mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-10 22:54:11 +08:00
246cbfb5fb
This patch consolidates the way in which we handle the various supported PPGTT by module parameter in addition to what the hardware supports. It strives to make doing the right thing in the code as simple as possible, with the USES_ macros. I've opted to add the full PPGTT argument simply so one can see how I intend to use this function. It will not/cannot be used until later. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
1771 lines
49 KiB
C
1771 lines
49 KiB
C
/*
|
|
* Copyright © 2010 Daniel Vetter
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include <drm/drmP.h>
|
|
#include <drm/i915_drm.h>
|
|
#include "i915_drv.h"
|
|
#include "i915_trace.h"
|
|
#include "intel_drv.h"
|
|
|
|
#define GEN6_PPGTT_PD_ENTRIES 512
|
|
#define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
|
|
typedef uint64_t gen8_gtt_pte_t;
|
|
typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
|
|
|
|
/* PPGTT stuff */
|
|
#define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
|
|
#define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
|
|
|
|
#define GEN6_PDE_VALID (1 << 0)
|
|
/* gen6+ has bit 11-4 for physical addr bit 39-32 */
|
|
#define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
|
|
|
|
#define GEN6_PTE_VALID (1 << 0)
|
|
#define GEN6_PTE_UNCACHED (1 << 1)
|
|
#define HSW_PTE_UNCACHED (0)
|
|
#define GEN6_PTE_CACHE_LLC (2 << 1)
|
|
#define GEN7_PTE_CACHE_L3_LLC (3 << 1)
|
|
#define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
|
|
#define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
|
|
|
|
/* Cacheability Control is a 4-bit value. The low three bits are stored in *
|
|
* bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
|
|
*/
|
|
#define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
|
|
(((bits) & 0x8) << (11 - 3)))
|
|
#define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
|
|
#define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
|
|
#define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
|
|
#define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
|
|
|
|
#define GEN8_PTES_PER_PAGE (PAGE_SIZE / sizeof(gen8_gtt_pte_t))
|
|
#define GEN8_PDES_PER_PAGE (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
|
|
#define GEN8_LEGACY_PDPS 4
|
|
|
|
#define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
|
|
#define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
|
|
#define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
|
|
#define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
|
|
|
|
static void ppgtt_bind_vma(struct i915_vma *vma,
|
|
enum i915_cache_level cache_level,
|
|
u32 flags);
|
|
static void ppgtt_unbind_vma(struct i915_vma *vma);
|
|
static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt);
|
|
|
|
static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
|
|
enum i915_cache_level level,
|
|
bool valid)
|
|
{
|
|
gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
|
|
pte |= addr;
|
|
if (level != I915_CACHE_NONE)
|
|
pte |= PPAT_CACHED_INDEX;
|
|
else
|
|
pte |= PPAT_UNCACHED_INDEX;
|
|
return pte;
|
|
}
|
|
|
|
static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
|
|
dma_addr_t addr,
|
|
enum i915_cache_level level)
|
|
{
|
|
gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
|
|
pde |= addr;
|
|
if (level != I915_CACHE_NONE)
|
|
pde |= PPAT_CACHED_PDE_INDEX;
|
|
else
|
|
pde |= PPAT_UNCACHED_INDEX;
|
|
return pde;
|
|
}
|
|
|
|
static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
|
|
enum i915_cache_level level,
|
|
bool valid)
|
|
{
|
|
gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
|
|
pte |= GEN6_PTE_ADDR_ENCODE(addr);
|
|
|
|
switch (level) {
|
|
case I915_CACHE_L3_LLC:
|
|
case I915_CACHE_LLC:
|
|
pte |= GEN6_PTE_CACHE_LLC;
|
|
break;
|
|
case I915_CACHE_NONE:
|
|
pte |= GEN6_PTE_UNCACHED;
|
|
break;
|
|
default:
|
|
WARN_ON(1);
|
|
}
|
|
|
|
return pte;
|
|
}
|
|
|
|
static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
|
|
enum i915_cache_level level,
|
|
bool valid)
|
|
{
|
|
gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
|
|
pte |= GEN6_PTE_ADDR_ENCODE(addr);
|
|
|
|
switch (level) {
|
|
case I915_CACHE_L3_LLC:
|
|
pte |= GEN7_PTE_CACHE_L3_LLC;
|
|
break;
|
|
case I915_CACHE_LLC:
|
|
pte |= GEN6_PTE_CACHE_LLC;
|
|
break;
|
|
case I915_CACHE_NONE:
|
|
pte |= GEN6_PTE_UNCACHED;
|
|
break;
|
|
default:
|
|
WARN_ON(1);
|
|
}
|
|
|
|
return pte;
|
|
}
|
|
|
|
#define BYT_PTE_WRITEABLE (1 << 1)
|
|
#define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
|
|
|
|
static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
|
|
enum i915_cache_level level,
|
|
bool valid)
|
|
{
|
|
gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
|
|
pte |= GEN6_PTE_ADDR_ENCODE(addr);
|
|
|
|
/* Mark the page as writeable. Other platforms don't have a
|
|
* setting for read-only/writable, so this matches that behavior.
