2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-11-18 23:54:26 +08:00
linux-next/include/linux/dmaengine.h
Peter Ujfalusi e7736cdea2 dmaengine: Add flags parameter to dmaengine_prep_dma_cyclic()
With this parameter added to dmaengine_prep_dma_cyclic() the API will be in
sync with other dmaengine_prep_*() functions.
The dmaengine_prep_dma_cyclic() function primarily used by audio for cyclic
transfer required by ALSA, we use the from audio to ask dma drivers to
suppress interrupts (if DMA_PREP_INTERRUPT is cleared) when it is supported
on the platform.

Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
CC: Lars-Peter Clausen <lars@metafoo.de>
Acked-by: Vinod Koul <vinod.koul@linux.intel.com>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2012-09-24 18:35:29 +02:00

1028 lines
33 KiB
C

/*
* Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The full GNU General Public License is included in this distribution in the
* file called COPYING.
*/
#ifndef LINUX_DMAENGINE_H
#define LINUX_DMAENGINE_H
#include <linux/device.h>
#include <linux/uio.h>
#include <linux/bug.h>
#include <linux/scatterlist.h>
#include <linux/bitmap.h>
#include <linux/types.h>
#include <asm/page.h>
/**
* typedef dma_cookie_t - an opaque DMA cookie
*
* if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
*/
typedef s32 dma_cookie_t;
#define DMA_MIN_COOKIE 1
#define DMA_MAX_COOKIE INT_MAX
#define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0)
/**
* enum dma_status - DMA transaction status
* @DMA_SUCCESS: transaction completed successfully
* @DMA_IN_PROGRESS: transaction not yet processed
* @DMA_PAUSED: transaction is paused
* @DMA_ERROR: transaction failed
*/
enum dma_status {
DMA_SUCCESS,
DMA_IN_PROGRESS,
DMA_PAUSED,
DMA_ERROR,
};
/**
* enum dma_transaction_type - DMA transaction types/indexes
*
* Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
* automatically set as dma devices are registered.
*/
enum dma_transaction_type {
DMA_MEMCPY,
DMA_XOR,
DMA_PQ,
DMA_XOR_VAL,
DMA_PQ_VAL,
DMA_MEMSET,
DMA_INTERRUPT,
DMA_SG,
DMA_PRIVATE,
DMA_ASYNC_TX,
DMA_SLAVE,
DMA_CYCLIC,
DMA_INTERLEAVE,
/* last transaction type for creation of the capabilities mask */
DMA_TX_TYPE_END,
};
/**
* enum dma_transfer_direction - dma transfer mode and direction indicator
* @DMA_MEM_TO_MEM: Async/Memcpy mode
* @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
* @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
* @DMA_DEV_TO_DEV: Slave mode & From Device to Device
*/
enum dma_transfer_direction {
DMA_MEM_TO_MEM,
DMA_MEM_TO_DEV,
DMA_DEV_TO_MEM,
DMA_DEV_TO_DEV,
DMA_TRANS_NONE,
};
/**
* Interleaved Transfer Request
* ----------------------------
* A chunk is collection of contiguous bytes to be transfered.
* The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
* ICGs may or maynot change between chunks.
* A FRAME is the smallest series of contiguous {chunk,icg} pairs,
* that when repeated an integral number of times, specifies the transfer.
* A transfer template is specification of a Frame, the number of times
* it is to be repeated and other per-transfer attributes.
*
* Practically, a client driver would have ready a template for each
* type of transfer it is going to need during its lifetime and
* set only 'src_start' and 'dst_start' before submitting the requests.
*
*
* | Frame-1 | Frame-2 | ~ | Frame-'numf' |
* |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
*
* == Chunk size
* ... ICG
*/
/**
* struct data_chunk - Element of scatter-gather list that makes a frame.
* @size: Number of bytes to read from source.
* size_dst := fn(op, size_src), so doesn't mean much for destination.
