mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-11 07:04:04 +08:00
25519d6834
Move the x86 IMA arch code into security/integrity/ima/ima_efi.c, so that we will be able to wire it up for arm64 in a future patch. Co-developed-by: Chester Lin <clin@suse.com> Signed-off-by: Chester Lin <clin@suse.com> Acked-by: Mimi Zohar <zohar@linux.ibm.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
387 lines
12 KiB
C
387 lines
12 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _ASM_X86_EFI_H
|
|
#define _ASM_X86_EFI_H
|
|
|
|
#include <asm/fpu/api.h>
|
|
#include <asm/processor-flags.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/nospec-branch.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <linux/build_bug.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/pgtable.h>
|
|
|
|
extern unsigned long efi_fw_vendor, efi_config_table;
|
|
|
|
/*
|
|
* We map the EFI regions needed for runtime services non-contiguously,
|
|
* with preserved alignment on virtual addresses starting from -4G down
|
|
* for a total max space of 64G. This way, we provide for stable runtime
|
|
* services addresses across kernels so that a kexec'd kernel can still
|
|
* use them.
|
|
*
|
|
* This is the main reason why we're doing stable VA mappings for RT
|
|
* services.
|
|
*/
|
|
|
|
#define EFI32_LOADER_SIGNATURE "EL32"
|
|
#define EFI64_LOADER_SIGNATURE "EL64"
|
|
|
|
#define ARCH_EFI_IRQ_FLAGS_MASK X86_EFLAGS_IF
|
|
|
|
/*
|
|
* The EFI services are called through variadic functions in many cases. These
|
|
* functions are implemented in assembler and support only a fixed number of
|
|
* arguments. The macros below allows us to check at build time that we don't
|
|
* try to call them with too many arguments.
|
|
*
|
|
* __efi_nargs() will return the number of arguments if it is 7 or less, and
|
|
* cause a BUILD_BUG otherwise. The limitations of the C preprocessor make it
|
|
* impossible to calculate the exact number of arguments beyond some
|
|
* pre-defined limit. The maximum number of arguments currently supported by
|
|
* any of the thunks is 7, so this is good enough for now and can be extended
|
|
* in the obvious way if we ever need more.
|
|
*/
|
|
|
|
#define __efi_nargs(...) __efi_nargs_(__VA_ARGS__)
|
|
#define __efi_nargs_(...) __efi_nargs__(0, ##__VA_ARGS__, \
|
|
__efi_arg_sentinel(7), __efi_arg_sentinel(6), \
|
|
__efi_arg_sentinel(5), __efi_arg_sentinel(4), \
|
|
__efi_arg_sentinel(3), __efi_arg_sentinel(2), \
|
|
__efi_arg_sentinel(1), __efi_arg_sentinel(0))
|
|
#define __efi_nargs__(_0, _1, _2, _3, _4, _5, _6, _7, n, ...) \
|
|
__take_second_arg(n, \
|
|
({ BUILD_BUG_ON_MSG(1, "__efi_nargs limit exceeded"); 8; }))
|
|
#define __efi_arg_sentinel(n) , n
|
|
|
|
/*
|
|
* __efi_nargs_check(f, n, ...) will cause a BUILD_BUG if the ellipsis
|
|
* represents more than n arguments.
