2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-07 13:13:57 +08:00
linux-next/include/asm-generic/pgtable.h
Linus Torvalds ed2d265d12 The following text was taken from the original review request:
"[RFC - PATCH 0/7] consolidation of BUG support code."
 		https://lkml.org/lkml/2012/1/26/525
 --
 
 The changes shown here are to unify linux's BUG support under
 the one <linux/bug.h> file.  Due to historical reasons, we have
 some BUG code in bug.h and some in kernel.h -- i.e. the support for
 BUILD_BUG in linux/kernel.h predates the addition of linux/bug.h,
 but old code in kernel.h wasn't moved to bug.h at that time.  As
 a band-aid, kernel.h was including <asm/bug.h> to pseudo link them.
 
 This has caused confusion[1] and general yuck/WTF[2] reactions.
 Here is an example that violates the principle of least surprise:
 
       CC      lib/string.o
       lib/string.c: In function 'strlcat':
       lib/string.c:225:2: error: implicit declaration of function 'BUILD_BUG_ON'
       make[2]: *** [lib/string.o] Error 1
       $
       $ grep linux/bug.h lib/string.c
       #include <linux/bug.h>
       $
 
 We've included <linux/bug.h> for the BUG infrastructure and yet we
 still get a compile fail!  [We've not kernel.h for BUILD_BUG_ON.]
 Ugh - very confusing for someone who is new to kernel development.
 
 With the above in mind, the goals of this changeset are:
 
 1) find and fix any include/*.h files that were relying on the
    implicit presence of BUG code.
 2) find and fix any C files that were consuming kernel.h and
    hence relying on implicitly getting some/all BUG code.
 3) Move the BUG related code living in kernel.h to <linux/bug.h>
 4) remove the asm/bug.h from kernel.h to finally break the chain.
 
 During development, the order was more like 3-4, build-test, 1-2.
 But to ensure that git history for bisect doesn't get needless
 build failures introduced, the commits have been reorderd to fix
 the problem areas in advance.
 
 [1]  https://lkml.org/lkml/2012/1/3/90
 [2]  https://lkml.org/lkml/2012/1/17/414
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1.4.11 (GNU/Linux)
 
 iQIcBAABAgAGBQJPbNwpAAoJEOvOhAQsB9HWrqYP/A0t9VB0nK6e42F0OR2P14MZ
 GJFtf1B++wwioIrx+KSWSRfSur1C5FKhDbxLR3I/pvkAYl4+T4JvRdMG6xJwxyip
 CC1kVQQNDjWVVqzjz2x6rYkOffx6dUlw/ERyIyk+OzP+1HzRIsIrugMqbzGLlX0X
 y0v2Tbd0G6xg1DV8lcRdp95eIzcGuUvdb2iY2LGadWZczEOeSXx64Jz3QCFxg3aL
 LFU4oovsg8Nb7MRJmqDvHK/oQf5vaTm9WSrS0pvVte0msSQRn8LStYdWC0G9BPCS
 GwL86h/eLXlUXQlC5GpgWg1QQt5i2QpjBFcVBIG0IT5SgEPMx+gXyiqZva2KwbHu
 LKicjKtfnzPitQnyEV/N6JyV1fb1U6/MsB7ebU5nCCzt9Gr7MYbjZ44peNeprAtu
 HMvJ/BNnRr4Ha6nPQNu952AdASPKkxmeXFUwBL1zUbLkOX/bK/vy1ujlcdkFxCD7
 fP3t7hghYa737IHk0ehUOhrE4H67hvxTSCKioLUAy/YeN1IcfH/iOQiCBQVLWmoS
 AqYV6ou9cqgdYoyila2UeAqegb+8xyubPIHt+lebcaKxs5aGsTg+r3vq5juMDAPs
 iwSVYUDcIw9dHer1lJfo7QCy3QUTRDTxh+LB9VlHXQICgeCK02sLBOi9hbEr4/H8
 Ko9g8J3BMxcMkXLHT9ud
 =PYQT
 -----END PGP SIGNATURE-----

Merge tag 'bug-for-3.4' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux

Pull <linux/bug.h> cleanup from Paul Gortmaker:
 "The changes shown here are to unify linux's BUG support under the one
  <linux/bug.h> file.  Due to historical reasons, we have some BUG code
  in bug.h and some in kernel.h -- i.e.  the support for BUILD_BUG in
  linux/kernel.h predates the addition of linux/bug.h, but old code in
  kernel.h wasn't moved to bug.h at that time.  As a band-aid, kernel.h
  was including <asm/bug.h> to pseudo link them.