* @icg: Number of bytes to jump after last src/dst address of this
* chunk and before first src/dst address for next chunk.
* Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
* Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
*/
struct data_chunk {
size_t size;
size_t icg;
};
/**
* struct dma_interleaved_template - Template to convey DMAC the transfer pattern
* and attributes.
* @src_start: Bus address of source for the first chunk.
* @dst_start: Bus address of destination for the first chunk.
* @dir: Specifies the type of Source and Destination.
* @src_inc: If the source address increments after reading from it.
* @dst_inc: If the destination address increments after writing to it.
* @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
* Otherwise, source is read contiguously (icg ignored).
* Ignored if src_inc is false.
* @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
* Otherwise, destination is filled contiguously (icg ignored).
* Ignored if dst_inc is false.
* @numf: Number of frames in this template.
* @frame_size: Number of chunks in a frame i.e, size of sgl[].
* @sgl: Array of {chunk,icg} pairs that make up a frame.
*/
struct dma_interleaved_template {
dma_addr_t src_start;
dma_addr_t dst_start;
enum dma_transfer_direction dir;
bool src_inc;
bool dst_inc;
bool src_sgl;
bool dst_sgl;
size_t numf;
size_t frame_size;
struct data_chunk sgl[0];
};
/**
* enum dma_ctrl_flags - DMA flags to augment operation preparation,
* control completion, and communicate status.
* @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
* this transaction
* @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
* acknowledges receipt, i.e. has has a chance to establish any dependency
* chains
* @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s)
* @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s)
* @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single
* (if not set, do the source dma-unmapping as page)
* @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single
* (if not set, do the destination dma-unmapping as page)
* @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
* @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
* @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
* sources that were the result of a previous operation, in the case of a PQ
* operation it continues the calculation with new sources
* @DMA_PREP_FENCE - tell the driver that subsequent operations depend
* on the result of this operation
*/
enum dma_ctrl_flags {
DMA_PREP_INTERRUPT = (1 << 0),
DMA_CTRL_ACK = (1 << 1),
DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2),
DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3),
DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4),
DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5),
DMA_PREP_PQ_DISABLE_P = (1 << 6),
DMA_PREP_PQ_DISABLE_Q = (1 << 7),
DMA_PREP_CONTINUE = (1 << 8),
DMA_PREP_FENCE = (1 << 9),
};
/**
* enum dma_ctrl_cmd - DMA operations that can optionally be exercised
* on a running channel.
* @DMA_TERMINATE_ALL: terminate all ongoing transfers
* @DMA_PAUSE: pause ongoing transfers
* @DMA_RESUME: resume paused transfer
* @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
* that need to runtime reconfigure the slave channels (as opposed to passing
* configuration data in statically from the platform). An additional
* argument of struct dma_slave_config must be passed in with this
* command.
* @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller
* into external start mode.