|
|
*/
|
|
|
|
#define __efi_nargs_check(f, n, ...) \
|
|
__efi_nargs_check_(f, __efi_nargs(__VA_ARGS__), n)
|
|
#define __efi_nargs_check_(f, p, n) __efi_nargs_check__(f, p, n)
|
|
#define __efi_nargs_check__(f, p, n) ({ \
|
|
BUILD_BUG_ON_MSG( \
|
|
(p) > (n), \
|
|
#f " called with too many arguments (" #p ">" #n ")"); \
|
|
})
|
|
|
|
#ifdef CONFIG_X86_32
|
|
#define arch_efi_call_virt_setup() \
|
|
({ \
|
|
kernel_fpu_begin(); \
|
|
firmware_restrict_branch_speculation_start(); \
|
|
})
|
|
|
|
#define arch_efi_call_virt_teardown() \
|
|
({ \
|
|
firmware_restrict_branch_speculation_end(); \
|
|
kernel_fpu_end(); \
|
|
})
|
|
|
|
#define arch_efi_call_virt(p, f, args...) p->f(args)
|
|
|
|
#else /* !CONFIG_X86_32 */
|
|
|
|
#define EFI_LOADER_SIGNATURE "EL64"
|
|
|
|
extern asmlinkage u64 __efi_call(void *fp, ...);
|
|
|
|
#define efi_call(...) ({ \
|
|
__efi_nargs_check(efi_call, 7, __VA_ARGS__); \
|
|
__efi_call(__VA_ARGS__); \
|
|
})
|
|
|
|
/*
|
|
* struct efi_scratch - Scratch space used while switching to/from efi_mm
|
|
* @phys_stack: stack used during EFI Mixed Mode
|
|
* @prev_mm: store/restore stolen mm_struct while switching to/from efi_mm
|
|
*/
|
|
struct efi_scratch {
|
|
u64 phys_stack;
|
|
struct mm_struct *prev_mm;
|
|
} __packed;
|
|
|
|
#define arch_efi_call_virt_setup() \
|
|
({ \
|
|
efi_sync_low_kernel_mappings(); \
|
|
kernel_fpu_begin(); \
|
|
firmware_restrict_branch_speculation_start(); \
|
|
efi_switch_mm(&efi_mm); \
|
|
})
|
|
|
|
#define arch_efi_call_virt(p, f, args...) \
|
|
efi_call((void *)p->f, args) \
|
|
|
|
#define arch_efi_call_virt_teardown() \
|
|
({ \
|
|
efi_switch_mm(efi_scratch.prev_mm); \
|
|
firmware_restrict_branch_speculation_end(); \
|
|
kernel_fpu_end(); \
|
|
})
|
|
|
|
#ifdef CONFIG_KASAN
|
|
/*
|
|
* CONFIG_KASAN may redefine memset to __memset. __memset function is present
|
|
* only in kernel binary. Since the EFI stub linked into a separate binary it
|
|
* doesn't have __memset(). So we should use standard memset from
|
|
* arch/x86/boot/compressed/string.c. The same applies to memcpy and memmove.
|
|
*/
|
|
#undef memcpy
|
|
#undef memset
|
|
#undef memmove
|
|
#endif
|
|
|
|
#endif /* CONFIG_X86_32 */
|
|
|
|
extern struct efi_scratch efi_scratch;
|
|
extern int __init efi_memblock_x86_reserve_range(void);
|
|
extern void __init efi_print_memmap(void);
|
|
extern void __init efi_map_region(efi_memory_desc_t *md);
|
|
extern void __init efi_map_region_fixed(efi_memory_desc_t *md);
|
|
extern void efi_sync_low_kernel_mappings(void);
|
|
extern int __init efi_alloc_page_tables(void);
|
|
extern int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages);
|
|
extern void __init efi_runtime_update_mappings(void);
|
|
extern void __init efi_dump_pagetable(void);
|
|
extern void __init efi_apply_memmap_quirks(void);
|
|
extern int __init efi_reuse_config(u64 tables, int nr_tables);
|
|
extern void efi_delete_dummy_variable(void);
|
|
extern void efi_switch_mm(struct mm_struct *mm);
|
|
extern void efi_recover_from_page_fault(unsigned long phys_addr);
|
|
extern void efi_free_boot_services(void);
|
|
|
|
/* kexec external ABI */
|
|
struct efi_setup_data {
|
|
u64 fw_vendor;
|
|
u64 __unused;
|
|
u64 tables;
|
|
u64 smbios;
|
|
u64 reserved[8];
|
|
};
|
|
|
|
extern u64 efi_setup;
|
|
|
|
#ifdef CONFIG_EFI
|
|
extern efi_status_t __efi64_thunk(u32, ...);
|
|
|
|
#define efi64_thunk(...) ({ \
|
|
__efi_nargs_check(efi64_thunk, 6, __VA_ARGS__); \
|
|
__efi64_thunk(__VA_ARGS__); \
|
|
})
|
|
|
|
static inline bool efi_is_mixed(void)
|
|
{
|
|
if (!IS_ENABLED(CONFIG_EFI_MIXED))
|
|
return false;
|
|
return IS_ENABLED(CONFIG_X86_64) && !efi_enabled(EFI_64BIT);
|
|
}
|
|
|
|
static inline bool efi_runtime_supported(void)
|
|
{
|
|
if (IS_ENABLED(CONFIG_X86_64) == efi_enabled(EFI_64BIT))
|
|
return true;
|
|
|
|
return IS_ENABLED(CONFIG_EFI_MIXED);
|
|
}
|
|
|
|
extern void parse_efi_setup(u64 phys_addr, u32 data_len);
|
|
|
|
extern void efifb_setup_from_dmi(struct screen_info *si, const char *opt);
|
|
|
|
extern void efi_thunk_runtime_setup(void);
