
* Common codes for Realtek codec quirks
* included by patch_realtek.c
*/
/*
* configuration template - to be copied to the spec instance
*/
struct alc_config_preset {
const struct snd_kcontrol_new *mixers[5]; /* should be identical size
* with spec
*/
const struct snd_kcontrol_new *cap_mixer; /* capture mixer */
const struct hda_verb *init_verbs[5];
unsigned int num_dacs;
const hda_nid_t *dac_nids;
hda_nid_t dig_out_nid; /* optional */
hda_nid_t hp_nid; /* optional */
const hda_nid_t *slave_dig_outs;
unsigned int num_adc_nids;
const hda_nid_t *adc_nids;
const hda_nid_t *capsrc_nids;
hda_nid_t dig_in_nid;
unsigned int num_channel_mode;
const struct hda_channel_mode *channel_mode;
int need_dac_fix;
int const_channel_count;
unsigned int num_mux_defs;
const struct hda_input_mux *input_mux;
void (*unsol_event)(struct hda_codec *, unsigned int);
void (*setup)(struct hda_codec *);
void (*init_hook)(struct hda_codec *);
#ifdef CONFIG_SND_HDA_POWER_SAVE
const struct hda_amp_list *loopbacks;
void (*power_hook)(struct hda_codec *codec);
#endif
};
/*
* channel mode setting
*/
static int alc_ch_mode_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct alc_spec *spec = codec->spec;
return snd_hda_ch_mode_info(codec, uinfo, spec->channel_mode,
spec->num_channel_mode);
}
static int alc_ch_mode_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct alc_spec *spec = codec->spec;
return snd_hda_ch_mode_get(codec, ucontrol, spec->channel_mode,
spec->num_channel_mode,
spec->ext_channel_count);
}
static int alc_ch_mode_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct alc_spec *spec = codec->spec;
int err = snd_hda_ch_mode_put(codec, ucontrol, spec->channel_mode,
spec->num_channel_mode,
&spec->ext_channel_count);
if (err >= 0 && !spec->const_channel_count) {
spec->multiout.max_channels = spec->ext_channel_count;
if (spec->need_dac_fix)
spec->multiout.num_dacs = spec->multiout.max_channels / 2;
}
return err;
}
/*
* Control the mode of pin widget settings via the mixer. "pc" is used
* instead of "%" to avoid consequences of accidentally treating the % as
* being part of a format specifier. Maximum allowed length of a value is
* 63 characters plus NULL terminator.
*
* Note: some retasking pin complexes seem to ignore requests for input
* states other than HiZ (eg: PIN_VREFxx) and revert to HiZ if any of these
* are requested. Therefore order this list so that this behaviour will not
* cause problems when mixer clients move through the enum sequentially.
* NIDs 0x0f and 0x10 have been observed to have this behaviour as of
* March 2006.
*/
static const char * const alc_pin_mode_names[] = {
"Mic 50pc bias", "Mic 80pc bias",
"Line in", "Line out", "Headphone out",
};
static const unsigned char alc_pin_mode_values[] = {
PIN_VREF50, PIN_VREF80, PIN_IN, PIN_OUT, PIN_HP,
};
/* The control can present all 5 options, or it can limit the options based
* in the pin being assumed to be exclusively an input or an output pin. In
* addition, "input" pins may or may not process the mic bias option
* depending on actual widget capability (NIDs 0x0f and 0x10 don't seem to
* accept requests for bias as of chip versions up to March 2006) and/or
* wiring in the computer.
*/
#define ALC_PIN_DIR_IN 0x00
#define ALC_PIN_DIR_OUT 0x01
#define ALC_PIN_DIR_INOUT 0x02
#define ALC_PIN_DIR_IN_NOMICBIAS 0x03
#define ALC_PIN_DIR_INOUT_NOMICBIAS 0x04
/* Info about the pin modes supported by the different pin direction modes.
* For each direction the minimum and maximum values are given.