*/
enum dma_ctrl_cmd {
DMA_TERMINATE_ALL,
DMA_PAUSE,
DMA_RESUME,
DMA_SLAVE_CONFIG,
FSLDMA_EXTERNAL_START,
};
/**
* enum sum_check_bits - bit position of pq_check_flags
*/
enum sum_check_bits {
SUM_CHECK_P = 0,
SUM_CHECK_Q = 1,
};
/**
* enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
* @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
* @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
*/
enum sum_check_flags {
SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
};
/**
* dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
* See linux/cpumask.h
*/
typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
/**
* struct dma_chan_percpu - the per-CPU part of struct dma_chan
* @memcpy_count: transaction counter
* @bytes_transferred: byte counter
*/
struct dma_chan_percpu {
/* stats */
unsigned long memcpy_count;
unsigned long bytes_transferred;
};
/**
* struct dma_chan - devices supply DMA channels, clients use them
* @device: ptr to the dma device who supplies this channel, always !%NULL
* @cookie: last cookie value returned to client
* @completed_cookie: last completed cookie for this channel
* @chan_id: channel ID for sysfs
* @dev: class device for sysfs
* @device_node: used to add this to the device chan list
* @local: per-cpu pointer to a struct dma_chan_percpu
* @client-count: how many clients are using this channel
* @table_count: number of appearances in the mem-to-mem allocation table
* @private: private data for certain client-channel associations
*/
struct dma_chan {
struct dma_device *device;
dma_cookie_t cookie;
dma_cookie_t completed_cookie;
/* sysfs */
int chan_id;
struct dma_chan_dev *dev;
struct list_head device_node;
struct dma_chan_percpu __percpu *local;
int client_count;
int table_count;
void *private;
};
/**
* struct dma_chan_dev - relate sysfs device node to backing channel device
* @chan - driver channel device
* @device - sysfs device
* @dev_id - parent dma_device dev_id
* @idr_ref - reference count to gate release of dma_device dev_id
*/
struct dma_chan_dev {
struct dma_chan *chan;
struct device device;
int dev_id;
atomic_t *idr_ref;
};
/**
* enum dma_slave_buswidth - defines bus with of the DMA slave
* device, source or target buses
*/
enum dma_slave_buswidth {
DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
};
/**
* struct dma_slave_config - dma slave channel runtime config
* @direction: whether the data shall go in or out on this slave
* channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are
* legal values, DMA_BIDIRECTIONAL is not acceptable since we
* need to differentiate source and target addresses.
* @src_addr: this is the physical address where DMA slave data
* should be read (RX), if the source is memory this argument is
* ignored.
* @dst_addr: this is the physical address where DMA slave data
* should be written (TX), if the source is memory this argument
* is ignored.
* @src_addr_width: this is the width in bytes of the source (RX)
* register where DMA data shall be read. If the source
* is memory this may be ignored depending on architecture.
* Legal values: 1, 2, 4, 8.
* @dst_addr_width: same as src_addr_width but for destination
* target (TX) mutatis mutandis.
* @src_maxburst: the maximum number of words (note: words, as in
* units of the src_addr_width member, not bytes) that can be sent
* in one burst to the device. Typically something like half the
* FIFO depth on I/O peripherals so you don't overflow it. This
* may or may not be applicable on memory sources.
* @dst_maxburst: same as src_maxburst but for destination target
* mutatis mutandis.
* @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
* with 'true' if peripheral should be flow controller. Direction will be
* selected at Runtime.
* @slave_id: Slave requester id. Only valid for slave channels. The dma
* slave peripheral will have unique id as dma requester which need to be
* pass as slave config.
*
* This struct is passed in as configuration data to a DMA engine
* in order to set up a certain channel for DMA transport at runtime.
* The DMA device/engine has to provide support for an additional
* command in the channel config interface, DMA_SLAVE_CONFIG
* and this struct will then be passed in as an argument to the
* DMA engine device_control() function.
*
* The rationale for adding configuration information to this struct
* is as follows: if it is likely that most DMA slave controllers in
* the world will support the configuration option, then make it
* generic. If not: if it is fixed so that it be sent in static from
* the platform data, then prefer to do that. Else, if it is neither
* fixed at runtime, nor generic enough (such as bus mastership on
* some CPU family and whatnot) then create a custom slave config
* struct and pass that, then make this config a member of that
* struct, if applicable.
*/
struct dma_slave_config {
enum dma_transfer_direction direction;
dma_addr_t src_addr;
dma_addr_t dst_addr;
enum dma_slave_buswidth src_addr_width;
enum dma_slave_buswidth dst_addr_width;
u32 src_maxburst;
u32 dst_maxburst;
bool device_fc;
unsigned int slave_id;
};
static inline const char *dma_chan_name(struct dma_chan *chan)
{
return dev_name(&chan->dev->device);
}
void dma_chan_cleanup(struct kref *kref);
/**
* typedef dma_filter_fn - callback filter for dma_request_channel
* @chan: channel to be reviewed
* @filter_param: opaque parameter passed through dma_request_channel
*
* When this optional parameter is specified in a call to dma_request_channel a
* suitable channel is passed to this routine for further dispositioning before
* being returned. Where 'suitable' indicates a non-busy channel that
* satisfies the given capability mask. It returns 'true' to indicate that the
* channel is suitable.
