2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-06 04:33:58 +08:00
linux-next/mm/slob.c
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00

662 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* SLOB Allocator: Simple List Of Blocks
*
* Matt Mackall <mpm@selenic.com> 12/30/03
*
* NUMA support by Paul Mundt, 2007.
*
* How SLOB works:
*
* The core of SLOB is a traditional K&R style heap allocator, with
* support for returning aligned objects. The granularity of this
* allocator is as little as 2 bytes, however typically most architectures
* will require 4 bytes on 32-bit and 8 bytes on 64-bit.
*
* The slob heap is a set of linked list of pages from alloc_pages(),
* and within each page, there is a singly-linked list of free blocks
* (slob_t). The heap is grown on demand. To reduce fragmentation,
* heap pages are segregated into three lists, with objects less than
* 256 bytes, objects less than 1024 bytes, and all other objects.
*
* Allocation from heap involves first searching for a page with
* sufficient free blocks (using a next-fit-like approach) followed by
* a first-fit scan of the page. Deallocation inserts objects back
* into the free list in address order, so this is effectively an
* address-ordered first fit.
*
* Above this is an implementation of kmalloc/kfree. Blocks returned
* from kmalloc are prepended with a 4-byte header with the kmalloc size.
* If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
* alloc_pages() directly, allocating compound pages so the page order
* does not have to be separately tracked.
* These objects are detected in kfree() because PageSlab()
* is false for them.
*
* SLAB is emulated on top of SLOB by simply calling constructors and
* destructors for every SLAB allocation. Objects are returned with the
* 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
* case the low-level allocator will fragment blocks to create the proper
* alignment. Again, objects of page-size or greater are allocated by
* calling alloc_pages(). As SLAB objects know their size, no separate
* size bookkeeping is necessary and there is essentially no allocation
* space overhead, and compound pages aren't needed for multi-page
* allocations.
*
* NUMA support in SLOB is fairly simplistic, pushing most of the real
* logic down to the page allocator, and simply doing the node accounting
* on the upper levels. In the event that a node id is explicitly
* provided, __alloc_pages_node() with the specified node id is used
* instead. The common case (or when the node id isn't explicitly provided)
* will default to the current node, as per numa_node_id().
*
* Node aware pages are still inserted in to the global freelist, and
* these are scanned for by matching against the node id encoded in the
* page flags. As a result, block allocations that can be satisfied from
* the freelist will only be done so on pages residing on the same node,
* in order to prevent random node placement.
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/swap.h> /* struct reclaim_state */
#include <linux/cache.h>
#include <linux/init.h>
#include <linux/export.h>
#include <linux/rcupdate.h>
#include <linux/list.h>
#include <linux/kmemleak.h>
#include <trace/events/kmem.h>
#include <linux/atomic.h>
#include "slab.h"
/*
* slob_block has a field 'units', which indicates size of block if +ve,
* or offset of next block if -ve (in SLOB_UNITs).
*
* Free blocks of size 1 unit simply contain the offset of the next block.
* Those with larger size contain their size in the first SLOB_UNIT of
* memory, and the offset of the next free block in the second SLOB_UNIT.
*/
#if PAGE_SIZE <= (32767 * 2)
typedef s16 slobidx_t;
#else
typedef s32 slobidx_t;
#endif
struct slob_block {
slobidx_t units;
};
typedef struct slob_block slob_t;
/*
* All partially free slob pages go on these lists.
*/
#define SLOB_BREAK1 256
#define SLOB_BREAK2 1024
static LIST_HEAD(free_slob_small);
static LIST_HEAD(free_slob_medium);
static LIST_HEAD(free_slob_large);
/*
* slob_page_free: true for pages on free_slob_pages list.
*/
static inline int slob_page_free(struct page *sp)
{
return PageSlobFree(sp);
}
static void set_slob_page_free(struct page *sp, struct list_head *list)
{
list_add(&sp->lru, list);
__SetPageSlobFree(sp);
}
static inline void clear_slob_page_free(struct page *sp)
{
list_del(&sp->lru);
__ClearPageSlobFree(sp);
}
#define SLOB_UNIT sizeof(slob_t)
#define SLOB_UNITS(size) DIV_ROUND_UP(size, SLOB_UNIT)
/*
* struct slob_rcu is inserted at the tail of allocated slob blocks, which
* were created with a SLAB_TYPESAFE_BY_RCU slab. slob_rcu is used to free
* the block using call_rcu.