  This has caused confusion[1] and general yuck/WTF[2] reactions.  Here
  is an example that violates the principle of least surprise:

      CC      lib/string.o
      lib/string.c: In function 'strlcat':
      lib/string.c:225:2: error: implicit declaration of function 'BUILD_BUG_ON'
      make[2]: *** [lib/string.o] Error 1
      $
      $ grep linux/bug.h lib/string.c
      #include <linux/bug.h>
      $

  We've included <linux/bug.h> for the BUG infrastructure and yet we
  still get a compile fail! [We've not kernel.h for BUILD_BUG_ON.] Ugh -
  very confusing for someone who is new to kernel development.

  With the above in mind, the goals of this changeset are:

  1) find and fix any include/*.h files that were relying on the
     implicit presence of BUG code.
  2) find and fix any C files that were consuming kernel.h and hence
     relying on implicitly getting some/all BUG code.
  3) Move the BUG related code living in kernel.h to <linux/bug.h>
  4) remove the asm/bug.h from kernel.h to finally break the chain.

  During development, the order was more like 3-4, build-test, 1-2.  But
  to ensure that git history for bisect doesn't get needless build
  failures introduced, the commits have been reorderd to fix the problem
  areas in advance.

	[1]  https://lkml.org/lkml/2012/1/3/90
	[2]  https://lkml.org/lkml/2012/1/17/414"

Fix up conflicts (new radeon file, reiserfs header cleanups) as per Paul
and linux-next.

* tag 'bug-for-3.4' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux:
  kernel.h: doesn't explicitly use bug.h, so don't include it.
  bug: consolidate BUILD_BUG_ON with other bug code
  BUG: headers with BUG/BUG_ON etc. need linux/bug.h
  bug.h: add include of it to various implicit C users
  lib: fix implicit users of kernel.h for TAINT_WARN
  spinlock: macroize assert_spin_locked to avoid bug.h dependency
  x86: relocate get/set debugreg fcns to include/asm/debugreg.
2012-03-24 10:08:39 -07:00

