2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-29 07:34:06 +08:00
linux-next/drivers/pci/hotplug/ibmphp_ebda.c
Lukas Wunner 51bbf9bee3 PCI: hotplug: Demidlayer registration with the core
When a hotplug driver calls pci_hp_register(), all steps necessary for
registration are carried out in one go, including creation of a kobject
and addition to sysfs.  That's a problem for pciehp once it's converted
to enable/disable the slot exclusively from the IRQ thread:  The thread
needs to be spawned after creation of the kobject (because it uses the
kobject's name), but before addition to sysfs (because it will handle
enable/disable requests submitted via sysfs).

pci_hp_deregister() does offer a ->release callback that's invoked
after deletion from sysfs and before destruction of the kobject.  But
because pci_hp_register() doesn't offer a counterpart, hotplug drivers'
->probe and ->remove code becomes asymmetric, which is error prone
as recently discovered use-after-free bugs in pciehp's ->remove hook
have shown.

In a sense, this appears to be a case of the midlayer antipattern:

   "The core thesis of the "midlayer mistake" is that midlayers are
    bad and should not exist.  That common functionality which it is
    so tempting to put in a midlayer should instead be provided as
    library routines which can [be] used, augmented, or ignored by
    each bottom level driver independently.  Thus every subsystem
    that supports multiple implementations (or drivers) should
    provide a very thin top layer which calls directly into the
    bottom layer drivers, and a rich library of support code that
    eases the implementation of those drivers.  This library is
    available to, but not forced upon, those drivers."
        --  Neil Brown (2009), https://lwn.net/Articles/336262/

The presence of midlayer traits in the PCI hotplug core might be ascribed
to its age:  When it was introduced in February 2002, the blessings of a
library approach might not have been well known:
https://git.kernel.org/tglx/history/c/a8a2069f432c

For comparison, the driver core does offer split functions for creating
a kobject (device_initialize()) and addition to sysfs (device_add()) as
an alternative to carrying out everything at once (device_register()).
This was introduced in October 2002:
https://git.kernel.org/tglx/history/c/8b290eb19962

The odd ->release callback in the PCI hotplug core was added in 2003:
https://git.kernel.org/tglx/history/c/69f8d663b595

Clearly, a library approach would not force every hotplug driver to
implement a ->release callback, but rather allow the driver to remove
the sysfs files, release its data structures and finally destroy the
kobject.  Alternatively, a driver may choose to remove everything with
pci_hp_deregister(), then release its data structures.

To this end, offer drivers pci_hp_initialize() and pci_hp_add() as a
split-up version of pci_hp_register().  Likewise, offer pci_hp_del()
and pci_hp_destroy() as a split-up version of pci_hp_deregister().

Eliminate the ->release callback and move its code into each driver's
teardown routine.

Declare pci_hp_deregister() void, in keeping with the usual kernel
pattern that enablement can fail, but disablement cannot.  It only
returned an error if the caller passed in a NULL pointer or a slot which
has never or is no longer registered or is sharing its name with another
slot.  Those would be bugs, so WARN about them.  Few hotplug drivers
actually checked the return value and those that did only printed a
useless error message to dmesg.  Remove that.

For most drivers the conversion was straightforward since it doesn't
matter whether the code in the ->release callback is executed before or
after destruction of the kobject.  But in the case of ibmphp, it was
unclear to me whether setting slot_cur->ctrl and slot_cur->bus_on to
NULL needs to happen before the kobject is destroyed, so I erred on
the side of caution and ensured that the order stays the same.  Another
nontrivial case is pnv_php, I've found the list and kref logic difficult
to understand, however my impression was that it is safe to delete the
list element and drop the references until after the kobject is
destroyed.

Signed-off-by: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Andy Shevchenko <andy.shevchenko@gmail.com>  # drivers/platform/x86
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Len Brown <lenb@kernel.org>
Cc: Scott Murray <scott@spiteful.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Gavin Shan <gwshan@linux.vnet.ibm.com>
Cc: Sebastian Ott <sebott@linux.vnet.ibm.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: Corentin Chary <corentin.chary@gmail.com>
Cc: Darren Hart <dvhart@infradead.org>
Cc: Andy Shevchenko <andy@infradead.org>
2018-07-23 17:04:13 -05:00

1172 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* IBM Hot Plug Controller Driver
*
* Written By: Tong Yu, IBM Corporation
*
* Copyright (C) 2001,2003 Greg Kroah-Hartman (greg@kroah.com)
* Copyright (C) 2001-2003 IBM Corp.
*
* All rights reserved.
*
* Send feedback to <gregkh@us.ibm.com>
*
*/
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/list.h>
#include <linux/init.h>
#include "ibmphp.h"
/*
* POST builds data blocks(in this data block definition, a char-1
* byte, short(or word)-2 byte, long(dword)-4 byte) in the Extended
* BIOS Data Area which describe the configuration of the hot-plug
* controllers and resources used by the PCI Hot-Plug devices.
*
* This file walks EBDA, maps data block from physical addr,
* reconstruct linked lists about all system resource(MEM, PFM, IO)
* already assigned by POST, as well as linked lists about hot plug
* controllers (ctlr#, slot#, bus&slot features...)