*/
struct slob_rcu {
struct rcu_head head;
int size;
};
/*
* slob_lock protects all slob allocator structures.
*/
static DEFINE_SPINLOCK(slob_lock);
/*
* Encode the given size and next info into a free slob block s.
*/
static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
{
slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
slobidx_t offset = next - base;
if (size > 1) {
s[0].units = size;
s[1].units = offset;
} else
s[0].units = -offset;
}
/*
* Return the size of a slob block.
*/
static slobidx_t slob_units(slob_t *s)
{
if (s->units > 0)
return s->units;
return 1;
}
/*
* Return the next free slob block pointer after this one.
*/
static slob_t *slob_next(slob_t *s)
{
slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
slobidx_t next;
if (s[0].units < 0)
next = -s[0].units;
else
next = s[1].units;
return base+next;
}
/*
* Returns true if s is the last free block in its page.
*/
static int slob_last(slob_t *s)
{
return !((unsigned long)slob_next(s) & ~PAGE_MASK);
}
static void *slob_new_pages(gfp_t gfp, int order, int node)
{
void *page;
#ifdef CONFIG_NUMA
if (node != NUMA_NO_NODE)
page = __alloc_pages_node(node, gfp, order);
else
#endif
page = alloc_pages(gfp, order);
if (!page)
return NULL;
return page_address(page);
}
static void slob_free_pages(void *b, int order)
{
if (current->reclaim_state)
current->reclaim_state->reclaimed_slab += 1 << order;
free_pages((unsigned long)b, order);
}
/*
* Allocate a slob block within a given slob_page sp.
*/
static void *slob_page_alloc(struct page *sp, size_t size, int align)
{
slob_t *prev, *cur, *aligned = NULL;
int delta = 0, units = SLOB_UNITS(size);
for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) {
slobidx_t avail = slob_units(cur);
if (align) {
aligned = (slob_t *)ALIGN((unsigned long)cur, align);
delta = aligned - cur;
}
if (avail >= units + delta) { /* room enough? */
slob_t *next;
if (delta) { /* need to fragment head to align? */
next = slob_next(cur);
set_slob(aligned, avail - delta, next);
set_slob(cur, delta, aligned);
prev = cur;
cur = aligned;
avail = slob_units(cur);
}
next = slob_next(cur);
if (avail == units) { /* exact fit? unlink. */
if (prev)
set_slob(prev, slob_units(prev), next);
else
sp->freelist = next;
} else { /* fragment */
if (prev)
set_slob(prev, slob_units(prev), cur + units);
else
sp->freelist = cur + units;
set_slob(cur + units, avail - units, next);
}
sp->units -= units;
if (!sp->units)
clear_slob_page_free(sp);
return cur;
}
if (slob_last(cur))
return NULL;
}
}
/*
* slob_alloc: entry point into the slob allocator.
*/
static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
{
struct page *sp;
struct list_head *prev;
struct list_head *slob_list;
slob_t *b = NULL;
unsigned long flags;
if (size < SLOB_BREAK1)
slob_list = &free_slob_small;
else if (size < SLOB_BREAK2)
slob_list = &free_slob_medium;
else
slob_list = &free_slob_large;
spin_lock_irqsave(&slob_lock, flags);
/* Iterate through each partially free page, try to find room */
list_for_each_entry(sp, slob_list, lru) {
#ifdef CONFIG_NUMA
/*
* If there's a node specification, search for a partial
* page with a matching node id in the freelist.
