2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 03:33:58 +08:00
linux-next/include/asm-ia64/io.h
Bjorn Helgaas 9b50ffb0c0 [IA64] make ioremap avoid unsupported attributes
Example memory map (from HP sx1000 with VGA enabled):
    0x00000 - 0x9FFFF supports only WB (cacheable) access
    0xA0000 - 0xBFFFF supports only UC (uncacheable) access
    0xC0000 - 0xFFFFF supports only WB (cacheable) access

pci_read_rom() indirectly uses ioremap(0xC0000) to read the shadow VGA option
ROM.  ioremap() used to default to a 16MB or 64MB UC kernel identity mapping,
which would cause an MCA when reading 0xC0000 since only WB is supported there.

X uses reads the option ROM to initialize devices.  A smaller test case is:
  # echo 1 > /sys/bus/pci/devices/0000:aa:03.0/rom
  # cp /sys/bus/pci/devices/0000:aa:03.0/rom x

To avoid this, we can use the same ioremap_page_range() strategy that most
architectures use for all ioremaps.  These page table mappings come out of the
vmalloc area.  On ia64, these are in region 5 (0xA... addresses) and typically
use 16KB or 64KB mappings instead of 16MB or 64MB mappings.  The smaller
mappings give more flexibility to use the correct attributes.

Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
2007-03-30 09:37:41 -07:00

469 lines
12 KiB
C

#ifndef _ASM_IA64_IO_H
#define _ASM_IA64_IO_H
/*
* This file contains the definitions for the emulated IO instructions
* inb/inw/inl/outb/outw/outl and the "string versions" of the same
* (insb/insw/insl/outsb/outsw/outsl). You can also use "pausing"
* versions of the single-IO instructions (inb_p/inw_p/..).
*
* This file is not meant to be obfuscating: it's just complicated to
* (a) handle it all in a way that makes gcc able to optimize it as
* well as possible and (b) trying to avoid writing the same thing
* over and over again with slight variations and possibly making a
* mistake somewhere.
*
* Copyright (C) 1998-2003 Hewlett-Packard Co
* David Mosberger-Tang <davidm@hpl.hp.com>
* Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com>
* Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
*/
/* We don't use IO slowdowns on the ia64, but.. */
#define __SLOW_DOWN_IO do { } while (0)
#define SLOW_DOWN_IO do { } while (0)
#define __IA64_UNCACHED_OFFSET RGN_BASE(RGN_UNCACHED)
/*
* The legacy I/O space defined by the ia64 architecture supports only 65536 ports, but
* large machines may have multiple other I/O spaces so we can't place any a priori limit
* on IO_SPACE_LIMIT. These additional spaces are described in ACPI.
*/
#define IO_SPACE_LIMIT 0xffffffffffffffffUL
#define MAX_IO_SPACES_BITS 8
#define MAX_IO_SPACES (1UL << MAX_IO_SPACES_BITS)
#define IO_SPACE_BITS 24
#define IO_SPACE_SIZE (1UL << IO_SPACE_BITS)
#define IO_SPACE_NR(port) ((port) >> IO_SPACE_BITS)
#define IO_SPACE_BASE(space) ((space) << IO_SPACE_BITS)
#define IO_SPACE_PORT(port) ((port) & (IO_SPACE_SIZE - 1))
#define IO_SPACE_SPARSE_ENCODING(p) ((((p) >> 2) << 12) | ((p) & 0xfff))
struct io_space {
unsigned long mmio_base; /* base in MMIO space */
int sparse;
};
extern struct io_space io_space[];
extern unsigned int num_io_spaces;
# ifdef __KERNEL__
/*
* All MMIO iomem cookies are in region 6; anything less is a PIO cookie:
* 0xCxxxxxxxxxxxxxxx MMIO cookie (return from ioremap)
* 0x000000001SPPPPPP PIO cookie (S=space number, P..P=port)
*
* ioread/writeX() uses the leading 1 in PIO cookies (PIO_OFFSET) to catch
* code that uses bare port numbers without the prerequisite pci_iomap().