|
|
*/
|
|
pte |= BYT_PTE_WRITEABLE;
|
|
|
|
if (level != I915_CACHE_NONE)
|
|
pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
|
|
|
|
return pte;
|
|
}
|
|
|
|
static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
|
|
enum i915_cache_level level,
|
|
bool valid)
|
|
{
|
|
gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
|
|
pte |= HSW_PTE_ADDR_ENCODE(addr);
|
|
|
|
if (level != I915_CACHE_NONE)
|
|
pte |= HSW_WB_LLC_AGE3;
|
|
|
|
return pte;
|
|
}
|
|
|
|
static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
|
|
enum i915_cache_level level,
|
|
bool valid)
|
|
{
|
|
gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
|
|
pte |= HSW_PTE_ADDR_ENCODE(addr);
|
|
|
|
switch (level) {
|
|
case I915_CACHE_NONE:
|
|
break;
|
|
case I915_CACHE_WT:
|
|
pte |= HSW_WT_ELLC_LLC_AGE0;
|
|
break;
|
|
default:
|
|
pte |= HSW_WB_ELLC_LLC_AGE0;
|
|
break;
|
|
}
|
|
|
|
return pte;
|
|
}
|
|
|
|
/* Broadwell Page Directory Pointer Descriptors */
|
|
static int gen8_write_pdp(struct intel_ring_buffer *ring, unsigned entry,
|
|
uint64_t val, bool synchronous)
|
|
{
|
|
struct drm_i915_private *dev_priv = ring->dev->dev_private;
|
|
int ret;
|
|
|
|
BUG_ON(entry >= 4);
|
|
|
|
if (synchronous) {
|
|
I915_WRITE(GEN8_RING_PDP_UDW(ring, entry), val >> 32);
|
|
I915_WRITE(GEN8_RING_PDP_LDW(ring, entry), (u32)val);
|
|
return 0;
|
|
}
|
|
|
|
ret = intel_ring_begin(ring, 6);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
|
|
intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
|
|
intel_ring_emit(ring, (u32)(val >> 32));
|
|
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
|
|
intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
|
|
intel_ring_emit(ring, (u32)(val));
|
|
intel_ring_advance(ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
|
|
struct intel_ring_buffer *ring,
|
|
bool synchronous)
|
|
{
|
|
int i, ret;
|
|
|
|
/* bit of a hack to find the actual last used pd */
|
|
int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
|
|
|
|
for (i = used_pd - 1; i >= 0; i--) {
|
|
dma_addr_t addr = ppgtt->pd_dma_addr[i];
|
|
ret = gen8_write_pdp(ring, i, addr, synchronous);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
|
|
unsigned first_entry,
|
|
unsigned num_entries,
|
|
bool use_scratch)
|
|
{
|
|
struct i915_hw_ppgtt *ppgtt =
|
|
container_of(vm, struct i915_hw_ppgtt, base);
|
|
gen8_gtt_pte_t *pt_vaddr, scratch_pte;
|
|
unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
|
|
unsigned first_pte = first_entry % GEN8_PTES_PER_PAGE;
|
|
unsigned last_pte, i;
|
|
|
|
scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
|
|
I915_CACHE_LLC, use_scratch);
|
|
|
|
while (num_entries) {
|
|
struct page *page_table = &ppgtt->gen8_pt_pages[act_pt];
|
|
|
|
last_pte = first_pte + num_entries;
|
|
if (last_pte > GEN8_PTES_PER_PAGE)
|
|
last_pte = GEN8_PTES_PER_PAGE;
|
|
|
|
pt_vaddr = kmap_atomic(page_table);
|
|
|
|
for (i = first_pte; i < last_pte; i++)
|
|
pt_vaddr[i] = scratch_pte;
|
|
|
|
kunmap_atomic(pt_vaddr);
|
|
|
|
num_entries -= last_pte - first_pte;
|
|
first_pte = 0;
|
|
act_pt++;
|
|
}
|
|
}
|
|
|
|
static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
|
|
struct sg_table *pages,
|
|
unsigned first_entry,
|
|
enum i915_cache_level cache_level)
|
|
{
|
|
struct i915_hw_ppgtt *ppgtt =
|
|
container_of(vm, struct i915_hw_ppgtt, base);
|
|
gen8_gtt_pte_t *pt_vaddr;
|
|
unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
|
|
unsigned act_pte = first_entry % GEN8_PTES_PER_PAGE;
|
|
struct sg_page_iter sg_iter;
|
|
|
|
pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
|
|
for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
|
|
dma_addr_t page_addr;
|
|
|
|
page_addr = sg_dma_address(sg_iter.sg) +
|
|
(sg_iter.sg_pgoffset << PAGE_SHIFT);
|
|
pt_vaddr[act_pte] = gen8_pte_encode(page_addr, cache_level,
|
|
true);
|
|
if (++act_pte == GEN8_PTES_PER_PAGE) {
|
|
kunmap_atomic(pt_vaddr);
|
|
act_pt++;
|
|
pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
|
|
act_pte = 0;
|
|
|
|
}
|
|
}
|
|
kunmap_atomic(pt_vaddr);
|
|
}
|
|
|
|
static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
|
|
{
|
|
struct i915_hw_ppgtt *ppgtt =
|
|
container_of(vm, struct i915_hw_ppgtt, base);
|
|
int i, j;
|
|
|
|
drm_mm_takedown(&vm->mm);
|
|
|
|
for (i = 0; i < ppgtt->num_pd_pages ; i++) {
|
|
if (ppgtt->pd_dma_addr[i]) {
|
|
pci_unmap_page(ppgtt->base.dev->pdev,
|
|
ppgtt->pd_dma_addr[i],
|
|
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
|
|
|
|
for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
|
|
dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
|
|
if (addr)
|
|
pci_unmap_page(ppgtt->base.dev->pdev,
|
|
addr,
|
|
PAGE_SIZE,
|
|
PCI_DMA_BIDIRECTIONAL);
|
|
|
|
}
|
|
}
|
|
kfree(ppgtt->gen8_pt_dma_addr[i]);
|
|
}
|
|
|
|
__free_pages(ppgtt->gen8_pt_pages, get_order(ppgtt->num_pt_pages << PAGE_SHIFT));
|
|
__free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
|
|
}
|
|
|
|
/**
|
|
* GEN8 legacy ppgtt programming is accomplished through 4 PDP registers with a
|
|
* net effect resembling a 2-level page table in normal x86 terms. Each PDP
|
|
* represents 1GB of memory
|
|
* 4 * 512 * 512 * 4096 = 4GB legacy 32b address space.
|
|
*
|
|
* TODO: Do something with the size parameter
|
|
**/
|
|
static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
|
|
{
|
|
struct page *pt_pages;
|
|
int i, j, ret = -ENOMEM;
|
|
const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
|
|
const int num_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
|
|
|
|
if (size % (1<<30))
|
|
DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
|
|
|
|
/* FIXME: split allocation into smaller pieces. For now we only ever do
|
|
* this once, but with full PPGTT, the multiple contiguous allocations
|
|
* will be bad.
|
|
*/
|
|
ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
|
|
if (!ppgtt->pd_pages)
|
|
return -ENOMEM;
|
|
|
|
pt_pages = alloc_pages(GFP_KERNEL, get_order(num_pt_pages << PAGE_SHIFT));
|
|
if (!pt_pages) {
|
|
__free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ppgtt->gen8_pt_pages = pt_pages;
|
|
ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
|
|
ppgtt->num_pt_pages = 1 << get_order(num_pt_pages << PAGE_SHIFT);
|
|
ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
|
|
ppgtt->enable = gen8_ppgtt_enable;
|
|
ppgtt->switch_mm = gen8_mm_switch;
|
|
ppgtt->base.clear_range = gen8_ppgtt_clear_range;
|
|
ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
|
|
ppgtt->base.cleanup = gen8_ppgtt_cleanup;
|
|
ppgtt->base.start = 0;
|
|
ppgtt->base.total = ppgtt->num_pt_pages * GEN8_PTES_PER_PAGE * PAGE_SIZE;
|
|
|
|
BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
|
|
|
|
/*
|
|
* - Create a mapping for the page directories.
|
|
* - For each page directory:
|
|
* allocate space for page table mappings.