*/
typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
typedef void (*dma_async_tx_callback)(void *dma_async_param);
/**
* struct dma_async_tx_descriptor - async transaction descriptor
* ---dma generic offload fields---
* @cookie: tracking cookie for this transaction, set to -EBUSY if
* this tx is sitting on a dependency list
* @flags: flags to augment operation preparation, control completion, and
* communicate status
* @phys: physical address of the descriptor
* @chan: target channel for this operation
* @tx_submit: set the prepared descriptor(s) to be executed by the engine
* @callback: routine to call after this operation is complete
* @callback_param: general parameter to pass to the callback routine
* ---async_tx api specific fields---
* @next: at completion submit this descriptor
* @parent: pointer to the next level up in the dependency chain
* @lock: protect the parent and next pointers
*/
struct dma_async_tx_descriptor {
dma_cookie_t cookie;
enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
dma_addr_t phys;
struct dma_chan *chan;
dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
dma_async_tx_callback callback;
void *callback_param;
#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
struct dma_async_tx_descriptor *next;
struct dma_async_tx_descriptor *parent;
spinlock_t lock;
#endif
};
#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
static inline void txd_lock(struct dma_async_tx_descriptor *txd)
{
}
static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
{
}
static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
{
BUG();
}
static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
{
}
static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
{
}
static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
{
return NULL;
}
static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
{
return NULL;
}
#else
static inline void txd_lock(struct dma_async_tx_descriptor *txd)
{
spin_lock_bh(&txd->lock);
}
static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
{
spin_unlock_bh(&txd->lock);
}
static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
{
txd->next = next;
next->parent = txd;
}
static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
{
txd->parent = NULL;
}
static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
{
txd->next = NULL;
}
static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
{
return txd->parent;
}
static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
{
return txd->next;
}
#endif
/**
* struct dma_tx_state - filled in to report the status of
* a transfer.
* @last: last completed DMA cookie
* @used: last issued DMA cookie (i.e. the one in progress)
* @residue: the remaining number of bytes left to transmit
* on the selected transfer for states DMA_IN_PROGRESS and
* DMA_PAUSED if this is implemented in the driver, else 0
*/
struct dma_tx_state {
dma_cookie_t last;
dma_cookie_t used;
u32 residue;
};
/**
* struct dma_device - info on the entity supplying DMA services
* @chancnt: how many DMA channels are supported
* @privatecnt: how many DMA channels are requested by dma_request_channel
* @channels: the list of struct dma_chan
* @global_node: list_head for global dma_device_list
* @cap_mask: one or more dma_capability flags
* @max_xor: maximum number of xor sources, 0 if no capability
* @max_pq: maximum number of PQ sources and PQ-continue capability
* @copy_align: alignment shift for memcpy operations
* @xor_align: alignment shift for xor operations
* @pq_align: alignment shift for pq operations
* @fill_align: alignment shift for memset operations
* @dev_id: unique device ID
* @dev: struct device reference for dma mapping api
* @device_alloc_chan_resources: allocate resources and return the
* number of allocated descriptors
* @device_free_chan_resources: release DMA channel's resources
* @device_prep_dma_memcpy: prepares a memcpy operation
* @device_prep_dma_xor: prepares a xor operation
* @device_prep_dma_xor_val: prepares a xor validation operation
* @device_prep_dma_pq: prepares a pq operation
* @device_prep_dma_pq_val: prepares a pqzero_sum operation
* @device_prep_dma_memset: prepares a memset operation
* @device_prep_dma_interrupt: prepares an end of chain interrupt operation
* @device_prep_slave_sg: prepares a slave dma operation
* @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
* The function takes a buffer of size buf_len. The callback function will
* be called after period_len bytes have been transferred.