*/
#define PIO_OFFSET (1UL << (MAX_IO_SPACES_BITS + IO_SPACE_BITS))
#define PIO_MASK (PIO_OFFSET - 1)
#define PIO_RESERVED __IA64_UNCACHED_OFFSET
#define HAVE_ARCH_PIO_SIZE
#include <asm/intrinsics.h>
#include <asm/machvec.h>
#include <asm/page.h>
#include <asm/system.h>
#include <asm-generic/iomap.h>
/*
* Change virtual addresses to physical addresses and vv.
*/
static inline unsigned long
virt_to_phys (volatile void *address)
{
return (unsigned long) address - PAGE_OFFSET;
}
static inline void*
phys_to_virt (unsigned long address)
{
return (void *) (address + PAGE_OFFSET);
}
#define ARCH_HAS_VALID_PHYS_ADDR_RANGE
extern u64 kern_mem_attribute (unsigned long phys_addr, unsigned long size);
extern int valid_phys_addr_range (unsigned long addr, size_t count); /* efi.c */
extern int valid_mmap_phys_addr_range (unsigned long pfn, size_t count);
/*
* The following two macros are deprecated and scheduled for removal.
* Please use the PCI-DMA interface defined in <asm/pci.h> instead.
*/
#define bus_to_virt phys_to_virt
#define virt_to_bus virt_to_phys
#define page_to_bus page_to_phys
# endif /* KERNEL */
/*
* Memory fence w/accept. This should never be used in code that is
* not IA-64 specific.
*/
#define __ia64_mf_a() ia64_mfa()
/**
* ___ia64_mmiowb - I/O write barrier
*
* Ensure ordering of I/O space writes. This will make sure that writes
* following the barrier will arrive after all previous writes. For most
* ia64 platforms, this is a simple 'mf.a' instruction.
*
* See Documentation/DocBook/deviceiobook.tmpl for more information.
*/
static inline void ___ia64_mmiowb(void)
{
ia64_mfa();
}
static inline void*
__ia64_mk_io_addr (unsigned long port)
{
struct io_space *space;
unsigned long offset;
space = &io_space[IO_SPACE_NR(port)];
port = IO_SPACE_PORT(port);
if (space->sparse)
offset = IO_SPACE_SPARSE_ENCODING(port);
else
offset = port;
return (void *) (space->mmio_base | offset);
}
#define __ia64_inb ___ia64_inb
#define __ia64_inw ___ia64_inw
#define __ia64_inl ___ia64_inl
#define __ia64_outb ___ia64_outb
#define __ia64_outw ___ia64_outw
#define __ia64_outl ___ia64_outl
#define __ia64_readb ___ia64_readb
#define __ia64_readw ___ia64_readw
#define __ia64_readl ___ia64_readl
#define __ia64_readq ___ia64_readq
#define __ia64_readb_relaxed ___ia64_readb
#define __ia64_readw_relaxed ___ia64_readw
#define __ia64_readl_relaxed ___ia64_readl
#define __ia64_readq_relaxed ___ia64_readq
#define __ia64_writeb ___ia64_writeb
#define __ia64_writew ___ia64_writew
#define __ia64_writel ___ia64_writel
#define __ia64_writeq ___ia64_writeq
#define __ia64_mmiowb ___ia64_mmiowb
/*
* For the in/out routines, we need to do "mf.a" _after_ doing the I/O access to ensure
* that the access has completed before executing other I/O accesses. Since we're doing
* the accesses through an uncachable (UC) translation, the CPU will execute them in
* program order. However, we still need to tell the compiler not to shuffle them around
* during optimization, which is why we use "volatile" pointers.