|
|
* map each page table
|
|
*/
|
|
for (i = 0; i < max_pdp; i++) {
|
|
dma_addr_t temp;
|
|
temp = pci_map_page(ppgtt->base.dev->pdev,
|
|
&ppgtt->pd_pages[i], 0,
|
|
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
|
|
if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
|
|
goto err_out;
|
|
|
|
ppgtt->pd_dma_addr[i] = temp;
|
|
|
|
ppgtt->gen8_pt_dma_addr[i] = kmalloc(sizeof(dma_addr_t) * GEN8_PDES_PER_PAGE, GFP_KERNEL);
|
|
if (!ppgtt->gen8_pt_dma_addr[i])
|
|
goto err_out;
|
|
|
|
for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
|
|
struct page *p = &pt_pages[i * GEN8_PDES_PER_PAGE + j];
|
|
temp = pci_map_page(ppgtt->base.dev->pdev,
|
|
p, 0, PAGE_SIZE,
|
|
PCI_DMA_BIDIRECTIONAL);
|
|
|
|
if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
|
|
goto err_out;
|
|
|
|
ppgtt->gen8_pt_dma_addr[i][j] = temp;
|
|
}
|
|
}
|
|
|
|
/* For now, the PPGTT helper functions all require that the PDEs are
|
|
* plugged in correctly. So we do that now/here. For aliasing PPGTT, we
|
|
* will never need to touch the PDEs again */
|
|
for (i = 0; i < max_pdp; i++) {
|
|
gen8_ppgtt_pde_t *pd_vaddr;
|
|
pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
|
|
for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
|
|
dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
|
|
pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
|
|
I915_CACHE_LLC);
|
|
}
|
|
kunmap_atomic(pd_vaddr);
|
|
}
|
|
|
|
ppgtt->base.clear_range(&ppgtt->base, 0,
|
|
ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE,
|
|
true);
|
|
|
|
DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
|
|
ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
|
|
DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
|
|
ppgtt->num_pt_pages,
|
|
(ppgtt->num_pt_pages - num_pt_pages) +
|
|
size % (1<<30));
|
|
return 0;
|
|
|
|
err_out:
|
|
ppgtt->base.cleanup(&ppgtt->base);
|
|
return ret;
|
|
}
|
|
|
|
static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
|
|
gen6_gtt_pte_t __iomem *pd_addr;
|
|
uint32_t pd_entry;
|
|
int i;
|
|
|
|
WARN_ON(ppgtt->pd_offset & 0x3f);
|
|
pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
|
|
ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
|
|
for (i = 0; i < ppgtt->num_pd_entries; i++) {
|
|
dma_addr_t pt_addr;
|
|
|
|
pt_addr = ppgtt->pt_dma_addr[i];
|
|
pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
|
|
pd_entry |= GEN6_PDE_VALID;
|
|
|
|
writel(pd_entry, pd_addr + i);
|
|
}
|
|
readl(pd_addr);
|
|
}
|
|
|
|
static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
BUG_ON(ppgtt->pd_offset & 0x3f);
|
|
|
|
return (ppgtt->pd_offset / 64) << 16;
|
|
}
|
|
|
|
static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
|
|
struct intel_ring_buffer *ring,
|
|
bool synchronous)
|
|
{
|
|
struct drm_device *dev = ppgtt->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
/* If we're in reset, we can assume the GPU is sufficiently idle to
|
|
* manually frob these bits. Ideally we could use the ring functions,
|
|
* except our error handling makes it quite difficult (can't use
|
|
* intel_ring_begin, ring->flush, or intel_ring_advance)
|
|
*
|
|
* FIXME: We should try not to special case reset
|
|
*/
|
|
if (synchronous ||
|
|
i915_reset_in_progress(&dev_priv->gpu_error)) {
|
|
WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
|
|
I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
|
|
I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
|
|
POSTING_READ(RING_PP_DIR_BASE(ring));
|
|
return 0;
|
|
}
|
|
|
|
/* NB: TLBs must be flushed and invalidated before a switch */
|
|
ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = intel_ring_begin(ring, 6);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
|
|
intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
|
|
intel_ring_emit(ring, PP_DIR_DCLV_2G);
|
|
intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
|
|
intel_ring_emit(ring, get_pd_offset(ppgtt));
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
intel_ring_advance(ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
|
|
struct intel_ring_buffer *ring,
|
|
bool synchronous)
|
|
{
|
|
struct drm_device *dev = ppgtt->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
/* If we're in reset, we can assume the GPU is sufficiently idle to
|
|
* manually frob these bits. Ideally we could use the ring functions,
|
|
* except our error handling makes it quite difficult (can't use
|
|
* intel_ring_begin, ring->flush, or intel_ring_advance)
|
|
*
|
|
* FIXME: We should try not to special case reset
|
|
*/
|
|
if (synchronous ||
|
|
i915_reset_in_progress(&dev_priv->gpu_error)) {
|
|
WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
|
|
I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
|
|
I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
|
|
POSTING_READ(RING_PP_DIR_BASE(ring));
|
|
return 0;
|
|
}
|
|
|
|
/* NB: TLBs must be flushed and invalidated before a switch */
|
|
ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = intel_ring_begin(ring, 6);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
|
|
intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
|
|
intel_ring_emit(ring, PP_DIR_DCLV_2G);
|
|
intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
|
|
intel_ring_emit(ring, get_pd_offset(ppgtt));
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
intel_ring_advance(ring);
|
|
|
|
/* XXX: RCS is the only one to auto invalidate the TLBs? */
|
|
if (ring->id != RCS) {
|
|
ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
|
|
struct intel_ring_buffer *ring,
|
|
bool synchronous)
|
|
{
|
|