* @device_prep_interleaved_dma: Transfer expression in a generic way.
* @device_control: manipulate all pending operations on a channel, returns
* zero or error code
* @device_tx_status: poll for transaction completion, the optional
* txstate parameter can be supplied with a pointer to get a
* struct with auxiliary transfer status information, otherwise the call
* will just return a simple status code
* @device_issue_pending: push pending transactions to hardware
*/
struct dma_device {
unsigned int chancnt;
unsigned int privatecnt;
struct list_head channels;
struct list_head global_node;
dma_cap_mask_t cap_mask;
unsigned short max_xor;
unsigned short max_pq;
u8 copy_align;
u8 xor_align;
u8 pq_align;
u8 fill_align;
#define DMA_HAS_PQ_CONTINUE (1 << 15)
int dev_id;
struct device *dev;
int (*device_alloc_chan_resources)(struct dma_chan *chan);
void (*device_free_chan_resources)(struct dma_chan *chan);
struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
size_t len, unsigned long flags);
struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
unsigned int src_cnt, size_t len, unsigned long flags);
struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
size_t len, enum sum_check_flags *result, unsigned long flags);
struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
unsigned int src_cnt, const unsigned char *scf,
size_t len, unsigned long flags);
struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
unsigned int src_cnt, const unsigned char *scf, size_t len,
enum sum_check_flags *pqres, unsigned long flags);
struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
unsigned long flags);
struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
struct dma_chan *chan, unsigned long flags);
struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
struct dma_chan *chan,
struct scatterlist *dst_sg, unsigned int dst_nents,
struct scatterlist *src_sg, unsigned int src_nents,
unsigned long flags);
struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_transfer_direction direction,
unsigned long flags, void *context);
struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
size_t period_len, enum dma_transfer_direction direction,
unsigned long flags, void *context);
struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
struct dma_chan *chan, struct dma_interleaved_template *xt,
unsigned long flags);
int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
unsigned long arg);
enum dma_status (*device_tx_status)(struct dma_chan *chan,
dma_cookie_t cookie,
struct dma_tx_state *txstate);
void (*device_issue_pending)(struct dma_chan *chan);
};
static inline int dmaengine_device_control(struct dma_chan *chan,
enum dma_ctrl_cmd cmd,
unsigned long arg)
{
return chan->device->device_control(chan, cmd, arg);
}
static inline int dmaengine_slave_config(struct dma_chan *chan,
struct dma_slave_config *config)
{
return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
(unsigned long)config);
}
static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
struct dma_chan *chan, dma_addr_t buf, size_t len,
enum dma_transfer_direction dir, unsigned long flags)
{
struct scatterlist sg;
sg_init_table(&sg, 1);
sg_dma_address(&sg) = buf;
sg_dma_len(&sg) = len;
return chan->device->device_prep_slave_sg(chan, &sg, 1,
dir, flags, NULL);
}
static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
enum dma_transfer_direction dir, unsigned long flags)
{
return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
dir, flags, NULL);
}
#ifdef CONFIG_RAPIDIO_DMA_ENGINE
struct rio_dma_ext;
static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
enum dma_transfer_direction dir, unsigned long flags,
struct rio_dma_ext *rio_ext)
{
return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
dir, flags, rio_ext);
}
#endif
static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
size_t period_len, enum dma_transfer_direction dir,
unsigned long flags)
{
return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
period_len, dir, flags, NULL);
}
static inline int dmaengine_terminate_all(struct dma_chan *chan)
{
return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
}
static inline int dmaengine_pause(struct dma_chan *chan)
{
return dmaengine_device_control(chan, DMA_PAUSE, 0);
}
static inline int dmaengine_resume(struct dma_chan *chan)
{
return dmaengine_device_control(chan, DMA_RESUME, 0);
}
static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
dma_cookie_t cookie, struct dma_tx_state *state)
{
return chan->device->device_tx_status(chan, cookie, state);
}
static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
{
return desc->tx_submit(desc);
}
static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
{
size_t mask;
if (!align)
return true;
mask = (1 << align) - 1;
if (mask & (off1 | off2 | len))
return false;
return true;
}
static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
size_t off2, size_t len)
{
return dmaengine_check_align(dev->copy_align, off1, off2, len);
}
static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