*/
/* Global lists */
LIST_HEAD(ibmphp_ebda_pci_rsrc_head);
LIST_HEAD(ibmphp_slot_head);
/* Local variables */
static struct ebda_hpc_list *hpc_list_ptr;
static struct ebda_rsrc_list *rsrc_list_ptr;
static struct rio_table_hdr *rio_table_ptr = NULL;
static LIST_HEAD(ebda_hpc_head);
static LIST_HEAD(bus_info_head);
static LIST_HEAD(rio_vg_head);
static LIST_HEAD(rio_lo_head);
static LIST_HEAD(opt_vg_head);
static LIST_HEAD(opt_lo_head);
static void __iomem *io_mem;
/* Local functions */
static int ebda_rsrc_controller(void);
static int ebda_rsrc_rsrc(void);
static int ebda_rio_table(void);
static struct ebda_hpc_list * __init alloc_ebda_hpc_list(void)
{
return kzalloc(sizeof(struct ebda_hpc_list), GFP_KERNEL);
}
static struct controller *alloc_ebda_hpc(u32 slot_count, u32 bus_count)
{
struct controller *controller;
struct ebda_hpc_slot *slots;
struct ebda_hpc_bus *buses;
controller = kzalloc(sizeof(struct controller), GFP_KERNEL);
if (!controller)
goto error;
slots = kcalloc(slot_count, sizeof(struct ebda_hpc_slot), GFP_KERNEL);
if (!slots)
goto error_contr;
controller->slots = slots;
buses = kcalloc(bus_count, sizeof(struct ebda_hpc_bus), GFP_KERNEL);
if (!buses)
goto error_slots;
controller->buses = buses;
return controller;
error_slots:
kfree(controller->slots);
error_contr:
kfree(controller);
error:
return NULL;
}
static void free_ebda_hpc(struct controller *controller)
{
kfree(controller->slots);
kfree(controller->buses);
kfree(controller);
}
static struct ebda_rsrc_list * __init alloc_ebda_rsrc_list(void)
{
return kzalloc(sizeof(struct ebda_rsrc_list), GFP_KERNEL);
}
static struct ebda_pci_rsrc *alloc_ebda_pci_rsrc(void)
{
return kzalloc(sizeof(struct ebda_pci_rsrc), GFP_KERNEL);
}
static void __init print_bus_info(void)
{
struct bus_info *ptr;
list_for_each_entry(ptr, &bus_info_head, bus_info_list) {
debug("%s - slot_min = %x\n", __func__, ptr->slot_min);
debug("%s - slot_max = %x\n", __func__, ptr->slot_max);
debug("%s - slot_count = %x\n", __func__, ptr->slot_count);
debug("%s - bus# = %x\n", __func__, ptr->busno);
debug("%s - current_speed = %x\n", __func__, ptr->current_speed);
debug("%s - controller_id = %x\n", __func__, ptr->controller_id);
debug("%s - slots_at_33_conv = %x\n", __func__, ptr->slots_at_33_conv);
debug("%s - slots_at_66_conv = %x\n", __func__, ptr->slots_at_66_conv);
debug("%s - slots_at_66_pcix = %x\n", __func__, ptr->slots_at_66_pcix);
debug("%s - slots_at_100_pcix = %x\n", __func__, ptr->slots_at_100_pcix);
debug("%s - slots_at_133_pcix = %x\n", __func__, ptr->slots_at_133_pcix);
}
}
static void print_lo_info(void)
{
struct rio_detail *ptr;
debug("print_lo_info ----\n");
list_for_each_entry(ptr, &rio_lo_head, rio_detail_list) {
debug("%s - rio_node_id = %x\n", __func__, ptr->rio_node_id);
debug("%s - rio_type = %x\n", __func__, ptr->rio_type);
debug("%s - owner_id = %x\n", __func__, ptr->owner_id);
debug("%s - first_slot_num = %x\n", __func__, ptr->first_slot_num);
debug("%s - wpindex = %x\n", __func__, ptr->wpindex);
debug("%s - chassis_num = %x\n", __func__, ptr->chassis_num);
}
}
static void print_vg_info(void)
{
struct rio_detail *ptr;
debug("%s ---\n", __func__);
list_for_each_entry(ptr, &rio_vg_head, rio_detail_list) {
debug("%s - rio_node_id = %x\n", __func__, ptr->rio_node_id);
debug("%s - rio_type = %x\n", __func__, ptr->rio_type);
debug("%s - owner_id = %x\n", __func__, ptr->owner_id);
debug("%s - first_slot_num = %x\n", __func__, ptr->first_slot_num);
debug("%s - wpindex = %x\n", __func__, ptr->wpindex);
debug("%s - chassis_num = %x\n", __func__, ptr->chassis_num);
}
}
static void __init print_ebda_pci_rsrc(void)
{
struct ebda_pci_rsrc *ptr;
list_for_each_entry(ptr, &ibmphp_ebda_pci_rsrc_head, ebda_pci_rsrc_list) {
debug("%s - rsrc type: %x bus#: %x dev_func: %x start addr: %x end addr: %x\n",
__func__, ptr->rsrc_type, ptr->bus_num, ptr->dev_fun, ptr->start_addr, ptr->end_addr);
}
}
static void __init print_ibm_slot(void)
{
struct slot *ptr;
list_for_each_entry(ptr, &ibmphp_slot_head, ibm_slot_list) {
debug("%s - slot_number: %x\n", __func__, ptr->number);
}
}
static void __init print_opt_vg(void)
{
struct opt_rio *ptr;
debug("%s ---\n", __func__);
list_for_each_entry(ptr, &opt_vg_head, opt_rio_list) {
debug("%s - rio_type %x\n", __func__, ptr->rio_type);
debug("%s - chassis_num: %x\n", __func__, ptr->chassis_num);
debug("%s - first_slot_num: %x\n", __func__, ptr->first_slot_num);
debug("%s - middle_num: %x\n", __func__, ptr->middle_num);
}
}
static void __init print_ebda_hpc(void)
{
struct controller *hpc_ptr;
u16 index;
list_for_each_entry(hpc_ptr, &ebda_hpc_head, ebda_hpc_list) {
for (index = 0; index < hpc_ptr->slot_count; index++) {