struct drm_device *dev = ppgtt->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
if (!synchronous)
|
|
return 0;
|
|
|
|
I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
|
|
I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
|
|
|
|
POSTING_READ(RING_PP_DIR_DCLV(ring));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
struct drm_device *dev = ppgtt->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_ring_buffer *ring;
|
|
int j, ret;
|
|
|
|
for_each_ring(ring, dev_priv, j) {
|
|
I915_WRITE(RING_MODE_GEN7(ring),
|
|
_MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
|
|
ret = ppgtt->switch_mm(ppgtt, ring, true);
|
|
if (ret)
|
|
goto err_out;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_out:
|
|
for_each_ring(ring, dev_priv, j)
|
|
I915_WRITE(RING_MODE_GEN7(ring),
|
|
_MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE));
|
|
return ret;
|
|
}
|
|
|
|
static int gen7_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
struct drm_device *dev = ppgtt->base.dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct intel_ring_buffer *ring;
|
|
uint32_t ecochk, ecobits;
|
|
int i;
|
|
|
|
gen6_write_pdes(ppgtt);
|
|
|
|
ecobits = I915_READ(GAC_ECO_BITS);
|
|
I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
|
|
|
|
ecochk = I915_READ(GAM_ECOCHK);
|
|
if (IS_HASWELL(dev)) {
|
|
ecochk |= ECOCHK_PPGTT_WB_HSW;
|
|
} else {
|
|
ecochk |= ECOCHK_PPGTT_LLC_IVB;
|
|
ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
|
|
}
|
|
I915_WRITE(GAM_ECOCHK, ecochk);
|
|
|
|
for_each_ring(ring, dev_priv, i) {
|
|
int ret;
|
|
/* GFX_MODE is per-ring on gen7+ */
|
|
I915_WRITE(RING_MODE_GEN7(ring),
|
|
_MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
|
|
ret = ppgtt->switch_mm(ppgtt, ring, true);
|
|
if (ret)
|
|
return ret;
|
|
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int gen6_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
struct drm_device *dev = ppgtt->base.dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct intel_ring_buffer *ring;
|
|
uint32_t ecochk, gab_ctl, ecobits;
|
|
int i;
|
|
|
|
gen6_write_pdes(ppgtt);
|
|
|
|
ecobits = I915_READ(GAC_ECO_BITS);
|
|
I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
|
|
ECOBITS_PPGTT_CACHE64B);
|
|
|
|
gab_ctl = I915_READ(GAB_CTL);
|
|
I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
|
|
|
|
ecochk = I915_READ(GAM_ECOCHK);
|
|
I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
|
|
|
|
I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
|
|
|
|
for_each_ring(ring, dev_priv, i) {
|
|
int ret = ppgtt->switch_mm(ppgtt, ring, true);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* PPGTT support for Sandybdrige/Gen6 and later */
|
|
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
|
|
unsigned first_entry,
|
|
unsigned num_entries,
|
|
bool use_scratch)
|
|
{
|
|
struct i915_hw_ppgtt *ppgtt =
|
|
container_of(vm, struct i915_hw_ppgtt, base);
|
|
gen6_gtt_pte_t *pt_vaddr, scratch_pte;
|
|
unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
|
|
unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
|
|
unsigned last_pte, i;
|
|
|
|
scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
|
|
|
|
while (num_entries) {
|
|
last_pte = first_pte + num_entries;
|
|
if (last_pte > I915_PPGTT_PT_ENTRIES)
|
|
last_pte = I915_PPGTT_PT_ENTRIES;
|
|
|
|
pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
|
|
|
|
for (i = first_pte; i < last_pte; i++)
|
|
pt_vaddr[i] = scratch_pte;
|
|
|
|
kunmap_atomic(pt_vaddr);
|
|
|
|
num_entries -= last_pte - first_pte;
|
|
first_pte = 0;
|
|
act_pt++;
|
|
}
|
|
}
|
|
|
|
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
|
|
struct sg_table *pages,
|
|
unsigned first_entry,
|
|
enum i915_cache_level cache_level)
|
|
{
|
|
struct i915_hw_ppgtt *ppgtt =
|
|
container_of(vm, struct i915_hw_ppgtt, base);
|
|
gen6_gtt_pte_t *pt_vaddr;
|
|
unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
|
|
unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
|
|
struct sg_page_iter sg_iter;
|
|
|
|
pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
|
|
for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
|
|
dma_addr_t page_addr;
|
|
|
|
page_addr = sg_page_iter_dma_address(&sg_iter);
|
|
pt_vaddr[act_pte] = vm->pte_encode(page_addr, cache_level, true);
|
|
if (++act_pte == I915_PPGTT_PT_ENTRIES) {
|
|
kunmap_atomic(pt_vaddr);
|
|
act_pt++;
|
|
pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
|
|
act_pte = 0;
|
|
|
|
}
|
|
}
|
|
kunmap_atomic(pt_vaddr);
|
|
}
|
|
|
|
static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
|
|
{
|
|
struct i915_hw_ppgtt *ppgtt =
|
|
container_of(vm, struct i915_hw_ppgtt, base);
|
|
int i;
|
|
|
|
drm_mm_takedown(&ppgtt->base.mm);
|
|
drm_mm_remove_node(&ppgtt->node);
|
|
|
|
if (ppgtt->pt_dma_addr) {
|
|
for (i = 0; i < ppgtt->num_pd_entries; i++)
|
|
pci_unmap_page(ppgtt->base.dev->pdev,
|
|
ppgtt->pt_dma_addr[i],
|
|
4096, PCI_DMA_BIDIRECTIONAL);
|
|
}
|
|
|
|
kfree(ppgtt->pt_dma_addr);
|
|
for (i = 0; i < ppgtt->num_pd_entries; i++)
|
|
__free_page(ppgtt->pt_pages[i]);
|
|
kfree(ppgtt->pt_pages);
|
|
kfree(ppgtt);
|
|
}
|
|
|
|
static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
#define GEN6_PD_ALIGN (PAGE_SIZE * 16)
|
|
#define GEN6_PD_SIZE (GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE)
|
|
struct drm_device *dev = ppgtt->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
bool retried = false;
|
|
int i, ret;
|
|
|
|
/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
|
|
* allocator works in address space sizes, so it's multiplied by page
|
|
* size. We allocate at the top of the GTT to avoid fragmentation.