size_t off2, size_t len)
{
return dmaengine_check_align(dev->xor_align, off1, off2, len);
}
static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
size_t off2, size_t len)
{
return dmaengine_check_align(dev->pq_align, off1, off2, len);
}
static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
size_t off2, size_t len)
{
return dmaengine_check_align(dev->fill_align, off1, off2, len);
}
static inline void
dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
{
dma->max_pq = maxpq;
if (has_pq_continue)
dma->max_pq |= DMA_HAS_PQ_CONTINUE;
}
static inline bool dmaf_continue(enum dma_ctrl_flags flags)
{
return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
}
static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
{
enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
return (flags & mask) == mask;
}
static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
{
return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
}
static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
{
return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
}
/* dma_maxpq - reduce maxpq in the face of continued operations
* @dma - dma device with PQ capability
* @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
*
* When an engine does not support native continuation we need 3 extra
* source slots to reuse P and Q with the following coefficients:
* 1/ {00} * P : remove P from Q', but use it as a source for P'
* 2/ {01} * Q : use Q to continue Q' calculation
* 3/ {00} * Q : subtract Q from P' to cancel (2)
*
* In the case where P is disabled we only need 1 extra source:
* 1/ {01} * Q : use Q to continue Q' calculation
*/
static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
{
if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
return dma_dev_to_maxpq(dma);
else if (dmaf_p_disabled_continue(flags))
return dma_dev_to_maxpq(dma) - 1;
else if (dmaf_continue(flags))
return dma_dev_to_maxpq(dma) - 3;
BUG();
}
/* --- public DMA engine API --- */
#ifdef CONFIG_DMA_ENGINE
void dmaengine_get(void);
void dmaengine_put(void);
#else
static inline void dmaengine_get(void)
{
}
static inline void dmaengine_put(void)
{
}
#endif
#ifdef CONFIG_NET_DMA
#define net_dmaengine_get() dmaengine_get()
#define net_dmaengine_put() dmaengine_put()
#else
static inline void net_dmaengine_get(void)
{
}
static inline void net_dmaengine_put(void)
{
}
#endif
#ifdef CONFIG_ASYNC_TX_DMA
#define async_dmaengine_get() dmaengine_get()
#define async_dmaengine_put() dmaengine_put()
#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
#else
#define async_dma_find_channel(type) dma_find_channel(type)
#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
#else
static inline void async_dmaengine_get(void)
{
}
static inline void async_dmaengine_put(void)
{
}
static inline struct dma_chan *
async_dma_find_channel(enum dma_transaction_type type)
{
return NULL;
}
#endif /* CONFIG_ASYNC_TX_DMA */
dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
void *dest, void *src, size_t len);
dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
struct page *page, unsigned int offset, void *kdata, size_t len);
dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
unsigned int src_off, size_t len);
void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
struct dma_chan *chan);
static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
{
tx->flags |= DMA_CTRL_ACK;
}
static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
{
tx->flags &= ~DMA_CTRL_ACK;
}
static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
{
return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
}
#define first_dma_cap(mask) __first_dma_cap(&(mask))
static inline int __first_dma_cap(const dma_cap_mask_t *srcp)
{
return min_t(int, DMA_TX_TYPE_END,
find_first_bit(srcp->bits, DMA_TX_TYPE_END));
}
#define next_dma_cap(n, mask) __next_dma_cap((n), &(mask))
static inline int __next_dma_cap(int n, const dma_cap_mask_t *srcp)
{
return min_t(int, DMA_TX_TYPE_END,
find_next_bit(srcp->bits, DMA_TX_TYPE_END, n+1));
}
#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
static inline void
__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
{
set_bit(tx_type, dstp->bits);
}
#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
static inline void
__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
{
clear_bit(tx_type, dstp->bits);
}
#define dma_cap_zero(mask) __dma_cap_zero(&(mask))
static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
{
bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
}
#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
static inline int
__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
{
return test_bit(tx_type, srcp->bits);
}
#define for_each_dma_cap_mask(cap, mask) \
for ((cap) = first_dma_cap(mask); \
(cap) < DMA_TX_TYPE_END; \
(cap) = next_dma_cap((cap), (mask)))
/**
* dma_async_issue_pending - flush pending transactions to HW
* @chan: target DMA channel
*
* This allows drivers to push copies to HW in batches,
* reducing MMIO writes where possible.