*/
if (node != NUMA_NO_NODE && page_to_nid(sp) != node)
continue;
#endif
/* Enough room on this page? */
if (sp->units < SLOB_UNITS(size))
continue;
/* Attempt to alloc */
prev = sp->lru.prev;
b = slob_page_alloc(sp, size, align);
if (!b)
continue;
/* Improve fragment distribution and reduce our average
* search time by starting our next search here. (see
* Knuth vol 1, sec 2.5, pg 449) */
if (prev != slob_list->prev &&
slob_list->next != prev->next)
list_move_tail(slob_list, prev->next);
break;
}
spin_unlock_irqrestore(&slob_lock, flags);
/* Not enough space: must allocate a new page */
if (!b) {
b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
if (!b)
return NULL;
sp = virt_to_page(b);
__SetPageSlab(sp);
spin_lock_irqsave(&slob_lock, flags);
sp->units = SLOB_UNITS(PAGE_SIZE);
sp->freelist = b;
INIT_LIST_HEAD(&sp->lru);
set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
set_slob_page_free(sp, slob_list);
b = slob_page_alloc(sp, size, align);
BUG_ON(!b);
spin_unlock_irqrestore(&slob_lock, flags);
}
if (unlikely((gfp & __GFP_ZERO) && b))
memset(b, 0, size);
return b;
}
/*
* slob_free: entry point into the slob allocator.
*/
static void slob_free(void *block, int size)
{
struct page *sp;
slob_t *prev, *next, *b = (slob_t *)block;
slobidx_t units;
unsigned long flags;
struct list_head *slob_list;
if (unlikely(ZERO_OR_NULL_PTR(block)))
return;
BUG_ON(!size);
sp = virt_to_page(block);
units = SLOB_UNITS(size);
spin_lock_irqsave(&slob_lock, flags);
if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
/* Go directly to page allocator. Do not pass slob allocator */
if (slob_page_free(sp))
clear_slob_page_free(sp);
spin_unlock_irqrestore(&slob_lock, flags);
__ClearPageSlab(sp);
page_mapcount_reset(sp);
slob_free_pages(b, 0);
return;
}
if (!slob_page_free(sp)) {
/* This slob page is about to become partially free. Easy! */
sp->units = units;
sp->freelist = b;
set_slob(b, units,
(void *)((unsigned long)(b +
SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
if (size < SLOB_BREAK1)
slob_list = &free_slob_small;
else if (size < SLOB_BREAK2)
slob_list = &free_slob_medium;
else
slob_list = &free_slob_large;
set_slob_page_free(sp, slob_list);
goto out;
}
/*
* Otherwise the page is already partially free, so find reinsertion
* point.
*/
sp->units += units;
if (b < (slob_t *)sp->freelist) {
if (b + units == sp->freelist) {
units += slob_units(sp->freelist);
sp->freelist = slob_next(sp->freelist);
}
set_slob(b, units, sp->freelist);
sp->freelist = b;
} else {
prev = sp->freelist;
next = slob_next(prev);
while (b > next) {
prev = next;
next = slob_next(prev);
}
if (!slob_last(prev) && b + units == next) {
units += slob_units(next);
set_slob(b, units, slob_next(next));
} else
set_slob(b, units, next);
if (prev + slob_units(prev) == b) {
units = slob_units(b) + slob_units(prev);
set_slob(prev, units, slob_next(b));
} else
set_slob(prev, slob_units(prev), b);
}
out:
spin_unlock_irqrestore(&slob_lock, flags);
}
/*
* End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
*/
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t gfp, int node, unsigned long caller)
{
unsigned int *m;
int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
void *ret;
gfp &= gfp_allowed_mask;
fs_reclaim_acquire(gfp);
fs_reclaim_release(gfp);
if (size < PAGE_SIZE - align) {
if (!size)
return ZERO_SIZE_PTR;
m = slob_alloc(size + align, gfp, align, node);
if (!m)
return NULL;
*m = size;
ret = (void *)m + align;
trace_kmalloc_node(caller, ret,
size, size + align, gfp, node);
} else {
unsigned int order = get_order(size);
if (likely(order))
gfp |= __GFP_COMP;
ret = slob_new_pages(gfp, order, node);
trace_kmalloc_node(caller, ret,
size, PAGE_SIZE << order, gfp, node);
}
kmemleak_alloc(ret, size, 1, gfp);
return ret;
}
void *__kmalloc(size_t size, gfp_t gfp)
{
return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, _RET_IP_);
}
EXPORT_SYMBOL(__kmalloc);
void *__kmalloc_track_caller(size_t size, gfp_t gfp, unsigned long caller)