|
|
*/
|
|
BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
|
|
alloc:
|
|
ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
|
|
&ppgtt->node, GEN6_PD_SIZE,
|
|
GEN6_PD_ALIGN, 0,
|
|
0, dev_priv->gtt.base.total,
|
|
DRM_MM_SEARCH_DEFAULT);
|
|
if (ret == -ENOSPC && !retried) {
|
|
ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
|
|
GEN6_PD_SIZE, GEN6_PD_ALIGN,
|
|
I915_CACHE_NONE, false, true);
|
|
if (ret)
|
|
return ret;
|
|
|
|
retried = true;
|
|
goto alloc;
|
|
}
|
|
|
|
if (ppgtt->node.start < dev_priv->gtt.mappable_end)
|
|
DRM_DEBUG("Forced to use aperture for PDEs\n");
|
|
|
|
ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
|
|
ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
|
|
if (IS_GEN6(dev)) {
|
|
ppgtt->enable = gen6_ppgtt_enable;
|
|
ppgtt->switch_mm = gen6_mm_switch;
|
|
} else if (IS_HASWELL(dev)) {
|
|
ppgtt->enable = gen7_ppgtt_enable;
|
|
ppgtt->switch_mm = hsw_mm_switch;
|
|
} else if (IS_GEN7(dev)) {
|
|
ppgtt->enable = gen7_ppgtt_enable;
|
|
ppgtt->switch_mm = gen7_mm_switch;
|
|
} else
|
|
BUG();
|
|
ppgtt->base.clear_range = gen6_ppgtt_clear_range;
|
|
ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
|
|
ppgtt->base.cleanup = gen6_ppgtt_cleanup;
|
|
ppgtt->base.scratch = dev_priv->gtt.base.scratch;
|
|
ppgtt->base.start = 0;
|
|
ppgtt->base.total = GEN6_PPGTT_PD_ENTRIES * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
|
|
ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
|
|
GFP_KERNEL);
|
|
if (!ppgtt->pt_pages) {
|
|
drm_mm_remove_node(&ppgtt->node);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (i = 0; i < ppgtt->num_pd_entries; i++) {
|
|
ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
|
|
if (!ppgtt->pt_pages[i])
|
|
goto err_pt_alloc;
|
|
}
|
|
|
|
ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
|
|
GFP_KERNEL);
|
|
if (!ppgtt->pt_dma_addr)
|
|
goto err_pt_alloc;
|
|
|
|
for (i = 0; i < ppgtt->num_pd_entries; i++) {
|
|
dma_addr_t pt_addr;
|
|
|
|
pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
|
|
PCI_DMA_BIDIRECTIONAL);
|
|
|
|
if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
|
|
ret = -EIO;
|
|
goto err_pd_pin;
|
|
|
|
}
|
|
ppgtt->pt_dma_addr[i] = pt_addr;
|
|
}
|
|
|
|
ppgtt->base.clear_range(&ppgtt->base, 0,
|
|
ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES, true);
|
|
|
|
DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n",
|
|
ppgtt->node.size >> 20,
|
|
ppgtt->node.start / PAGE_SIZE);
|
|
ppgtt->pd_offset =
|
|
ppgtt->node.start / PAGE_SIZE * sizeof(gen6_gtt_pte_t);
|
|
|
|
return 0;
|
|
|
|
err_pd_pin:
|
|
if (ppgtt->pt_dma_addr) {
|
|
for (i--; i >= 0; i--)
|
|
pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
|
|
4096, PCI_DMA_BIDIRECTIONAL);
|
|
}
|
|
err_pt_alloc:
|
|
kfree(ppgtt->pt_dma_addr);
|
|
for (i = 0; i < ppgtt->num_pd_entries; i++) {
|
|
if (ppgtt->pt_pages[i])
|
|
__free_page(ppgtt->pt_pages[i]);
|
|
}
|
|
kfree(ppgtt->pt_pages);
|
|
drm_mm_remove_node(&ppgtt->node);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int i915_gem_init_ppgtt(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret = 0;
|
|
|
|
ppgtt->base.dev = dev;
|
|
|
|
if (INTEL_INFO(dev)->gen < 8)
|
|
ret = gen6_ppgtt_init(ppgtt);
|
|
else if (IS_GEN8(dev))
|
|
ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
|
|
else
|
|
BUG();
|
|
|
|
if (!ret)
|
|
drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
|
|
ppgtt->base.total);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void i915_gem_cleanup_aliasing_ppgtt(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
|
|
|
|
if (!ppgtt)
|
|
return;
|
|
|
|
ppgtt->base.cleanup(&ppgtt->base);
|
|
dev_priv->mm.aliasing_ppgtt = NULL;
|
|
}
|
|
|
|
static void __always_unused
|
|
ppgtt_bind_vma(struct i915_vma *vma,
|
|
enum i915_cache_level cache_level,
|
|
u32 flags)
|
|
{
|
|
const unsigned long entry = vma->node.start >> PAGE_SHIFT;
|
|
|
|
WARN_ON(flags);
|
|
|
|
vma->vm->insert_entries(vma->vm, vma->obj->pages, entry, cache_level);
|
|
}
|
|
|
|
static void __always_unused ppgtt_unbind_vma(struct i915_vma *vma)
|
|
{
|
|
const unsigned long entry = vma->node.start >> PAGE_SHIFT;
|
|
|
|
vma->vm->clear_range(vma->vm,
|
|
entry,
|
|
vma->obj->base.size >> PAGE_SHIFT,
|
|
true);
|
|
}
|
|
|
|
extern int intel_iommu_gfx_mapped;
|
|
/* Certain Gen5 chipsets require require idling the GPU before
|
|
* unmapping anything from the GTT when VT-d is enabled.
|
|
*/
|
|
static inline bool needs_idle_maps(struct drm_device *dev)
|
|
{
|
|
#ifdef CONFIG_INTEL_IOMMU
|
|
/* Query intel_iommu to see if we need the workaround. Presumably that
|
|
* was loaded first.
|
|
*/
|
|
if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
|
|
return true;
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
static bool do_idling(struct drm_i915_private *dev_priv)
|
|
{
|
|
bool ret = dev_priv->mm.interruptible;
|
|
|
|
if (unlikely(dev_priv->gtt.do_idle_maps)) {
|
|
dev_priv->mm.interruptible = false;
|
|
if (i915_gpu_idle(dev_priv->dev)) {
|
|
DRM_ERROR("Couldn't idle GPU\n");
|
|
/* Wait a bit, in hopes it avoids the hang */
|
|
udelay(10);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
|
|
{
|
|
if (unlikely(dev_priv->gtt.do_idle_maps))
|
|
dev_priv->mm.interruptible = interruptible;
|
|
}
|
|
|
|
void i915_check_and_clear_faults(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_ring_buffer *ring;
|
|
int i;
|
|
|
|
if (INTEL_INFO(dev)->gen < 6)
|
|
return;
|
|
|
|
for_each_ring(ring, dev_priv, i) {
|
|
u32 fault_reg;
|
|
fault_reg = I915_READ(RING_FAULT_REG(ring));
|
|
if (fault_reg & RING_FAULT_VALID) {
|
|
DRM_DEBUG_DRIVER("Unexpected fault\n"
|
|
"\tAddr: 0x%08lx\\n"
|
|
"\tAddress space: %s\n"
|
|
"\tSource ID: %d\n"
|
|
"\tType: %d\n",
|
|
fault_reg & PAGE_MASK,
|
|
fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
|
|
RING_FAULT_SRCID(fault_reg),
|
|
RING_FAULT_FAULT_TYPE(fault_reg));
|
|
I915_WRITE(RING_FAULT_REG(ring),
|
|
fault_reg & ~RING_FAULT_VALID);
|
|
}
|
|
}
|
|
POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
|
|
}
|
|
|
|
void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
/* Don't bother messing with faults pre GEN6 as we have little
|
|
* documentation supporting that it's a good idea.
|
|
*/
|
|
if (INTEL_INFO(dev)->gen < 6)
|
|
return;
|
|
|
|
i915_check_and_clear_faults(dev);
|
|
|
|
dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
|
|
dev_priv->gtt.base.start / PAGE_SIZE,
|
|
dev_priv->gtt.base.total / PAGE_SIZE,
|
|
false);
|
|
}
|
|
|
|
void i915_gem_restore_gtt_mappings(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj;
|
|
|
|
i915_check_and_clear_faults(dev);
|
|
|
|
/* First fill our portion of the GTT with scratch pages */
|
|
dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
|
|
dev_priv->gtt.base.start / PAGE_SIZE,
|
|
dev_priv->gtt.base.total / PAGE_SIZE,
|
|
true);
|
|
|
|
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
|
|
struct i915_vma *vma = i915_gem_obj_to_vma(obj,
|
|
&dev_priv->gtt.base);
|
|
if (!vma)
|
|
continue;
|
|
|
|
i915_gem_clflush_object(obj, obj->pin_display);
|
|
/* The bind_vma code tries to be smart about tracking mappings.