*/
static inline void dma_async_issue_pending(struct dma_chan *chan)
{
chan->device->device_issue_pending(chan);
}
#define dma_async_memcpy_issue_pending(chan) dma_async_issue_pending(chan)
/**
* dma_async_is_tx_complete - poll for transaction completion
* @chan: DMA channel
* @cookie: transaction identifier to check status of
* @last: returns last completed cookie, can be NULL
* @used: returns last issued cookie, can be NULL
*
* If @last and @used are passed in, upon return they reflect the driver
* internal state and can be used with dma_async_is_complete() to check
* the status of multiple cookies without re-checking hardware state.
*/
static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
{
struct dma_tx_state state;
enum dma_status status;
status = chan->device->device_tx_status(chan, cookie, &state);
if (last)
*last = state.last;
if (used)
*used = state.used;
return status;
}
#define dma_async_memcpy_complete(chan, cookie, last, used)\
dma_async_is_tx_complete(chan, cookie, last, used)
/**
* dma_async_is_complete - test a cookie against chan state
* @cookie: transaction identifier to test status of
* @last_complete: last know completed transaction
* @last_used: last cookie value handed out
*
* dma_async_is_complete() is used in dma_async_memcpy_complete()
* the test logic is separated for lightweight testing of multiple cookies
*/
static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
dma_cookie_t last_complete, dma_cookie_t last_used)
{
if (last_complete <= last_used) {
if ((cookie <= last_complete) || (cookie > last_used))
return DMA_SUCCESS;
} else {
if ((cookie <= last_complete) && (cookie > last_used))
return DMA_SUCCESS;
}
return DMA_IN_PROGRESS;
}
static inline void
dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
{
if (st) {
st->last = last;
st->used = used;
st->residue = residue;
}
}
enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
#ifdef CONFIG_DMA_ENGINE
enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
void dma_issue_pending_all(void);
struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param);
void dma_release_channel(struct dma_chan *chan);
#else
static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
{
return DMA_SUCCESS;
}
static inline void dma_issue_pending_all(void)
{
}
static inline struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask,
dma_filter_fn fn, void *fn_param)
{
return NULL;
}
static inline void dma_release_channel(struct dma_chan *chan)
{
}
#endif
/* --- DMA device --- */
int dma_async_device_register(struct dma_device *device);
void dma_async_device_unregister(struct dma_device *device);
void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
struct dma_chan *net_dma_find_channel(void);
#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
/* --- Helper iov-locking functions --- */
struct dma_page_list {
char __user *base_address;
int nr_pages;
struct page **pages;
};
struct dma_pinned_list {
int nr_iovecs;
struct dma_page_list page_list[0];
};
struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
struct dma_pinned_list *pinned_list, struct page *page,
unsigned int offset, size_t len);
#endif /* DMAENGINE_H */