*/
static inline unsigned int
___ia64_inb (unsigned long port)
{
volatile unsigned char *addr = __ia64_mk_io_addr(port);
unsigned char ret;
ret = *addr;
__ia64_mf_a();
return ret;
}
static inline unsigned int
___ia64_inw (unsigned long port)
{
volatile unsigned short *addr = __ia64_mk_io_addr(port);
unsigned short ret;
ret = *addr;
__ia64_mf_a();
return ret;
}
static inline unsigned int
___ia64_inl (unsigned long port)
{
volatile unsigned int *addr = __ia64_mk_io_addr(port);
unsigned int ret;
ret = *addr;
__ia64_mf_a();
return ret;
}
static inline void
___ia64_outb (unsigned char val, unsigned long port)
{
volatile unsigned char *addr = __ia64_mk_io_addr(port);
*addr = val;
__ia64_mf_a();
}
static inline void
___ia64_outw (unsigned short val, unsigned long port)
{
volatile unsigned short *addr = __ia64_mk_io_addr(port);
*addr = val;
__ia64_mf_a();
}
static inline void
___ia64_outl (unsigned int val, unsigned long port)
{
volatile unsigned int *addr = __ia64_mk_io_addr(port);
*addr = val;
__ia64_mf_a();
}
static inline void
__insb (unsigned long port, void *dst, unsigned long count)
{
unsigned char *dp = dst;
while (count--)
*dp++ = platform_inb(port);
}
static inline void
__insw (unsigned long port, void *dst, unsigned long count)
{
unsigned short *dp = dst;
while (count--)
*dp++ = platform_inw(port);
}
static inline void
__insl (unsigned long port, void *dst, unsigned long count)
{
unsigned int *dp = dst;
while (count--)
*dp++ = platform_inl(port);
}
static inline void
__outsb (unsigned long port, const void *src, unsigned long count)
{
const unsigned char *sp = src;
while (count--)
platform_outb(*sp++, port);
}
static inline void
__outsw (unsigned long port, const void *src, unsigned long count)
{
const unsigned short *sp = src;
while (count--)
platform_outw(*sp++, port);
}
static inline void
__outsl (unsigned long port, const void *src, unsigned long count)
{
const unsigned int *sp = src;
while (count--)
platform_outl(*sp++, port);
}
/*
* Unfortunately, some platforms are broken and do not follow the IA-64 architecture
* specification regarding legacy I/O support. Thus, we have to make these operations
* platform dependent...
*/
#define __inb platform_inb
#define __inw platform_inw
#define __inl platform_inl
#define __outb platform_outb
#define __outw platform_outw
#define __outl platform_outl
#define __mmiowb platform_mmiowb
#define inb(p) __inb(p)
#define inw(p) __inw(p)
#define inl(p) __inl(p)
#define insb(p,d,c) __insb(p,d,c)
#define insw(p,d,c) __insw(p,d,c)
#define insl(p,d,c) __insl(p,d,c)
#define outb(v,p) __outb(v,p)
#define outw(v,p) __outw(v,p)
#define outl(v,p) __outl(v,p)
#define outsb(p,s,c) __outsb(p,s,c)
#define outsw(p,s,c) __outsw(p,s,c)
#define outsl(p,s,c) __outsl(p,s,c)
#define mmiowb() __mmiowb()
/*
* The address passed to these functions are ioremap()ped already.
*
* We need these to be machine vectors since some platforms don't provide
* DMA coherence via PIO reads (PCI drivers and the spec imply that this is
* a good idea). Writes are ok though for all existing ia64 platforms (and
* hopefully it'll stay that way).