debug("%s - physical slot#: %x\n", __func__, hpc_ptr->slots[index].slot_num);
debug("%s - pci bus# of the slot: %x\n", __func__, hpc_ptr->slots[index].slot_bus_num);
debug("%s - index into ctlr addr: %x\n", __func__, hpc_ptr->slots[index].ctl_index);
debug("%s - cap of the slot: %x\n", __func__, hpc_ptr->slots[index].slot_cap);
}
for (index = 0; index < hpc_ptr->bus_count; index++)
debug("%s - bus# of each bus controlled by this ctlr: %x\n", __func__, hpc_ptr->buses[index].bus_num);
debug("%s - type of hpc: %x\n", __func__, hpc_ptr->ctlr_type);
switch (hpc_ptr->ctlr_type) {
case 1:
debug("%s - bus: %x\n", __func__, hpc_ptr->u.pci_ctlr.bus);
debug("%s - dev_fun: %x\n", __func__, hpc_ptr->u.pci_ctlr.dev_fun);
debug("%s - irq: %x\n", __func__, hpc_ptr->irq);
break;
case 0:
debug("%s - io_start: %x\n", __func__, hpc_ptr->u.isa_ctlr.io_start);
debug("%s - io_end: %x\n", __func__, hpc_ptr->u.isa_ctlr.io_end);
debug("%s - irq: %x\n", __func__, hpc_ptr->irq);
break;
case 2:
case 4:
debug("%s - wpegbbar: %lx\n", __func__, hpc_ptr->u.wpeg_ctlr.wpegbbar);
debug("%s - i2c_addr: %x\n", __func__, hpc_ptr->u.wpeg_ctlr.i2c_addr);
debug("%s - irq: %x\n", __func__, hpc_ptr->irq);
break;
}
}
}
int __init ibmphp_access_ebda(void)
{
u8 format, num_ctlrs, rio_complete, hs_complete, ebda_sz;
u16 ebda_seg, num_entries, next_offset, offset, blk_id, sub_addr, re, rc_id, re_id, base;
int rc = 0;
rio_complete = 0;
hs_complete = 0;
io_mem = ioremap((0x40 << 4) + 0x0e, 2);
if (!io_mem)
return -ENOMEM;
ebda_seg = readw(io_mem);
iounmap(io_mem);
debug("returned ebda segment: %x\n", ebda_seg);
io_mem = ioremap(ebda_seg<<4, 1);
if (!io_mem)
return -ENOMEM;
ebda_sz = readb(io_mem);
iounmap(io_mem);
debug("ebda size: %d(KiB)\n", ebda_sz);
if (ebda_sz == 0)
return -ENOMEM;
io_mem = ioremap(ebda_seg<<4, (ebda_sz * 1024));
if (!io_mem)
return -ENOMEM;
next_offset = 0x180;
for (;;) {
offset = next_offset;
/* Make sure what we read is still in the mapped section */
if (WARN(offset > (ebda_sz * 1024 - 4),
"ibmphp_ebda: next read is beyond ebda_sz\n"))
break;
next_offset = readw(io_mem + offset); /* offset of next blk */
offset += 2;
if (next_offset == 0) /* 0 indicate it's last blk */
break;
blk_id = readw(io_mem + offset); /* this blk id */
offset += 2;
/* check if it is hot swap block or rio block */
if (blk_id != 0x4853 && blk_id != 0x4752)
continue;
/* found hs table */
if (blk_id == 0x4853) {
debug("now enter hot swap block---\n");
debug("hot blk id: %x\n", blk_id);
format = readb(io_mem + offset);
offset += 1;
if (format != 4)
goto error_nodev;
debug("hot blk format: %x\n", format);
/* hot swap sub blk */
base = offset;
sub_addr = base;
re = readw(io_mem + sub_addr); /* next sub blk */
sub_addr += 2;
rc_id = readw(io_mem + sub_addr); /* sub blk id */
sub_addr += 2;
if (rc_id != 0x5243)
goto error_nodev;
/* rc sub blk signature */
num_ctlrs = readb(io_mem + sub_addr);
sub_addr += 1;
hpc_list_ptr = alloc_ebda_hpc_list();
if (!hpc_list_ptr) {
rc = -ENOMEM;
goto out;
}
hpc_list_ptr->format = format;
hpc_list_ptr->num_ctlrs = num_ctlrs;
hpc_list_ptr->phys_addr = sub_addr; /* offset of RSRC_CONTROLLER blk */
debug("info about hpc descriptor---\n");
debug("hot blk format: %x\n", format);
debug("num of controller: %x\n", num_ctlrs);
debug("offset of hpc data structure entries: %x\n ", sub_addr);
sub_addr = base + re; /* re sub blk */
/* FIXME: rc is never used/checked */
rc = readw(io_mem + sub_addr); /* next sub blk */
sub_addr += 2;
re_id = readw(io_mem + sub_addr); /* sub blk id */
sub_addr += 2;
if (re_id != 0x5245)
goto error_nodev;
/* signature of re */
num_entries = readw(io_mem + sub_addr);
sub_addr += 2; /* offset of RSRC_ENTRIES blk */
rsrc_list_ptr = alloc_ebda_rsrc_list();
if (!rsrc_list_ptr) {
rc = -ENOMEM;
goto out;
}
rsrc_list_ptr->format = format;
rsrc_list_ptr->num_entries = num_entries;
rsrc_list_ptr->phys_addr = sub_addr;
debug("info about rsrc descriptor---\n");
debug("format: %x\n", format);
debug("num of rsrc: %x\n", num_entries);
debug("offset of rsrc data structure entries: %x\n ", sub_addr);
hs_complete = 1;
} else {
/* found rio table, blk_id == 0x4752 */
debug("now enter io table ---\n");
debug("rio blk id: %x\n", blk_id);
rio_table_ptr = kzalloc(sizeof(struct rio_table_hdr), GFP_KERNEL);
if (!rio_table_ptr) {
rc = -ENOMEM;
goto out;
}
rio_table_ptr->ver_num = readb(io_mem + offset);
rio_table_ptr->scal_count = readb(io_mem + offset + 1);
rio_table_ptr->riodev_count = readb(io_mem + offset + 2);
rio_table_ptr->offset = offset + 3 ;
debug("info about rio table hdr ---\n");
debug("ver_num: %x\nscal_count: %x\nriodev_count: %x\noffset of rio table: %x\n ",
rio_table_ptr->ver_num, rio_table_ptr->scal_count,
rio_table_ptr->riodev_count, rio_table_ptr->offset);