511 lines
14 KiB
C

#ifndef _ASM_GENERIC_PGTABLE_H
#define _ASM_GENERIC_PGTABLE_H
#ifndef __ASSEMBLY__
#ifdef CONFIG_MMU
#include <linux/mm_types.h>
#include <linux/bug.h>
#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
extern int ptep_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep,
pte_t entry, int dirty);
#endif
#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
extern int pmdp_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp,
pmd_t entry, int dirty);
#endif
#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
unsigned long address,
pte_t *ptep)
{
pte_t pte = *ptep;
int r = 1;
if (!pte_young(pte))
r = 0;
else
set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
return r;
}
#endif
#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
unsigned long address,
pmd_t *pmdp)
{
pmd_t pmd = *pmdp;
int r = 1;
if (!pmd_young(pmd))
r = 0;
else
set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
return r;
}
#else /* CONFIG_TRANSPARENT_HUGEPAGE */
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
unsigned long address,
pmd_t *pmdp)
{
BUG();
return 0;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#endif
#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
int ptep_clear_flush_young(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep);
#endif
#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
int pmdp_clear_flush_young(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp);
#endif
#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
unsigned long address,
pte_t *ptep)
{
pte_t pte = *ptep;
pte_clear(mm, address, ptep);
return pte;
}
#endif
#ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
unsigned long address,
pmd_t *pmdp)
{
pmd_t pmd = *pmdp;
pmd_clear(mm, address, pmdp);
return pmd;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#endif
#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
unsigned long address, pte_t *ptep,
int full)
{
pte_t pte;
pte = ptep_get_and_clear(mm, address, ptep);
return pte;
}
#endif
/*
* Some architectures may be able to avoid expensive synchronization
* primitives when modifications are made to PTE's which are already
* not present, or in the process of an address space destruction.
*/
#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
static inline void pte_clear_not_present_full(struct mm_struct *mm,
unsigned long address,
pte_t *ptep,
int full)
{
pte_clear(mm, address, ptep);
}
#endif
#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
unsigned long address,
pte_t *ptep);
#endif
#ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
unsigned long address,
pmd_t *pmdp);
#endif
#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
struct mm_struct;
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
{
pte_t old_pte = *ptep;
set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
}
#endif
#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
unsigned long address, pmd_t *pmdp)
{
pmd_t old_pmd = *pmdp;
set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
}
#else /* CONFIG_TRANSPARENT_HUGEPAGE */
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
unsigned long address, pmd_t *pmdp)
{
BUG();
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#endif
#ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
extern pmd_t pmdp_splitting_flush(struct vm_area_struct *vma,
unsigned long address,
pmd_t *pmdp);
#endif
#ifndef __HAVE_ARCH_PTE_SAME
static inline int pte_same(pte_t pte_a, pte_t pte_b)
{
return pte_val(pte_a) == pte_val(pte_b);
}
#endif
#ifndef __HAVE_ARCH_PMD_SAME
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
{
return pmd_val(pmd_a) == pmd_val(pmd_b);
}
#else /* CONFIG_TRANSPARENT_HUGEPAGE */
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
{
BUG();
return 0;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#endif
#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
#define page_test_and_clear_dirty(pfn, mapped) (0)
#endif
#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
#define pte_maybe_dirty(pte) pte_dirty(pte)
#else
#define pte_maybe_dirty(pte) (1)
#endif
#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
#define page_test_and_clear_young(pfn) (0)
#endif
#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
#endif
#ifndef __HAVE_ARCH_MOVE_PTE
#define move_pte(pte, prot, old_addr, new_addr) (pte)
#endif
#ifndef flush_tlb_fix_spurious_fault
#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
#endif
#ifndef pgprot_noncached
#define pgprot_noncached(prot) (prot)
#endif
#ifndef pgprot_writecombine
#define pgprot_writecombine pgprot_noncached
#endif
/*
* When walking page tables, get the address of the next boundary,
* or the end address of the range if that comes earlier. Although no
* vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
*/
#define pgd_addr_end(addr, end) \
({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
(__boundary - 1 < (end) - 1)? __boundary: (end); \
})
#ifndef pud_addr_end
#define pud_addr_end(addr, end) \
({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
(__boundary - 1 < (end) - 1)? __boundary: (end); \
})
#endif
#ifndef pmd_addr_end
#define pmd_addr_end(addr, end) \
({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
(__boundary - 1 < (end) - 1)? __boundary: (end); \
})
#endif
/*
* When walking page tables, we usually want to skip any p?d_none entries;
* and any p?d_bad entries - reporting the error before resetting to none.
* Do the tests inline, but report and clear the bad entry in mm/memory.c.
*/
void pgd_clear_bad(pgd_t *);
void pud_clear_bad(pud_t *);
void pmd_clear_bad(pmd_t *);
static inline int pgd_none_or_clear_bad(pgd_t *pgd)
{
if (pgd_none(*pgd))
return 1;
if (unlikely(pgd_bad(*pgd))) {
pgd_clear_bad(pgd);
return 1;
}
return 0;
}
static inline int pud_none_or_clear_bad(pud_t *pud)
{
if (pud_none(*pud))
return 1;
if (unlikely(pud_bad(*pud))) {
pud_clear_bad(pud);
return 1;
}
return 0;
}
static inline int pmd_none_or_clear_bad(pmd_t *pmd)
{
if (pmd_none(*pmd))
return 1;
if (unlikely(pmd_bad(*pmd))) {
pmd_clear_bad(pmd);
return 1;
}
return 0;
}
static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
unsigned long addr,
pte_t *ptep)
{
/*
* Get the current pte state, but zero it out to make it
* non-present, preventing the hardware from asynchronously
* updating it.
*/
return ptep_get_and_clear(mm, addr, ptep);
}
static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
unsigned long addr,
pte_t *ptep, pte_t pte)
{
/*
* The pte is non-present, so there's no hardware state to
* preserve.
*/
set_pte_at(mm, addr, ptep, pte);
}
#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
/*
* Start a pte protection read-modify-write transaction, which
* protects against asynchronous hardware modifications to the pte.
* The intention is not to prevent the hardware from making pte