|
|
* Unfortunately above, we've just wiped out the mappings
|
|
* without telling our object about it. So we need to fake it.
|
|
*/
|
|
obj->has_global_gtt_mapping = 0;
|
|
vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
|
|
}
|
|
|
|
i915_gem_chipset_flush(dev);
|
|
}
|
|
|
|
int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
|
|
{
|
|
if (obj->has_dma_mapping)
|
|
return 0;
|
|
|
|
if (!dma_map_sg(&obj->base.dev->pdev->dev,
|
|
obj->pages->sgl, obj->pages->nents,
|
|
PCI_DMA_BIDIRECTIONAL))
|
|
return -ENOSPC;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
|
|
{
|
|
#ifdef writeq
|
|
writeq(pte, addr);
|
|
#else
|
|
iowrite32((u32)pte, addr);
|
|
iowrite32(pte >> 32, addr + 4);
|
|
#endif
|
|
}
|
|
|
|
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
|
|
struct sg_table *st,
|
|
unsigned int first_entry,
|
|
enum i915_cache_level level)
|
|
{
|
|
struct drm_i915_private *dev_priv = vm->dev->dev_private;
|
|
gen8_gtt_pte_t __iomem *gtt_entries =
|
|
(gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
|
|
int i = 0;
|
|
struct sg_page_iter sg_iter;
|
|
dma_addr_t addr;
|
|
|
|
for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
|
|
addr = sg_dma_address(sg_iter.sg) +
|
|
(sg_iter.sg_pgoffset << PAGE_SHIFT);
|
|
gen8_set_pte(>t_entries[i],
|
|
gen8_pte_encode(addr, level, true));
|
|
i++;
|
|
}
|
|
|
|
/*
|
|
* XXX: This serves as a posting read to make sure that the PTE has
|
|
* actually been updated. There is some concern that even though
|
|
* registers and PTEs are within the same BAR that they are potentially
|
|
* of NUMA access patterns. Therefore, even with the way we assume
|
|
* hardware should work, we must keep this posting read for paranoia.
|
|
*/
|
|
if (i != 0)
|
|
WARN_ON(readq(>t_entries[i-1])
|
|
!= gen8_pte_encode(addr, level, true));
|
|
|
|
#if 0 /* TODO: Still needed on GEN8? */
|
|
/* This next bit makes the above posting read even more important. We
|
|
* want to flush the TLBs only after we're certain all the PTE updates
|
|
* have finished.
|
|
*/
|
|
I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
|
|
POSTING_READ(GFX_FLSH_CNTL_GEN6);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Binds an object into the global gtt with the specified cache level. The object
|
|
* will be accessible to the GPU via commands whose operands reference offsets
|
|
* within the global GTT as well as accessible by the GPU through the GMADR
|
|
* mapped BAR (dev_priv->mm.gtt->gtt).
|
|
*/
|
|
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
|
|
struct sg_table *st,
|
|
unsigned int first_entry,
|
|
enum i915_cache_level level)
|
|
{
|
|
struct drm_i915_private *dev_priv = vm->dev->dev_private;
|
|
gen6_gtt_pte_t __iomem *gtt_entries =
|
|
(gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
|
|
int i = 0;
|
|
struct sg_page_iter sg_iter;
|
|
dma_addr_t addr;
|
|
|
|
for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
|
|
addr = sg_page_iter_dma_address(&sg_iter);
|
|
iowrite32(vm->pte_encode(addr, level, true), >t_entries[i]);
|
|
i++;
|
|
}
|
|
|
|
/* XXX: This serves as a posting read to make sure that the PTE has
|
|
* actually been updated. There is some concern that even though
|
|
* registers and PTEs are within the same BAR that they are potentially
|
|
* of NUMA access patterns. Therefore, even with the way we assume
|
|
* hardware should work, we must keep this posting read for paranoia.
|
|
*/
|
|
if (i != 0)
|
|
WARN_ON(readl(>t_entries[i-1]) !=
|
|
vm->pte_encode(addr, level, true));
|
|
|
|
/* This next bit makes the above posting read even more important. We
|
|
* want to flush the TLBs only after we're certain all the PTE updates
|
|
* have finished.
|
|
*/
|
|
I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
|
|
POSTING_READ(GFX_FLSH_CNTL_GEN6);
|
|
}
|
|
|
|
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
|
|
unsigned int first_entry,
|
|
unsigned int num_entries,
|
|
bool use_scratch)
|
|
{
|
|
struct drm_i915_private *dev_priv = vm->dev->dev_private;
|
|
gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
|
|
(gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
|
|
const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
|
|
int i;
|
|
|
|
if (WARN(num_entries > max_entries,
|
|
"First entry = %d; Num entries = %d (max=%d)\n",
|
|
first_entry, num_entries, max_entries))
|
|
num_entries = max_entries;
|
|
|
|
scratch_pte = gen8_pte_encode(vm->scratch.addr,
|
|
I915_CACHE_LLC,
|
|
use_scratch);
|
|
for (i = 0; i < num_entries; i++)
|
|
gen8_set_pte(>t_base[i], scratch_pte);
|
|
readl(gtt_base);
|
|
}
|
|
|
|
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
|
|
unsigned int first_entry,
|
|
unsigned int num_entries,
|
|
bool use_scratch)
|
|
{
|
|
struct drm_i915_private *dev_priv = vm->dev->dev_private;
|
|
gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
|
|
(gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
|
|
const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
|
|
int i;
|
|
|
|
if (WARN(num_entries > max_entries,
|
|
"First entry = %d; Num entries = %d (max=%d)\n",
|
|
first_entry, num_entries, max_entries))
|
|
num_entries = max_entries;
|
|
|
|
scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
|
|
|
|
for (i = 0; i < num_entries; i++)
|
|
iowrite32(scratch_pte, >t_base[i]);
|
|
readl(gtt_base);
|
|
}
|
|
|
|
|
|
static void i915_ggtt_bind_vma(struct i915_vma *vma,
|
|
enum i915_cache_level cache_level,
|
|
u32 unused)
|
|
{
|
|
const unsigned long entry = vma->node.start >> PAGE_SHIFT;
|
|
unsigned int flags = (cache_level == I915_CACHE_NONE) ?