*/
static const signed char alc_pin_mode_dir_info[5][2] = {
{ 0, 2 }, /* ALC_PIN_DIR_IN */
{ 3, 4 }, /* ALC_PIN_DIR_OUT */
{ 0, 4 }, /* ALC_PIN_DIR_INOUT */
{ 2, 2 }, /* ALC_PIN_DIR_IN_NOMICBIAS */
{ 2, 4 }, /* ALC_PIN_DIR_INOUT_NOMICBIAS */
};
#define alc_pin_mode_min(_dir) (alc_pin_mode_dir_info[_dir][0])
#define alc_pin_mode_max(_dir) (alc_pin_mode_dir_info[_dir][1])
#define alc_pin_mode_n_items(_dir) \
(alc_pin_mode_max(_dir)-alc_pin_mode_min(_dir)+1)
static int alc_pin_mode_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
unsigned int item_num = uinfo->value.enumerated.item;
unsigned char dir = (kcontrol->private_value >> 16) & 0xff;
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = alc_pin_mode_n_items(dir);
if (item_num<alc_pin_mode_min(dir) || item_num>alc_pin_mode_max(dir))
item_num = alc_pin_mode_min(dir);
strcpy(uinfo->value.enumerated.name, alc_pin_mode_names[item_num]);
return 0;
}
static int alc_pin_mode_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
unsigned int i;
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = kcontrol->private_value & 0xffff;
unsigned char dir = (kcontrol->private_value >> 16) & 0xff;
long *valp = ucontrol->value.integer.value;
unsigned int pinctl = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_PIN_WIDGET_CONTROL,
0x00);
/* Find enumerated value for current pinctl setting */
i = alc_pin_mode_min(dir);
while (i <= alc_pin_mode_max(dir) && alc_pin_mode_values[i] != pinctl)
i++;
*valp = i <= alc_pin_mode_max(dir) ? i: alc_pin_mode_min(dir);
return 0;
}
static int alc_pin_mode_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
signed int change;
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = kcontrol->private_value & 0xffff;
unsigned char dir = (kcontrol->private_value >> 16) & 0xff;
long val = *ucontrol->value.integer.value;
unsigned int pinctl = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_PIN_WIDGET_CONTROL,
0x00);
if (val < alc_pin_mode_min(dir) || val > alc_pin_mode_max(dir))
val = alc_pin_mode_min(dir);
change = pinctl != alc_pin_mode_values[val];
if (change) {
/* Set pin mode to that requested */
snd_hda_codec_write_cache(codec, nid, 0,
AC_VERB_SET_PIN_WIDGET_CONTROL,
alc_pin_mode_values[val]);
/* Also enable the retasking pin's input/output as required
* for the requested pin mode. Enum values of 2 or less are
* input modes.
*
* Dynamically switching the input/output buffers probably
* reduces noise slightly (particularly on input) so we'll
* do it. However, having both input and output buffers
* enabled simultaneously doesn't seem to be problematic if
* this turns out to be necessary in the future.
*/
if (val <= 2) {
snd_hda_codec_amp_stereo(codec, nid, HDA_OUTPUT, 0,
HDA_AMP_MUTE, HDA_AMP_MUTE);
snd_hda_codec_amp_stereo(codec, nid, HDA_INPUT, 0,
HDA_AMP_MUTE, 0);
} else {
snd_hda_codec_amp_stereo(codec, nid, HDA_INPUT, 0,
HDA_AMP_MUTE, HDA_AMP_MUTE);
snd_hda_codec_amp_stereo(codec, nid, HDA_OUTPUT, 0,
HDA_AMP_MUTE, 0);
}
}
return change;
}
#define ALC_PIN_MODE(xname, nid, dir) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = 0, \
.subdevice = HDA_SUBDEV_NID_FLAG | nid, \
.info = alc_pin_mode_info, \
.get = alc_pin_mode_get, \
.put = alc_pin_mode_put, \
.private_value = nid | (dir<<16) }
/* A switch control for ALC260 GPIO pins. Multiple GPIOs can be ganged
* together using a mask with more than one bit set. This control is
* currently used only by the ALC260 test model. At this stage they are not
* needed for any "production" models.