|
|
efi_status_t efi_set_virtual_address_map(unsigned long memory_map_size,
|
|
unsigned long descriptor_size,
|
|
u32 descriptor_version,
|
|
efi_memory_desc_t *virtual_map,
|
|
unsigned long systab_phys);
|
|
|
|
/* arch specific definitions used by the stub code */
|
|
|
|
#ifdef CONFIG_EFI_MIXED
|
|
|
|
#define ARCH_HAS_EFISTUB_WRAPPERS
|
|
|
|
static inline bool efi_is_64bit(void)
|
|
{
|
|
extern const bool efi_is64;
|
|
|
|
return efi_is64;
|
|
}
|
|
|
|
static inline bool efi_is_native(void)
|
|
{
|
|
return efi_is_64bit();
|
|
}
|
|
|
|
#define efi_mixed_mode_cast(attr) \
|
|
__builtin_choose_expr( \
|
|
__builtin_types_compatible_p(u32, __typeof__(attr)), \
|
|
(unsigned long)(attr), (attr))
|
|
|
|
#define efi_table_attr(inst, attr) \
|
|
(efi_is_native() \
|
|
? inst->attr \
|
|
: (__typeof__(inst->attr)) \
|
|
efi_mixed_mode_cast(inst->mixed_mode.attr))
|
|
|
|
/*
|
|
* The following macros allow translating arguments if necessary from native to
|
|
* mixed mode. The use case for this is to initialize the upper 32 bits of
|
|
* output parameters, and where the 32-bit method requires a 64-bit argument,
|
|
* which must be split up into two arguments to be thunked properly.
|
|
*
|
|
* As examples, the AllocatePool boot service returns the address of the
|
|
* allocation, but it will not set the high 32 bits of the address. To ensure
|
|
* that the full 64-bit address is initialized, we zero-init the address before
|
|
* calling the thunk.
|
|
*
|
|
* The FreePages boot service takes a 64-bit physical address even in 32-bit
|
|
* mode. For the thunk to work correctly, a native 64-bit call of
|
|
* free_pages(addr, size)
|
|
* must be translated to
|
|
* efi64_thunk(free_pages, addr & U32_MAX, addr >> 32, size)
|
|
* so that the two 32-bit halves of addr get pushed onto the stack separately.
|
|
*/
|
|
|
|
static inline void *efi64_zero_upper(void *p)
|
|
{
|
|
((u32 *)p)[1] = 0;
|
|
return p;
|
|
}
|
|
|
|
static inline u32 efi64_convert_status(efi_status_t status)
|
|
{
|
|
return (u32)(status | (u64)status >> 32);
|
|
}
|
|
|
|
#define __efi64_argmap_free_pages(addr, size) \
|
|
((addr), 0, (size))
|
|
|
|
#define __efi64_argmap_get_memory_map(mm_size, mm, key, size, ver) \
|
|
((mm_size), (mm), efi64_zero_upper(key), efi64_zero_upper(size), (ver))
|
|
|
|
#define __efi64_argmap_allocate_pool(type, size, buffer) \
|
|
((type), (size), efi64_zero_upper(buffer))
|
|
|
|
#define __efi64_argmap_create_event(type, tpl, f, c, event) \
|
|
((type), (tpl), (f), (c), efi64_zero_upper(event))
|
|
|
|
#define __efi64_argmap_set_timer(event, type, time) \
|
|
((event), (type), lower_32_bits(time), upper_32_bits(time))
|
|
|
|
#define __efi64_argmap_wait_for_event(num, event, index) \
|
|
((num), (event), efi64_zero_upper(index))
|
|
|
|
#define __efi64_argmap_handle_protocol(handle, protocol, interface) \
|
|
((handle), (protocol), efi64_zero_upper(interface))
|
|
|
|
#define __efi64_argmap_locate_protocol(protocol, reg, interface) \
|
|
((protocol), (reg), efi64_zero_upper(interface))
|
|
|
|
#define __efi64_argmap_locate_device_path(protocol, path, handle) \
|
|
((protocol), (path), efi64_zero_upper(handle))
|
|
|
|
#define __efi64_argmap_exit(handle, status, size, data) \
|
|
((handle), efi64_convert_status(status), (size), (data))
|
|
|
|
/* PCI I/O */
|
|
#define __efi64_argmap_get_location(protocol, seg, bus, dev, func) \
|
|
((protocol), efi64_zero_upper(seg), efi64_zero_upper(bus), \
|
|
efi64_zero_upper(dev), efi64_zero_upper(func))
|
|
|
|
/* LoadFile */
|
|
#define __efi64_argmap_load_file(protocol, path, policy, bufsize, buf) \
|
|
((protocol), (path), (policy), efi64_zero_upper(bufsize), (buf))
|
|
|
|
/* Graphics Output Protocol */
|
|
#define __efi64_argmap_query_mode(gop, mode, size, info) \
|
|
((gop), (mode), efi64_zero_upper(size), efi64_zero_upper(info))
|
|
|
|
/*
|
|
* The macros below handle the plumbing for the argument mapping. To add a
|
|
* mapping for a specific EFI method, simply define a macro
|
|
* __efi64_argmap_<method name>, following the examples above.