rio_complete = 1;
}
}
if (!hs_complete && !rio_complete)
goto error_nodev;
if (rio_table_ptr) {
if (rio_complete && rio_table_ptr->ver_num == 3) {
rc = ebda_rio_table();
if (rc)
goto out;
}
}
rc = ebda_rsrc_controller();
if (rc)
goto out;
rc = ebda_rsrc_rsrc();
goto out;
error_nodev:
rc = -ENODEV;
out:
iounmap(io_mem);
return rc;
}
/*
* map info of scalability details and rio details from physical address
*/
static int __init ebda_rio_table(void)
{
u16 offset;
u8 i;
struct rio_detail *rio_detail_ptr;
offset = rio_table_ptr->offset;
offset += 12 * rio_table_ptr->scal_count;
// we do concern about rio details
for (i = 0; i < rio_table_ptr->riodev_count; i++) {
rio_detail_ptr = kzalloc(sizeof(struct rio_detail), GFP_KERNEL);
if (!rio_detail_ptr)
return -ENOMEM;
rio_detail_ptr->rio_node_id = readb(io_mem + offset);
rio_detail_ptr->bbar = readl(io_mem + offset + 1);
rio_detail_ptr->rio_type = readb(io_mem + offset + 5);
rio_detail_ptr->owner_id = readb(io_mem + offset + 6);
rio_detail_ptr->port0_node_connect = readb(io_mem + offset + 7);
rio_detail_ptr->port0_port_connect = readb(io_mem + offset + 8);
rio_detail_ptr->port1_node_connect = readb(io_mem + offset + 9);
rio_detail_ptr->port1_port_connect = readb(io_mem + offset + 10);
rio_detail_ptr->first_slot_num = readb(io_mem + offset + 11);
rio_detail_ptr->status = readb(io_mem + offset + 12);
rio_detail_ptr->wpindex = readb(io_mem + offset + 13);
rio_detail_ptr->chassis_num = readb(io_mem + offset + 14);
// debug("rio_node_id: %x\nbbar: %x\nrio_type: %x\nowner_id: %x\nport0_node: %x\nport0_port: %x\nport1_node: %x\nport1_port: %x\nfirst_slot_num: %x\nstatus: %x\n", rio_detail_ptr->rio_node_id, rio_detail_ptr->bbar, rio_detail_ptr->rio_type, rio_detail_ptr->owner_id, rio_detail_ptr->port0_node_connect, rio_detail_ptr->port0_port_connect, rio_detail_ptr->port1_node_connect, rio_detail_ptr->port1_port_connect, rio_detail_ptr->first_slot_num, rio_detail_ptr->status);
//create linked list of chassis
if (rio_detail_ptr->rio_type == 4 || rio_detail_ptr->rio_type == 5)
list_add(&rio_detail_ptr->rio_detail_list, &rio_vg_head);
//create linked list of expansion box
else if (rio_detail_ptr->rio_type == 6 || rio_detail_ptr->rio_type == 7)
list_add(&rio_detail_ptr->rio_detail_list, &rio_lo_head);
else
// not in my concern
kfree(rio_detail_ptr);
offset += 15;
}
print_lo_info();
print_vg_info();
return 0;
}
/*
* reorganizing linked list of chassis
*/
static struct opt_rio *search_opt_vg(u8 chassis_num)
{
struct opt_rio *ptr;
list_for_each_entry(ptr, &opt_vg_head, opt_rio_list) {
if (ptr->chassis_num == chassis_num)
return ptr;
}
return NULL;
}
static int __init combine_wpg_for_chassis(void)
{
struct opt_rio *opt_rio_ptr = NULL;
struct rio_detail *rio_detail_ptr = NULL;
list_for_each_entry(rio_detail_ptr, &rio_vg_head, rio_detail_list) {
opt_rio_ptr = search_opt_vg(rio_detail_ptr->chassis_num);
if (!opt_rio_ptr) {
opt_rio_ptr = kzalloc(sizeof(struct opt_rio), GFP_KERNEL);
if (!opt_rio_ptr)
return -ENOMEM;
opt_rio_ptr->rio_type = rio_detail_ptr->rio_type;
opt_rio_ptr->chassis_num = rio_detail_ptr->chassis_num;
opt_rio_ptr->first_slot_num = rio_detail_ptr->first_slot_num;
opt_rio_ptr->middle_num = rio_detail_ptr->first_slot_num;
list_add(&opt_rio_ptr->opt_rio_list, &opt_vg_head);
} else {
opt_rio_ptr->first_slot_num = min(opt_rio_ptr->first_slot_num, rio_detail_ptr->first_slot_num);
opt_rio_ptr->middle_num = max(opt_rio_ptr->middle_num, rio_detail_ptr->first_slot_num);
}
}
print_opt_vg();
return 0;
}
/*
* reorganizing linked list of expansion box
*/
static struct opt_rio_lo *search_opt_lo(u8 chassis_num)
{
struct opt_rio_lo *ptr;
list_for_each_entry(ptr, &opt_lo_head, opt_rio_lo_list) {
if (ptr->chassis_num == chassis_num)
return ptr;
}
return NULL;
}
static int combine_wpg_for_expansion(void)
{
struct opt_rio_lo *opt_rio_lo_ptr = NULL;
struct rio_detail *rio_detail_ptr = NULL;
list_for_each_entry(rio_detail_ptr, &rio_lo_head, rio_detail_list) {
opt_rio_lo_ptr = search_opt_lo(rio_detail_ptr->chassis_num);
if (!opt_rio_lo_ptr) {
opt_rio_lo_ptr = kzalloc(sizeof(struct opt_rio_lo), GFP_KERNEL);
if (!opt_rio_lo_ptr)
return -ENOMEM;
opt_rio_lo_ptr->rio_type = rio_detail_ptr->rio_type;
opt_rio_lo_ptr->chassis_num = rio_detail_ptr->chassis_num;
opt_rio_lo_ptr->first_slot_num = rio_detail_ptr->first_slot_num;
opt_rio_lo_ptr->middle_num = rio_detail_ptr->first_slot_num;
opt_rio_lo_ptr->pack_count = 1;
list_add(&opt_rio_lo_ptr->opt_rio_lo_list, &opt_lo_head);
} else {
opt_rio_lo_ptr->first_slot_num = min(opt_rio_lo_ptr->first_slot_num, rio_detail_ptr->first_slot_num);
opt_rio_lo_ptr->middle_num = max(opt_rio_lo_ptr->middle_num, rio_detail_ptr->first_slot_num);
opt_rio_lo_ptr->pack_count = 2;
}
}