*/
#ifdef CONFIG_SND_DEBUG
#define alc_gpio_data_info snd_ctl_boolean_mono_info
static int alc_gpio_data_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = kcontrol->private_value & 0xffff;
unsigned char mask = (kcontrol->private_value >> 16) & 0xff;
long *valp = ucontrol->value.integer.value;
unsigned int val = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_GPIO_DATA, 0x00);
*valp = (val & mask) != 0;
return 0;
}
static int alc_gpio_data_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
signed int change;
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = kcontrol->private_value & 0xffff;
unsigned char mask = (kcontrol->private_value >> 16) & 0xff;
long val = *ucontrol->value.integer.value;
unsigned int gpio_data = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_GPIO_DATA,
0x00);
/* Set/unset the masked GPIO bit(s) as needed */
change = (val == 0 ? 0 : mask) != (gpio_data & mask);
if (val == 0)
gpio_data &= ~mask;
else
gpio_data |= mask;
snd_hda_codec_write_cache(codec, nid, 0,
AC_VERB_SET_GPIO_DATA, gpio_data);
return change;
}
#define ALC_GPIO_DATA_SWITCH(xname, nid, mask) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = 0, \
.subdevice = HDA_SUBDEV_NID_FLAG | nid, \
.info = alc_gpio_data_info, \
.get = alc_gpio_data_get, \
.put = alc_gpio_data_put, \
.private_value = nid | (mask<<16) }
#endif /* CONFIG_SND_DEBUG */
/* A switch control to allow the enabling of the digital IO pins on the
* ALC260. This is incredibly simplistic; the intention of this control is
* to provide something in the test model allowing digital outputs to be
* identified if present. If models are found which can utilise these
* outputs a more complete mixer control can be devised for those models if
* necessary.
*/
#ifdef CONFIG_SND_DEBUG
#define alc_spdif_ctrl_info snd_ctl_boolean_mono_info
static int alc_spdif_ctrl_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = kcontrol->private_value & 0xffff;
unsigned char mask = (kcontrol->private_value >> 16) & 0xff;
long *valp = ucontrol->value.integer.value;
unsigned int val = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_DIGI_CONVERT_1, 0x00);
*valp = (val & mask) != 0;
return 0;
}
static int alc_spdif_ctrl_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
signed int change;
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = kcontrol->private_value & 0xffff;
unsigned char mask = (kcontrol->private_value >> 16) & 0xff;
long val = *ucontrol->value.integer.value;
unsigned int ctrl_data = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_DIGI_CONVERT_1,
0x00);
/* Set/unset the masked control bit(s) as needed */
change = (val == 0 ? 0 : mask) != (ctrl_data & mask);
if (val==0)
ctrl_data &= ~mask;
else
ctrl_data |= mask;
snd_hda_codec_write_cache(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
ctrl_data);
return change;
}
#define ALC_SPDIF_CTRL_SWITCH(xname, nid, mask) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = 0, \
.subdevice = HDA_SUBDEV_NID_FLAG | nid, \
.info = alc_spdif_ctrl_info, \
.get = alc_spdif_ctrl_get, \
.put = alc_spdif_ctrl_put, \
.private_value = nid | (mask<<16) }
#endif /* CONFIG_SND_DEBUG */
/* A switch control to allow the enabling EAPD digital outputs on the ALC26x.
* Again, this is only used in the ALC26x test models to help identify when
* the EAPD line must be asserted for features to work.