|
|
*/
|
|
|
|
#define __efi64_thunk_map(inst, func, ...) \
|
|
efi64_thunk(inst->mixed_mode.func, \
|
|
__efi64_argmap(__efi64_argmap_ ## func(__VA_ARGS__), \
|
|
(__VA_ARGS__)))
|
|
|
|
#define __efi64_argmap(mapped, args) \
|
|
__PASTE(__efi64_argmap__, __efi_nargs(__efi_eat mapped))(mapped, args)
|
|
#define __efi64_argmap__0(mapped, args) __efi_eval mapped
|
|
#define __efi64_argmap__1(mapped, args) __efi_eval args
|
|
|
|
#define __efi_eat(...)
|
|
#define __efi_eval(...) __VA_ARGS__
|
|
|
|
/* The three macros below handle dispatching via the thunk if needed */
|
|
|
|
#define efi_call_proto(inst, func, ...) \
|
|
(efi_is_native() \
|
|
? inst->func(inst, ##__VA_ARGS__) \
|
|
: __efi64_thunk_map(inst, func, inst, ##__VA_ARGS__))
|
|
|
|
#define efi_bs_call(func, ...) \
|
|
(efi_is_native() \
|
|
? efi_system_table->boottime->func(__VA_ARGS__) \
|
|
: __efi64_thunk_map(efi_table_attr(efi_system_table, \
|
|
boottime), \
|
|
func, __VA_ARGS__))
|
|
|
|
#define efi_rt_call(func, ...) \
|
|
(efi_is_native() \
|
|
? efi_system_table->runtime->func(__VA_ARGS__) \
|
|
: __efi64_thunk_map(efi_table_attr(efi_system_table, \
|
|
runtime), \
|
|
func, __VA_ARGS__))
|
|
|
|
#else /* CONFIG_EFI_MIXED */
|
|
|
|
static inline bool efi_is_64bit(void)
|
|
{
|
|
return IS_ENABLED(CONFIG_X86_64);
|
|
}
|
|
|
|
#endif /* CONFIG_EFI_MIXED */
|
|
|
|
extern bool efi_reboot_required(void);
|
|
extern bool efi_is_table_address(unsigned long phys_addr);
|
|
|
|
extern void efi_find_mirror(void);
|
|
extern void efi_reserve_boot_services(void);
|
|
#else
|
|
static inline void parse_efi_setup(u64 phys_addr, u32 data_len) {}
|
|
static inline bool efi_reboot_required(void)
|
|
{
|
|
return false;
|
|
}
|
|
static inline bool efi_is_table_address(unsigned long phys_addr)
|
|
{
|
|
return false;
|
|
}
|
|
static inline void efi_find_mirror(void)
|
|
{
|
|
}
|
|
static inline void efi_reserve_boot_services(void)
|
|
{
|
|
}
|
|
#endif /* CONFIG_EFI */
|
|
|
|
#ifdef CONFIG_EFI_FAKE_MEMMAP
|
|
extern void __init efi_fake_memmap_early(void);
|
|
#else
|
|
static inline void efi_fake_memmap_early(void)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#define arch_ima_efi_boot_mode \
|
|
({ extern struct boot_params boot_params; boot_params.secure_boot; })
|
|
|
|
#endif /* _ASM_X86_EFI_H */
|