return 0;
}
/* Since we don't know the max slot number per each chassis, hence go
* through the list of all chassis to find out the range
* Arguments: slot_num, 1st slot number of the chassis we think we are on,
* var (0 = chassis, 1 = expansion box)
*/
static int first_slot_num(u8 slot_num, u8 first_slot, u8 var)
{
struct opt_rio *opt_vg_ptr = NULL;
struct opt_rio_lo *opt_lo_ptr = NULL;
int rc = 0;
if (!var) {
list_for_each_entry(opt_vg_ptr, &opt_vg_head, opt_rio_list) {
if ((first_slot < opt_vg_ptr->first_slot_num) && (slot_num >= opt_vg_ptr->first_slot_num)) {
rc = -ENODEV;
break;
}
}
} else {
list_for_each_entry(opt_lo_ptr, &opt_lo_head, opt_rio_lo_list) {
if ((first_slot < opt_lo_ptr->first_slot_num) && (slot_num >= opt_lo_ptr->first_slot_num)) {
rc = -ENODEV;
break;
}
}
}
return rc;
}
static struct opt_rio_lo *find_rxe_num(u8 slot_num)
{
struct opt_rio_lo *opt_lo_ptr;
list_for_each_entry(opt_lo_ptr, &opt_lo_head, opt_rio_lo_list) {
//check to see if this slot_num belongs to expansion box
if ((slot_num >= opt_lo_ptr->first_slot_num) && (!first_slot_num(slot_num, opt_lo_ptr->first_slot_num, 1)))
return opt_lo_ptr;
}
return NULL;
}
static struct opt_rio *find_chassis_num(u8 slot_num)
{
struct opt_rio *opt_vg_ptr;
list_for_each_entry(opt_vg_ptr, &opt_vg_head, opt_rio_list) {
//check to see if this slot_num belongs to chassis
if ((slot_num >= opt_vg_ptr->first_slot_num) && (!first_slot_num(slot_num, opt_vg_ptr->first_slot_num, 0)))
return opt_vg_ptr;
}
return NULL;
}
/* This routine will find out how many slots are in the chassis, so that
* the slot numbers for rxe100 would start from 1, and not from 7, or 6 etc
*/
static u8 calculate_first_slot(u8 slot_num)
{
u8 first_slot = 1;
struct slot *slot_cur;
list_for_each_entry(slot_cur, &ibmphp_slot_head, ibm_slot_list) {
if (slot_cur->ctrl) {
if ((slot_cur->ctrl->ctlr_type != 4) && (slot_cur->ctrl->ending_slot_num > first_slot) && (slot_num > slot_cur->ctrl->ending_slot_num))
first_slot = slot_cur->ctrl->ending_slot_num;
}
}
return first_slot + 1;
}
#define SLOT_NAME_SIZE 30
static char *create_file_name(struct slot *slot_cur)
{
struct opt_rio *opt_vg_ptr = NULL;
struct opt_rio_lo *opt_lo_ptr = NULL;
static char str[SLOT_NAME_SIZE];
int which = 0; /* rxe = 1, chassis = 0 */
u8 number = 1; /* either chassis or rxe # */
u8 first_slot = 1;
u8 slot_num;
u8 flag = 0;
if (!slot_cur) {
err("Structure passed is empty\n");
return NULL;
}
slot_num = slot_cur->number;
memset(str, 0, sizeof(str));
if (rio_table_ptr) {
if (rio_table_ptr->ver_num == 3) {
opt_vg_ptr = find_chassis_num(slot_num);
opt_lo_ptr = find_rxe_num(slot_num);
}
}
if (opt_vg_ptr) {
if (opt_lo_ptr) {
if ((slot_num - opt_vg_ptr->first_slot_num) > (slot_num - opt_lo_ptr->first_slot_num)) {
number = opt_lo_ptr->chassis_num;
first_slot = opt_lo_ptr->first_slot_num;
which = 1; /* it is RXE */
} else {
first_slot = opt_vg_ptr->first_slot_num;
number = opt_vg_ptr->chassis_num;
which = 0;
}
} else {
first_slot = opt_vg_ptr->first_slot_num;
number = opt_vg_ptr->chassis_num;
which = 0;
}
++flag;
} else if (opt_lo_ptr) {
number = opt_lo_ptr->chassis_num;
first_slot = opt_lo_ptr->first_slot_num;
which = 1;
++flag;
} else if (rio_table_ptr) {
if (rio_table_ptr->ver_num == 3) {
/* if both NULL and we DO have correct RIO table in BIOS */
return NULL;
}
}
if (!flag) {
if (slot_cur->ctrl->ctlr_type == 4) {
first_slot = calculate_first_slot(slot_num);
which = 1;
} else {
which = 0;
}
}
sprintf(str, "%s%dslot%d",
which == 0 ? "chassis" : "rxe",
number, slot_num - first_slot + 1);
return str;
}
static int fillslotinfo(struct hotplug_slot *hotplug_slot)
{
struct slot *slot;
int rc = 0;
if (!hotplug_slot || !hotplug_slot->private)
return -EINVAL;
slot = hotplug_slot->private;
rc = ibmphp_hpc_readslot(slot, READ_ALLSTAT, NULL);
if (rc)
return rc;
// power - enabled:1 not:0
hotplug_slot->info->power_status = SLOT_POWER(slot->status);
// attention - off:0, on:1, blinking:2
hotplug_slot->info->attention_status = SLOT_ATTN(slot->status, slot->ext_status);
// latch - open:1 closed:0
hotplug_slot->info->latch_status = SLOT_LATCH(slot->status);
// pci board - present:1 not:0
if (SLOT_PRESENT(slot->status))
hotplug_slot->info->adapter_status = 1;
else
hotplug_slot->info->adapter_status = 0;
/*
if (slot->bus_on->supported_bus_mode
&& (slot->bus_on->supported_speed == BUS_SPEED_66))
hotplug_slot->info->max_bus_speed_status = BUS_SPEED_66PCIX;
else
hotplug_slot->info->max_bus_speed_status = slot->bus_on->supported_speed;
*/
return rc;
}
static struct pci_driver ibmphp_driver;
/*
* map info (ctlr-id, slot count, slot#.. bus count, bus#, ctlr type...) of
* each hpc from physical address to a list of hot plug controllers based on
* hpc descriptors.