*/
#ifdef CONFIG_SND_DEBUG
#define alc_eapd_ctrl_info snd_ctl_boolean_mono_info
static int alc_eapd_ctrl_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = kcontrol->private_value & 0xffff;
unsigned char mask = (kcontrol->private_value >> 16) & 0xff;
long *valp = ucontrol->value.integer.value;
unsigned int val = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_EAPD_BTLENABLE, 0x00);
*valp = (val & mask) != 0;
return 0;
}
static int alc_eapd_ctrl_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int change;
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = kcontrol->private_value & 0xffff;
unsigned char mask = (kcontrol->private_value >> 16) & 0xff;
long val = *ucontrol->value.integer.value;
unsigned int ctrl_data = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_EAPD_BTLENABLE,
0x00);
/* Set/unset the masked control bit(s) as needed */
change = (!val ? 0 : mask) != (ctrl_data & mask);
if (!val)
ctrl_data &= ~mask;
else
ctrl_data |= mask;
snd_hda_codec_write_cache(codec, nid, 0, AC_VERB_SET_EAPD_BTLENABLE,
ctrl_data);
return change;
}
#define ALC_EAPD_CTRL_SWITCH(xname, nid, mask) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = 0, \
.subdevice = HDA_SUBDEV_NID_FLAG | nid, \
.info = alc_eapd_ctrl_info, \
.get = alc_eapd_ctrl_get, \
.put = alc_eapd_ctrl_put, \
.private_value = nid | (mask<<16) }
#endif /* CONFIG_SND_DEBUG */
static void alc_fixup_autocfg_pin_nums(struct hda_codec *codec)
{
struct alc_spec *spec = codec->spec;
struct auto_pin_cfg *cfg = &spec->autocfg;
if (!cfg->line_outs) {
while (cfg->line_outs < AUTO_CFG_MAX_OUTS &&
cfg->line_out_pins[cfg->line_outs])
cfg->line_outs++;
}
if (!cfg->speaker_outs) {
while (cfg->speaker_outs < AUTO_CFG_MAX_OUTS &&
cfg->speaker_pins[cfg->speaker_outs])
cfg->speaker_outs++;
}
if (!cfg->hp_outs) {
while (cfg->hp_outs < AUTO_CFG_MAX_OUTS &&
cfg->hp_pins[cfg->hp_outs])
cfg->hp_outs++;
}
}
/*
* set up from the preset table
*/
static void setup_preset(struct hda_codec *codec,
const struct alc_config_preset *preset)
{
struct alc_spec *spec = codec->spec;
int i;
for (i = 0; i < ARRAY_SIZE(preset->mixers) && preset->mixers[i]; i++)
add_mixer(spec, preset->mixers[i]);
spec->cap_mixer = preset->cap_mixer;
for (i = 0; i < ARRAY_SIZE(preset->init_verbs) && preset->init_verbs[i];
i++)
add_verb(spec, preset->init_verbs[i]);
spec->channel_mode = preset->channel_mode;
spec->num_channel_mode = preset->num_channel_mode;
spec->need_dac_fix = preset->need_dac_fix;
spec->const_channel_count = preset->const_channel_count;
if (preset->const_channel_count)
spec->multiout.max_channels = preset->const_channel_count;
else
spec->multiout.max_channels = spec->channel_mode[0].channels;
spec->ext_channel_count = spec->channel_mode[0].channels;
spec->multiout.num_dacs = preset->num_dacs;
spec->multiout.dac_nids = preset->dac_nids;
spec->multiout.dig_out_nid = preset->dig_out_nid;
spec->multiout.slave_dig_outs = preset->slave_dig_outs;
spec->multiout.hp_nid = preset->hp_nid;
spec->num_mux_defs = preset->num_mux_defs;
if (!spec->num_mux_defs)
spec->num_mux_defs = 1;
spec->input_mux = preset->input_mux;
spec->num_adc_nids = preset->num_adc_nids;
spec->adc_nids = preset->adc_nids;
spec->capsrc_nids = preset->capsrc_nids;
spec->dig_in_nid = preset->dig_in_nid;
spec->unsol_event = preset->unsol_event;
spec->init_hook = preset->init_hook;
#ifdef CONFIG_SND_HDA_POWER_SAVE
spec->power_hook = preset->power_hook;
spec->loopback.amplist = preset->loopbacks;
#endif
if (preset->setup)
preset->setup(codec);
alc_fixup_autocfg_pin_nums(codec);
}
/* auto-toggle front mic */
static void alc88x_simple_mic_automute(struct hda_codec *codec)
{
unsigned int present;
unsigned char bits;
present = snd_hda_jack_detect(codec, 0x18);
bits = present ? HDA_AMP_MUTE : 0;
snd_hda_codec_amp_stereo(codec, 0x0b, HDA_INPUT, 1, HDA_AMP_MUTE, bits);
}