* updates, but to prevent any updates it may make from being lost.
*
* This does not protect against other software modifications of the
* pte; the appropriate pte lock must be held over the transation.
*
* Note that this interface is intended to be batchable, meaning that
* ptep_modify_prot_commit may not actually update the pte, but merely
* queue the update to be done at some later time. The update must be
* actually committed before the pte lock is released, however.
*/
static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
unsigned long addr,
pte_t *ptep)
{
return __ptep_modify_prot_start(mm, addr, ptep);
}
/*
* Commit an update to a pte, leaving any hardware-controlled bits in
* the PTE unmodified.
*/
static inline void ptep_modify_prot_commit(struct mm_struct *mm,
unsigned long addr,
pte_t *ptep, pte_t pte)
{
__ptep_modify_prot_commit(mm, addr, ptep, pte);
}
#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
#endif /* CONFIG_MMU */
/*
* A facility to provide lazy MMU batching. This allows PTE updates and
* page invalidations to be delayed until a call to leave lazy MMU mode
* is issued. Some architectures may benefit from doing this, and it is
* beneficial for both shadow and direct mode hypervisors, which may batch
* the PTE updates which happen during this window. Note that using this
* interface requires that read hazards be removed from the code. A read
* hazard could result in the direct mode hypervisor case, since the actual
* write to the page tables may not yet have taken place, so reads though
* a raw PTE pointer after it has been modified are not guaranteed to be
* up to date. This mode can only be entered and left under the protection of
* the page table locks for all page tables which may be modified. In the UP
* case, this is required so that preemption is disabled, and in the SMP case,
* it must synchronize the delayed page table writes properly on other CPUs.
*/
#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
#define arch_enter_lazy_mmu_mode() do {} while (0)
#define arch_leave_lazy_mmu_mode() do {} while (0)
#define arch_flush_lazy_mmu_mode() do {} while (0)
#endif
/*
* A facility to provide batching of the reload of page tables and
* other process state with the actual context switch code for
* paravirtualized guests. By convention, only one of the batched
* update (lazy) modes (CPU, MMU) should be active at any given time,
* entry should never be nested, and entry and exits should always be
* paired. This is for sanity of maintaining and reasoning about the
* kernel code. In this case, the exit (end of the context switch) is
* in architecture-specific code, and so doesn't need a generic
* definition.
*/
#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
#define arch_start_context_switch(prev) do {} while (0)
#endif
#ifndef __HAVE_PFNMAP_TRACKING
/*
* Interface that can be used by architecture code to keep track of
* memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
*
* track_pfn_vma_new is called when a _new_ pfn mapping is being established
* for physical range indicated by pfn and size.
*/
static inline int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
unsigned long pfn, unsigned long size)
{
return 0;
}
/*
* Interface that can be used by architecture code to keep track of
* memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
*
* track_pfn_vma_copy is called when vma that is covering the pfnmap gets
* copied through copy_page_range().
*/
static inline int track_pfn_vma_copy(struct vm_area_struct *vma)
{
return 0;
}
/*
* Interface that can be used by architecture code to keep track of
* memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
*
* untrack_pfn_vma is called while unmapping a pfnmap for a region.
* untrack can be called for a specific region indicated by pfn and size or
* can be for the entire vma (in which case size can be zero).
*/
static inline void untrack_pfn_vma(struct vm_area_struct *vma,
unsigned long pfn, unsigned long size)
{
}
#else
extern int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
unsigned long pfn, unsigned long size);
extern int track_pfn_vma_copy(struct vm_area_struct *vma);
extern void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
unsigned long size);
#endif
#ifdef CONFIG_MMU
#ifndef CONFIG_TRANSPARENT_HUGEPAGE
static inline int pmd_trans_huge(pmd_t pmd)
{
return 0;
}
static inline int pmd_trans_splitting(pmd_t pmd)
{
return 0;
}
#ifndef __HAVE_ARCH_PMD_WRITE
static inline int pmd_write(pmd_t pmd)
{
BUG();
return 0;
}
#endif /* __HAVE_ARCH_PMD_WRITE */
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
/*
* This function is meant to be used by sites walking pagetables with
* the mmap_sem hold in read mode to protect against MADV_DONTNEED and
* transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
* into a null pmd and the transhuge page fault can convert a null pmd
* into an hugepmd or into a regular pmd (if the hugepage allocation
* fails). While holding the mmap_sem in read mode the pmd becomes
* stable and stops changing under us only if it's not null and not a
* transhuge pmd. When those races occurs and this function makes a
* difference vs the standard pmd_none_or_clear_bad, the result is
* undefined so behaving like if the pmd was none is safe (because it
* can return none anyway). The compiler level barrier() is critically
* important to compute the two checks atomically on the same pmdval.
*/
static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
{
/* depend on compiler for an atomic pmd read */
pmd_t pmdval = *pmd;
/*
* The barrier will stabilize the pmdval in a register or on
* the stack so that it will stop changing under the code.
*/
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
barrier();
#endif
if (pmd_none(pmdval))
return 1;
if (unlikely(pmd_bad(pmdval))) {
if (!pmd_trans_huge(pmdval))
pmd_clear_bad(pmd);
return 1;
}
return 0;
}
/*
* This is a noop if Transparent Hugepage Support is not built into
* the kernel. Otherwise it is equivalent to
* pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
* places that already verified the pmd is not none and they want to
* walk ptes while holding the mmap sem in read mode (write mode don't
* need this). If THP is not enabled, the pmd can't go away under the
* code even if MADV_DONTNEED runs, but if THP is enabled we need to
* run a pmd_trans_unstable before walking the ptes after
* split_huge_page_pmd returns (because it may have run when the pmd
* become null, but then a page fault can map in a THP and not a
* regular page).
*/
static inline int pmd_trans_unstable(pmd_t *pmd)
{
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
return pmd_none_or_trans_huge_or_clear_bad(pmd);
#else
return 0;
#endif
}
#endif /* CONFIG_MMU */
#endif /* !__ASSEMBLY__ */
#endif /* _ASM_GENERIC_PGTABLE_H */