*/
static int __init ebda_rsrc_controller(void)
{
u16 addr, addr_slot, addr_bus;
u8 ctlr_id, temp, bus_index;
u16 ctlr, slot, bus;
u16 slot_num, bus_num, index;
struct hotplug_slot *hp_slot_ptr;
struct controller *hpc_ptr;
struct ebda_hpc_bus *bus_ptr;
struct ebda_hpc_slot *slot_ptr;
struct bus_info *bus_info_ptr1, *bus_info_ptr2;
int rc;
struct slot *tmp_slot;
char name[SLOT_NAME_SIZE];
addr = hpc_list_ptr->phys_addr;
for (ctlr = 0; ctlr < hpc_list_ptr->num_ctlrs; ctlr++) {
bus_index = 1;
ctlr_id = readb(io_mem + addr);
addr += 1;
slot_num = readb(io_mem + addr);
addr += 1;
addr_slot = addr; /* offset of slot structure */
addr += (slot_num * 4);
bus_num = readb(io_mem + addr);
addr += 1;
addr_bus = addr; /* offset of bus */
addr += (bus_num * 9); /* offset of ctlr_type */
temp = readb(io_mem + addr);
addr += 1;
/* init hpc structure */
hpc_ptr = alloc_ebda_hpc(slot_num, bus_num);
if (!hpc_ptr) {
rc = -ENOMEM;
goto error_no_hpc;
}
hpc_ptr->ctlr_id = ctlr_id;
hpc_ptr->ctlr_relative_id = ctlr;
hpc_ptr->slot_count = slot_num;
hpc_ptr->bus_count = bus_num;
debug("now enter ctlr data structure ---\n");
debug("ctlr id: %x\n", ctlr_id);
debug("ctlr_relative_id: %x\n", hpc_ptr->ctlr_relative_id);
debug("count of slots controlled by this ctlr: %x\n", slot_num);
debug("count of buses controlled by this ctlr: %x\n", bus_num);
/* init slot structure, fetch slot, bus, cap... */
slot_ptr = hpc_ptr->slots;
for (slot = 0; slot < slot_num; slot++) {
slot_ptr->slot_num = readb(io_mem + addr_slot);
slot_ptr->slot_bus_num = readb(io_mem + addr_slot + slot_num);
slot_ptr->ctl_index = readb(io_mem + addr_slot + 2*slot_num);
slot_ptr->slot_cap = readb(io_mem + addr_slot + 3*slot_num);
// create bus_info lined list --- if only one slot per bus: slot_min = slot_max
bus_info_ptr2 = ibmphp_find_same_bus_num(slot_ptr->slot_bus_num);
if (!bus_info_ptr2) {
bus_info_ptr1 = kzalloc(sizeof(struct bus_info), GFP_KERNEL);
if (!bus_info_ptr1) {
rc = -ENOMEM;
goto error_no_hp_slot;
}
bus_info_ptr1->slot_min = slot_ptr->slot_num;
bus_info_ptr1->slot_max = slot_ptr->slot_num;
bus_info_ptr1->slot_count += 1;
bus_info_ptr1->busno = slot_ptr->slot_bus_num;
bus_info_ptr1->index = bus_index++;
bus_info_ptr1->current_speed = 0xff;
bus_info_ptr1->current_bus_mode = 0xff;
bus_info_ptr1->controller_id = hpc_ptr->ctlr_id;
list_add_tail(&bus_info_ptr1->bus_info_list, &bus_info_head);
} else {
bus_info_ptr2->slot_min = min(bus_info_ptr2->slot_min, slot_ptr->slot_num);
bus_info_ptr2->slot_max = max(bus_info_ptr2->slot_max, slot_ptr->slot_num);
bus_info_ptr2->slot_count += 1;
}
// end of creating the bus_info linked list
slot_ptr++;
addr_slot += 1;
}
/* init bus structure */
bus_ptr = hpc_ptr->buses;
for (bus = 0; bus < bus_num; bus++) {
bus_ptr->bus_num = readb(io_mem + addr_bus + bus);
bus_ptr->slots_at_33_conv = readb(io_mem + addr_bus + bus_num + 8 * bus);
bus_ptr->slots_at_66_conv = readb(io_mem + addr_bus + bus_num + 8 * bus + 1);
bus_ptr->slots_at_66_pcix = readb(io_mem + addr_bus + bus_num + 8 * bus + 2);
bus_ptr->slots_at_100_pcix = readb(io_mem + addr_bus + bus_num + 8 * bus + 3);
bus_ptr->slots_at_133_pcix = readb(io_mem + addr_bus + bus_num + 8 * bus + 4);
bus_info_ptr2 = ibmphp_find_same_bus_num(bus_ptr->bus_num);
if (bus_info_ptr2) {
bus_info_ptr2->slots_at_33_conv = bus_ptr->slots_at_33_conv;
bus_info_ptr2->slots_at_66_conv = bus_ptr->slots_at_66_conv;
bus_info_ptr2->slots_at_66_pcix = bus_ptr->slots_at_66_pcix;
bus_info_ptr2->slots_at_100_pcix = bus_ptr->slots_at_100_pcix;
bus_info_ptr2->slots_at_133_pcix = bus_ptr->slots_at_133_pcix;
}
bus_ptr++;
}
hpc_ptr->ctlr_type = temp;
switch (hpc_ptr->ctlr_type) {
case 1:
hpc_ptr->u.pci_ctlr.bus = readb(io_mem + addr);
hpc_ptr->u.pci_ctlr.dev_fun = readb(io_mem + addr + 1);
hpc_ptr->irq = readb(io_mem + addr + 2);
addr += 3;
debug("ctrl bus = %x, ctlr devfun = %x, irq = %x\n",
hpc_ptr->u.pci_ctlr.bus,
hpc_ptr->u.pci_ctlr.dev_fun, hpc_ptr->irq);
break;
case 0:
hpc_ptr->u.isa_ctlr.io_start = readw(io_mem + addr);
hpc_ptr->u.isa_ctlr.io_end = readw(io_mem + addr + 2);
if (!request_region(hpc_ptr->u.isa_ctlr.io_start,
(hpc_ptr->u.isa_ctlr.io_end - hpc_ptr->u.isa_ctlr.io_start + 1),
"ibmphp")) {
rc = -ENODEV;
goto error_no_hp_slot;
}
hpc_ptr->irq = readb(io_mem + addr + 4);
addr += 5;
break;
case 2:
case 4:
hpc_ptr->u.wpeg_ctlr.wpegbbar = readl(io_mem + addr);
hpc_ptr->u.wpeg_ctlr.i2c_addr = readb(io_mem + addr + 4);
hpc_ptr->irq = readb(io_mem + addr + 5);
addr += 6;
break;
default:
rc = -ENODEV;
goto error_no_hp_slot;
}
//reorganize chassis' linked list
combine_wpg_for_chassis();
combine_wpg_for_expansion();
hpc_ptr->revision = 0xff;
hpc_ptr->options = 0xff;
hpc_ptr->starting_slot_num = hpc_ptr->slots[0].slot_num;
hpc_ptr->ending_slot_num = hpc_ptr->slots[slot_num-1].slot_num;
// register slots with hpc core as well as create linked list of ibm slot
for (index = 0; index < hpc_ptr->slot_count; index++) {
hp_slot_ptr = kzalloc(sizeof(*hp_slot_ptr), GFP_KERNEL);
if (!hp_slot_ptr) {
rc = -ENOMEM;
goto error_no_hp_slot;
}
hp_slot_ptr->info = kzalloc(sizeof(struct hotplug_slot_info), GFP_KERNEL);
if (!hp_slot_ptr->info) {
rc = -ENOMEM;
goto error_no_hp_info;
}
tmp_slot = kzalloc(sizeof(*tmp_slot), GFP_KERNEL);
if (!tmp_slot) {
rc = -ENOMEM;
goto error_no_slot;
}
tmp_slot->flag = 1;
tmp_slot->capabilities = hpc_ptr->slots[index].slot_cap;
if ((hpc_ptr->slots[index].slot_cap & EBDA_SLOT_133_MAX) == EBDA_SLOT_133_MAX)
tmp_slot->supported_speed = 3;
else if ((hpc_ptr->slots[index].slot_cap & EBDA_SLOT_100_MAX) == EBDA_SLOT_100_MAX)
tmp_slot->supported_speed = 2;
else if ((hpc_ptr->slots[index].slot_cap & EBDA_SLOT_66_MAX) == EBDA_SLOT_66_MAX)
tmp_slot->supported_speed = 1;
if ((hpc_ptr->slots[index].slot_cap & EBDA_SLOT_PCIX_CAP) == EBDA_SLOT_PCIX_CAP)
tmp_slot->supported_bus_mode = 1;
else
tmp_slot->supported_bus_mode = 0;
tmp_slot->bus = hpc_ptr->slots[index].slot_bus_num;
bus_info_ptr1 = ibmphp_find_same_bus_num(hpc_ptr->slots[index].slot_bus_num);
if (!bus_info_ptr1) {
kfree(tmp_slot);
rc = -ENODEV;
goto error;
}
tmp_slot->bus_on = bus_info_ptr1;
bus_info_ptr1 = NULL;
tmp_slot->ctrl = hpc_ptr;
tmp_slot->ctlr_index = hpc_ptr->slots[index].ctl_index;
tmp_slot->number = hpc_ptr->slots[index].slot_num;
tmp_slot->hotplug_slot = hp_slot_ptr;
hp_slot_ptr->private = tmp_slot;
rc = fillslotinfo(hp_slot_ptr);
if (rc)
goto error;
rc = ibmphp_init_devno((struct slot **) &hp_slot_ptr->private);
if (rc)
goto error;
hp_slot_ptr->ops = &ibmphp_hotplug_slot_ops;
// end of registering ibm slot with hotplug core
list_add(&((struct slot *)(hp_slot_ptr->private))->ibm_slot_list, &ibmphp_slot_head);
}
print_bus_info();
list_add(&hpc_ptr->ebda_hpc_list, &ebda_hpc_head);
} /* each hpc */
list_for_each_entry(tmp_slot, &ibmphp_slot_head, ibm_slot_list) {
snprintf(name, SLOT_NAME_SIZE, "%s", create_file_name(tmp_slot));
pci_hp_register(tmp_slot->hotplug_slot,
pci_find_bus(0, tmp_slot->bus), tmp_slot->device, name);
}
print_ebda_hpc();
print_ibm_slot();
return 0;
error:
kfree(hp_slot_ptr->private);
error_no_slot:
kfree(hp_slot_ptr->info);
error_no_hp_info:
kfree(hp_slot_ptr);
error_no_hp_slot:
free_ebda_hpc(hpc_ptr);
error_no_hpc:
iounmap(io_mem);
return rc;
}
/*
* map info (bus, devfun, start addr, end addr..) of i/o, memory,
* pfm from the physical addr to a list of resource.