|
|
AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
|
|
|
|
BUG_ON(!i915_is_ggtt(vma->vm));
|
|
intel_gtt_insert_sg_entries(vma->obj->pages, entry, flags);
|
|
vma->obj->has_global_gtt_mapping = 1;
|
|
}
|
|
|
|
static void i915_ggtt_clear_range(struct i915_address_space *vm,
|
|
unsigned int first_entry,
|
|
unsigned int num_entries,
|
|
bool unused)
|
|
{
|
|
intel_gtt_clear_range(first_entry, num_entries);
|
|
}
|
|
|
|
static void i915_ggtt_unbind_vma(struct i915_vma *vma)
|
|
{
|
|
const unsigned int first = vma->node.start >> PAGE_SHIFT;
|
|
const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
|
|
|
|
BUG_ON(!i915_is_ggtt(vma->vm));
|
|
vma->obj->has_global_gtt_mapping = 0;
|
|
intel_gtt_clear_range(first, size);
|
|
}
|
|
|
|
static void ggtt_bind_vma(struct i915_vma *vma,
|
|
enum i915_cache_level cache_level,
|
|
u32 flags)
|
|
{
|
|
struct drm_device *dev = vma->vm->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj = vma->obj;
|
|
const unsigned long entry = vma->node.start >> PAGE_SHIFT;
|
|
|
|
/* If there is no aliasing PPGTT, or the caller needs a global mapping,
|
|
* or we have a global mapping already but the cacheability flags have
|
|
* changed, set the global PTEs.
|
|
*
|
|
* If there is an aliasing PPGTT it is anecdotally faster, so use that
|
|
* instead if none of the above hold true.
|
|
*
|
|
* NB: A global mapping should only be needed for special regions like
|
|
* "gtt mappable", SNB errata, or if specified via special execbuf
|
|
* flags. At all other times, the GPU will use the aliasing PPGTT.
|
|
*/
|
|
if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
|
|
if (!obj->has_global_gtt_mapping ||
|
|
(cache_level != obj->cache_level)) {
|
|
vma->vm->insert_entries(vma->vm, obj->pages, entry,
|
|
cache_level);
|
|
obj->has_global_gtt_mapping = 1;
|
|
}
|
|
}
|
|
|
|
if (dev_priv->mm.aliasing_ppgtt &&
|
|
(!obj->has_aliasing_ppgtt_mapping ||
|
|
(cache_level != obj->cache_level))) {
|
|
struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
|
|
appgtt->base.insert_entries(&appgtt->base,
|
|
vma->obj->pages, entry, cache_level);
|
|
vma->obj->has_aliasing_ppgtt_mapping = 1;
|
|
}
|
|
}
|
|
|
|
static void ggtt_unbind_vma(struct i915_vma *vma)
|
|
{
|
|
struct drm_device *dev = vma->vm->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj = vma->obj;
|
|
const unsigned long entry = vma->node.start >> PAGE_SHIFT;
|
|
|
|
if (obj->has_global_gtt_mapping) {
|
|
vma->vm->clear_range(vma->vm, entry,
|
|
vma->obj->base.size >> PAGE_SHIFT,
|
|
true);
|
|
obj->has_global_gtt_mapping = 0;
|
|
}
|
|
|
|
if (obj->has_aliasing_ppgtt_mapping) {
|
|
struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
|
|
appgtt->base.clear_range(&appgtt->base,
|
|
entry,
|
|
obj->base.size >> PAGE_SHIFT,
|
|
true);
|
|
obj->has_aliasing_ppgtt_mapping = 0;
|
|
}
|
|
}
|
|
|
|
void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
bool interruptible;
|
|
|
|
interruptible = do_idling(dev_priv);
|
|
|
|
if (!obj->has_dma_mapping)
|
|
dma_unmap_sg(&dev->pdev->dev,
|
|
obj->pages->sgl, obj->pages->nents,
|
|
PCI_DMA_BIDIRECTIONAL);
|
|
|
|
undo_idling(dev_priv, interruptible);
|
|
}
|
|
|
|
static void i915_gtt_color_adjust(struct drm_mm_node *node,
|
|
unsigned long color,
|
|
unsigned long *start,
|
|
unsigned long *end)
|
|
{
|
|
if (node->color != color)
|
|
*start += 4096;
|
|
|
|
if (!list_empty(&node->node_list)) {
|
|
node = list_entry(node->node_list.next,
|
|
struct drm_mm_node,
|
|
node_list);
|
|
if (node->allocated && node->color != color)
|
|
*end -= 4096;
|
|
}
|
|
}
|
|
|
|
void i915_gem_setup_global_gtt(struct drm_device *dev,
|
|
unsigned long start,
|
|
unsigned long mappable_end,
|
|
unsigned long end)
|
|
{
|
|
/* Let GEM Manage all of the aperture.
|
|
*
|
|
* However, leave one page at the end still bound to the scratch page.
|
|
* There are a number of places where the hardware apparently prefetches
|
|
* past the end of the object, and we've seen multiple hangs with the
|
|
* GPU head pointer stuck in a batchbuffer bound at the last page of the
|
|
* aperture. One page should be enough to keep any prefetching inside
|
|
* of the aperture.