*/
static inline unsigned char
___ia64_readb (const volatile void __iomem *addr)
{
return *(volatile unsigned char __force *)addr;
}
static inline unsigned short
___ia64_readw (const volatile void __iomem *addr)
{
return *(volatile unsigned short __force *)addr;
}
static inline unsigned int
___ia64_readl (const volatile void __iomem *addr)
{
return *(volatile unsigned int __force *) addr;
}
static inline unsigned long
___ia64_readq (const volatile void __iomem *addr)
{
return *(volatile unsigned long __force *) addr;
}
static inline void
__writeb (unsigned char val, volatile void __iomem *addr)
{
*(volatile unsigned char __force *) addr = val;
}
static inline void
__writew (unsigned short val, volatile void __iomem *addr)
{
*(volatile unsigned short __force *) addr = val;
}
static inline void
__writel (unsigned int val, volatile void __iomem *addr)
{
*(volatile unsigned int __force *) addr = val;
}
static inline void
__writeq (unsigned long val, volatile void __iomem *addr)
{
*(volatile unsigned long __force *) addr = val;
}
#define __readb platform_readb
#define __readw platform_readw
#define __readl platform_readl
#define __readq platform_readq
#define __readb_relaxed platform_readb_relaxed
#define __readw_relaxed platform_readw_relaxed
#define __readl_relaxed platform_readl_relaxed
#define __readq_relaxed platform_readq_relaxed
#define readb(a) __readb((a))
#define readw(a) __readw((a))
#define readl(a) __readl((a))
#define readq(a) __readq((a))
#define readb_relaxed(a) __readb_relaxed((a))
#define readw_relaxed(a) __readw_relaxed((a))
#define readl_relaxed(a) __readl_relaxed((a))
#define readq_relaxed(a) __readq_relaxed((a))
#define __raw_readb readb
#define __raw_readw readw
#define __raw_readl readl
#define __raw_readq readq
#define __raw_readb_relaxed readb_relaxed
#define __raw_readw_relaxed readw_relaxed
#define __raw_readl_relaxed readl_relaxed
#define __raw_readq_relaxed readq_relaxed
#define writeb(v,a) __writeb((v), (a))
#define writew(v,a) __writew((v), (a))
#define writel(v,a) __writel((v), (a))
#define writeq(v,a) __writeq((v), (a))
#define __raw_writeb writeb
#define __raw_writew writew
#define __raw_writel writel
#define __raw_writeq writeq
#ifndef inb_p
# define inb_p inb
#endif
#ifndef inw_p
# define inw_p inw
#endif
#ifndef inl_p
# define inl_p inl
#endif
#ifndef outb_p
# define outb_p outb
#endif
#ifndef outw_p
# define outw_p outw
#endif
#ifndef outl_p
# define outl_p outl
#endif
# ifdef __KERNEL__
extern void __iomem * ioremap(unsigned long offset, unsigned long size);
extern void __iomem * ioremap_nocache (unsigned long offset, unsigned long size);
extern void iounmap (volatile void __iomem *addr);
/* Use normal IO mappings for DMI */
#define dmi_ioremap ioremap
#define dmi_iounmap(x,l) iounmap(x)
#define dmi_alloc(l) kmalloc(l, GFP_ATOMIC)
/*
* String version of IO memory access ops:
*/
extern void memcpy_fromio(void *dst, const volatile void __iomem *src, long n);
extern void memcpy_toio(volatile void __iomem *dst, const void *src, long n);
extern void memset_io(volatile void __iomem *s, int c, long n);
#define dma_cache_inv(_start,_size) do { } while (0)
#define dma_cache_wback(_start,_size) do { } while (0)
#define dma_cache_wback_inv(_start,_size) do { } while (0)
# endif /* __KERNEL__ */
/*
* Enabling BIO_VMERGE_BOUNDARY forces us to turn off I/O MMU bypassing. It is said that
* BIO-level virtual merging can give up to 4% performance boost (not verified for ia64).
* On the other hand, we know that I/O MMU bypassing gives ~8% performance improvement on
* SPECweb-like workloads on zx1-based machines. Thus, for now we favor I/O MMU bypassing
* over BIO-level virtual merging.
*/
extern unsigned long ia64_max_iommu_merge_mask;
#if 1
#define BIO_VMERGE_BOUNDARY 0
#else
/*
* It makes no sense at all to have this BIO_VMERGE_BOUNDARY macro here. Should be
* replaced by dma_merge_mask() or something of that sort. Note: the only way
* BIO_VMERGE_BOUNDARY is used is to mask off bits. Effectively, our definition gets
* expanded into:
*
* addr & ((ia64_max_iommu_merge_mask + 1) - 1) == (addr & ia64_max_iommu_vmerge_mask)
*
* which is precisely what we want.
*/
#define BIO_VMERGE_BOUNDARY (ia64_max_iommu_merge_mask + 1)
#endif
#endif /* _ASM_IA64_IO_H */