*/
static int __init ebda_rsrc_rsrc(void)
{
u16 addr;
short rsrc;
u8 type, rsrc_type;
struct ebda_pci_rsrc *rsrc_ptr;
addr = rsrc_list_ptr->phys_addr;
debug("now entering rsrc land\n");
debug("offset of rsrc: %x\n", rsrc_list_ptr->phys_addr);
for (rsrc = 0; rsrc < rsrc_list_ptr->num_entries; rsrc++) {
type = readb(io_mem + addr);
addr += 1;
rsrc_type = type & EBDA_RSRC_TYPE_MASK;
if (rsrc_type == EBDA_IO_RSRC_TYPE) {
rsrc_ptr = alloc_ebda_pci_rsrc();
if (!rsrc_ptr) {
iounmap(io_mem);
return -ENOMEM;
}
rsrc_ptr->rsrc_type = type;
rsrc_ptr->bus_num = readb(io_mem + addr);
rsrc_ptr->dev_fun = readb(io_mem + addr + 1);
rsrc_ptr->start_addr = readw(io_mem + addr + 2);
rsrc_ptr->end_addr = readw(io_mem + addr + 4);
addr += 6;
debug("rsrc from io type ----\n");
debug("rsrc type: %x bus#: %x dev_func: %x start addr: %x end addr: %x\n",
rsrc_ptr->rsrc_type, rsrc_ptr->bus_num, rsrc_ptr->dev_fun, rsrc_ptr->start_addr, rsrc_ptr->end_addr);
list_add(&rsrc_ptr->ebda_pci_rsrc_list, &ibmphp_ebda_pci_rsrc_head);
}
if (rsrc_type == EBDA_MEM_RSRC_TYPE || rsrc_type == EBDA_PFM_RSRC_TYPE) {
rsrc_ptr = alloc_ebda_pci_rsrc();
if (!rsrc_ptr) {
iounmap(io_mem);
return -ENOMEM;
}
rsrc_ptr->rsrc_type = type;
rsrc_ptr->bus_num = readb(io_mem + addr);
rsrc_ptr->dev_fun = readb(io_mem + addr + 1);
rsrc_ptr->start_addr = readl(io_mem + addr + 2);
rsrc_ptr->end_addr = readl(io_mem + addr + 6);
addr += 10;
debug("rsrc from mem or pfm ---\n");
debug("rsrc type: %x bus#: %x dev_func: %x start addr: %x end addr: %x\n",
rsrc_ptr->rsrc_type, rsrc_ptr->bus_num, rsrc_ptr->dev_fun, rsrc_ptr->start_addr, rsrc_ptr->end_addr);
list_add(&rsrc_ptr->ebda_pci_rsrc_list, &ibmphp_ebda_pci_rsrc_head);
}
}
kfree(rsrc_list_ptr);
rsrc_list_ptr = NULL;
print_ebda_pci_rsrc();
return 0;
}
u16 ibmphp_get_total_controllers(void)
{
return hpc_list_ptr->num_ctlrs;
}
struct slot *ibmphp_get_slot_from_physical_num(u8 physical_num)
{
struct slot *slot;
list_for_each_entry(slot, &ibmphp_slot_head, ibm_slot_list) {
if (slot->number == physical_num)
return slot;
}
return NULL;
}
/* To find:
* - the smallest slot number
* - the largest slot number
* - the total number of the slots based on each bus
* (if only one slot per bus slot_min = slot_max )
*/
struct bus_info *ibmphp_find_same_bus_num(u32 num)
{
struct bus_info *ptr;
list_for_each_entry(ptr, &bus_info_head, bus_info_list) {
if (ptr->busno == num)
return ptr;
}
return NULL;
}
/* Finding relative bus number, in order to map corresponding
* bus register
*/
int ibmphp_get_bus_index(u8 num)
{
struct bus_info *ptr;
list_for_each_entry(ptr, &bus_info_head, bus_info_list) {
if (ptr->busno == num)
return ptr->index;
}
return -ENODEV;
}
void ibmphp_free_bus_info_queue(void)
{
struct bus_info *bus_info, *next;
list_for_each_entry_safe(bus_info, next, &bus_info_head,
bus_info_list) {
kfree (bus_info);
}
}
void ibmphp_free_ebda_hpc_queue(void)
{
struct controller *controller = NULL, *next;
int pci_flag = 0;
list_for_each_entry_safe(controller, next, &ebda_hpc_head,
ebda_hpc_list) {
if (controller->ctlr_type == 0)
release_region(controller->u.isa_ctlr.io_start, (controller->u.isa_ctlr.io_end - controller->u.isa_ctlr.io_start + 1));
else if ((controller->ctlr_type == 1) && (!pci_flag)) {
++pci_flag;
pci_unregister_driver(&ibmphp_driver);
}
free_ebda_hpc(controller);
}
}
void ibmphp_free_ebda_pci_rsrc_queue(void)
{
struct ebda_pci_rsrc *resource, *next;
list_for_each_entry_safe(resource, next, &ibmphp_ebda_pci_rsrc_head,
ebda_pci_rsrc_list) {
kfree (resource);
resource = NULL;
}
}
static const struct pci_device_id id_table[] = {
{
.vendor = PCI_VENDOR_ID_IBM,
.device = HPC_DEVICE_ID,
.subvendor = PCI_VENDOR_ID_IBM,
.subdevice = HPC_SUBSYSTEM_ID,
.class = ((PCI_CLASS_SYSTEM_PCI_HOTPLUG << 8) | 0x00),
}, {}
};
MODULE_DEVICE_TABLE(pci, id_table);
static int ibmphp_probe(struct pci_dev *, const struct pci_device_id *);
static struct pci_driver ibmphp_driver = {
.name = "ibmphp",
.id_table = id_table,
.probe = ibmphp_probe,
};
int ibmphp_register_pci(void)
{
struct controller *ctrl;
int rc = 0;
list_for_each_entry(ctrl, &ebda_hpc_head, ebda_hpc_list) {
if (ctrl->ctlr_type == 1) {
rc = pci_register_driver(&ibmphp_driver);
break;
}
}
return rc;
}
static int ibmphp_probe(struct pci_dev *dev, const struct pci_device_id *ids)
{
struct controller *ctrl;
debug("inside ibmphp_probe\n");
list_for_each_entry(ctrl, &ebda_hpc_head, ebda_hpc_list) {
if (ctrl->ctlr_type == 1) {
if ((dev->devfn == ctrl->u.pci_ctlr.dev_fun) && (dev->bus->number == ctrl->u.pci_ctlr.bus)) {
ctrl->ctrl_dev = dev;
debug("found device!!!\n");
debug("dev->device = %x, dev->subsystem_device = %x\n", dev->device, dev->subsystem_device);
return 0;
}
}
}
return -ENODEV;
}