{
return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, caller);
}
#ifdef CONFIG_NUMA
void *__kmalloc_node_track_caller(size_t size, gfp_t gfp,
int node, unsigned long caller)
{
return __do_kmalloc_node(size, gfp, node, caller);
}
#endif
void kfree(const void *block)
{
struct page *sp;
trace_kfree(_RET_IP_, block);
if (unlikely(ZERO_OR_NULL_PTR(block)))
return;
kmemleak_free(block);
sp = virt_to_page(block);
if (PageSlab(sp)) {
int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
unsigned int *m = (unsigned int *)(block - align);
slob_free(m, *m + align);
} else
__free_pages(sp, compound_order(sp));
}
EXPORT_SYMBOL(kfree);
/* can't use ksize for kmem_cache_alloc memory, only kmalloc */
size_t ksize(const void *block)
{
struct page *sp;
int align;
unsigned int *m;
BUG_ON(!block);
if (unlikely(block == ZERO_SIZE_PTR))
return 0;
sp = virt_to_page(block);
if (unlikely(!PageSlab(sp)))
return PAGE_SIZE << compound_order(sp);
align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
m = (unsigned int *)(block - align);
return SLOB_UNITS(*m) * SLOB_UNIT;
}
EXPORT_SYMBOL(ksize);
int __kmem_cache_create(struct kmem_cache *c, unsigned long flags)
{
if (flags & SLAB_TYPESAFE_BY_RCU) {
/* leave room for rcu footer at the end of object */
c->size += sizeof(struct slob_rcu);
}
c->flags = flags;
return 0;
}
static void *slob_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
{
void *b;
flags &= gfp_allowed_mask;
fs_reclaim_acquire(flags);
fs_reclaim_release(flags);
if (c->size < PAGE_SIZE) {
b = slob_alloc(c->size, flags, c->align, node);
trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
SLOB_UNITS(c->size) * SLOB_UNIT,
flags, node);
} else {
b = slob_new_pages(flags, get_order(c->size), node);
trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
PAGE_SIZE << get_order(c->size),
flags, node);
}
if (b && c->ctor)
c->ctor(b);
kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
return b;
}
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
return slob_alloc_node(cachep, flags, NUMA_NO_NODE);
}
EXPORT_SYMBOL(kmem_cache_alloc);
#ifdef CONFIG_NUMA
void *__kmalloc_node(size_t size, gfp_t gfp, int node)
{
return __do_kmalloc_node(size, gfp, node, _RET_IP_);
}
EXPORT_SYMBOL(__kmalloc_node);
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t gfp, int node)
{
return slob_alloc_node(cachep, gfp, node);
}
EXPORT_SYMBOL(kmem_cache_alloc_node);
#endif
static void __kmem_cache_free(void *b, int size)
{
if (size < PAGE_SIZE)
slob_free(b, size);
else
slob_free_pages(b, get_order(size));
}
static void kmem_rcu_free(struct rcu_head *head)
{
struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
__kmem_cache_free(b, slob_rcu->size);
}
void kmem_cache_free(struct kmem_cache *c, void *b)
{
kmemleak_free_recursive(b, c->flags);
if (unlikely(c->flags & SLAB_TYPESAFE_BY_RCU)) {
struct slob_rcu *slob_rcu;
slob_rcu = b + (c->size - sizeof(struct slob_rcu));
slob_rcu->size = c->size;
call_rcu(&slob_rcu->head, kmem_rcu_free);
} else {
__kmem_cache_free(b, c->size);
}
trace_kmem_cache_free(_RET_IP_, b);
}
EXPORT_SYMBOL(kmem_cache_free);
void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
{
__kmem_cache_free_bulk(s, size, p);
}
EXPORT_SYMBOL(kmem_cache_free_bulk);
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
void **p)
{
return __kmem_cache_alloc_bulk(s, flags, size, p);
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);
int __kmem_cache_shutdown(struct kmem_cache *c)
{
/* No way to check for remaining objects */
return 0;
}
void __kmem_cache_release(struct kmem_cache *c)
{
}
int __kmem_cache_shrink(struct kmem_cache *d)
{
return 0;
}
struct kmem_cache kmem_cache_boot = {
.name = "kmem_cache",
.size = sizeof(struct kmem_cache),
.flags = SLAB_PANIC,
.align = ARCH_KMALLOC_MINALIGN,
};
void __init kmem_cache_init(void)
{
kmem_cache = &kmem_cache_boot;
slab_state = UP;
}
void __init kmem_cache_init_late(void)
{
slab_state = FULL;
}