|
|
*/
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
|
|
struct drm_mm_node *entry;
|
|
struct drm_i915_gem_object *obj;
|
|
unsigned long hole_start, hole_end;
|
|
|
|
BUG_ON(mappable_end > end);
|
|
|
|
/* Subtract the guard page ... */
|
|
drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
|
|
if (!HAS_LLC(dev))
|
|
dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
|
|
|
|
/* Mark any preallocated objects as occupied */
|
|
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
|
|
struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
|
|
int ret;
|
|
DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
|
|
i915_gem_obj_ggtt_offset(obj), obj->base.size);
|
|
|
|
WARN_ON(i915_gem_obj_ggtt_bound(obj));
|
|
ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
|
|
if (ret)
|
|
DRM_DEBUG_KMS("Reservation failed\n");
|
|
obj->has_global_gtt_mapping = 1;
|
|
}
|
|
|
|
dev_priv->gtt.base.start = start;
|
|
dev_priv->gtt.base.total = end - start;
|
|
|
|
/* Clear any non-preallocated blocks */
|
|
drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
|
|
const unsigned long count = (hole_end - hole_start) / PAGE_SIZE;
|
|
DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
|
|
hole_start, hole_end);
|
|
ggtt_vm->clear_range(ggtt_vm, hole_start / PAGE_SIZE, count, true);
|
|
}
|
|
|
|
/* And finally clear the reserved guard page */
|
|
ggtt_vm->clear_range(ggtt_vm, end / PAGE_SIZE - 1, 1, true);
|
|
}
|
|
|
|
void i915_gem_init_global_gtt(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
unsigned long gtt_size, mappable_size;
|
|
|
|
gtt_size = dev_priv->gtt.base.total;
|
|
mappable_size = dev_priv->gtt.mappable_end;
|
|
|
|
i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
|
|
if (USES_ALIASING_PPGTT(dev)) {
|
|
struct i915_hw_ppgtt *ppgtt;
|
|
int ret;
|
|
|
|
ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
|
|
if (!ppgtt) {
|
|
DRM_ERROR("Aliased PPGTT setup failed -ENOMEM\n");
|
|
return;
|
|
}
|
|
|
|
ret = i915_gem_init_ppgtt(dev, ppgtt);
|
|
if (!ret) {
|
|
dev_priv->mm.aliasing_ppgtt = ppgtt;
|
|
return;
|
|
}
|
|
|
|
kfree(ppgtt);
|
|
DRM_ERROR("Aliased PPGTT setup failed %d\n", ret);
|
|
}
|
|
}
|
|
|
|
static int setup_scratch_page(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct page *page;
|
|
dma_addr_t dma_addr;
|
|
|
|
page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
|
|
if (page == NULL)
|
|
return -ENOMEM;
|
|
get_page(page);
|
|
set_pages_uc(page, 1);
|
|
|
|
#ifdef CONFIG_INTEL_IOMMU
|
|
dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
|
|
PCI_DMA_BIDIRECTIONAL);
|
|
if (pci_dma_mapping_error(dev->pdev, dma_addr))
|
|
return -EINVAL;
|
|
#else
|
|
dma_addr = page_to_phys(page);
|
|
#endif
|
|
dev_priv->gtt.base.scratch.page = page;
|
|
dev_priv->gtt.base.scratch.addr = dma_addr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void teardown_scratch_page(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct page *page = dev_priv->gtt.base.scratch.page;
|
|
|
|
set_pages_wb(page, 1);
|
|
pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
|
|
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
|
|
put_page(page);
|
|
__free_page(page);
|
|
}
|
|
|
|
static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
|
|
{
|
|
snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
|
|
snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
|
|
return snb_gmch_ctl << 20;
|
|
}
|
|
|
|
static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
|
|
{
|
|
bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
|
|
bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
|
|
if (bdw_gmch_ctl)
|
|
bdw_gmch_ctl = 1 << bdw_gmch_ctl;
|
|
if (bdw_gmch_ctl > 4) {
|
|
WARN_ON(!i915_preliminary_hw_support);
|
|
return 4<<20;
|
|
}
|
|
|
|
return bdw_gmch_ctl << 20;
|
|
}
|
|
|
|
static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
|
|
{
|
|
snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
|
|
snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
|
|
return snb_gmch_ctl << 25; /* 32 MB units */
|
|
}
|
|
|
|
static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
|
|
{
|
|
bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
|
|
bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
|
|
return bdw_gmch_ctl << 25; /* 32 MB units */
|
|
}
|
|
|
|
static int ggtt_probe_common(struct drm_device *dev,
|
|
size_t gtt_size)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
phys_addr_t gtt_bus_addr;
|
|
int ret;
|
|
|
|
/* For Modern GENs the PTEs and register space are split in the BAR */
|
|
gtt_bus_addr = pci_resource_start(dev->pdev, 0) +
|
|
(pci_resource_len(dev->pdev, 0) / 2);
|
|
|
|
dev_priv->gtt.gsm = ioremap_wc(gtt_bus_addr, gtt_size);
|
|
if (!dev_priv->gtt.gsm) {
|
|
DRM_ERROR("Failed to map the gtt page table\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = setup_scratch_page(dev);
|
|
if (ret) {
|
|
DRM_ERROR("Scratch setup failed\n");
|
|
/* iounmap will also get called at remove, but meh */
|
|
iounmap(dev_priv->gtt.gsm);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
|
|
* bits. When using advanced contexts each context stores its own PAT, but
|
|
* writing this data shouldn't be harmful even in those cases. */
|
|
static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv)
|
|
{
|
|
#define GEN8_PPAT_UC (0<<0)
|
|
#define GEN8_PPAT_WC (1<<0)
|
|
#define GEN8_PPAT_WT (2<<0)
|
|
#define GEN8_PPAT_WB (3<<0)
|
|
#define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
|
|
/* FIXME(BDW): Bspec is completely confused about cache control bits. */
|
|
#define GEN8_PPAT_LLC (1<<2)
|
|
#define GEN8_PPAT_LLCELLC (2<<2)
|
|
#define GEN8_PPAT_LLCeLLC (3<<2)
|
|
#define GEN8_PPAT_AGE(x) (x<<4)
|
|
#define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
|
|
uint64_t pat;
|
|
|
|
pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
|
|
GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
|
|
GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
|
|
GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
|
|
GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
|
|
GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
|
|
GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
|
|
GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
|
|
|
|
/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
|
|
* write would work. */
|
|
I915_WRITE(GEN8_PRIVATE_PAT, pat);
|
|
I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
|
|
}
|
|
|
|
static int gen8_gmch_probe(struct drm_device *dev,
|
|
size_t *gtt_total,
|
|
size_t *stolen,
|
|
phys_addr_t *mappable_base,
|
|
unsigned long *mappable_end)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
unsigned int gtt_size;
|
|
u16 snb_gmch_ctl;
|
|
int ret;
|
|
|
|
/* TODO: We're not aware of mappable constraints on gen8 yet */
|
|
*mappable_base = pci_resource_start(dev->pdev, 2);
|
|
*mappable_end = pci_resource_len(dev->pdev, 2);
|
|
|
|
if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
|
|
pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
|
|
|
|
pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
|
|
|
|
*stolen = gen8_get_stolen_size(snb_gmch_ctl);
|
|
|
|
gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
|
|
*gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
|
|
|
|
gen8_setup_private_ppat(dev_priv);
|
|
|
|
ret = ggtt_probe_common(dev, gtt_size);
|
|
|
|
dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
|
|
dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int gen6_gmch_probe(struct drm_device *dev,
|
|
size_t *gtt_total,
|
|
size_t *stolen,
|
|
phys_addr_t *mappable_base,
|
|
unsigned long *mappable_end)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
unsigned int gtt_size;
|
|
u16 snb_gmch_ctl;
|
|
int ret;
|
|
|
|
*mappable_base = pci_resource_start(dev->pdev, 2);
|
|
*mappable_end = pci_resource_len(dev->pdev, 2);
|
|
|
|
/* 64/512MB is the current min/max we actually know of, but this is just
|
|
* a coarse sanity check.
|
|
*/
|
|
if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
|
|
DRM_ERROR("Unknown GMADR size (%lx)\n",
|
|
dev_priv->gtt.mappable_end);
|
|
return -ENXIO;
|
|
}
|
|
|
|
if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
|
|
pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
|
|
pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
|
|
|
|
*stolen = gen6_get_stolen_size(snb_gmch_ctl);
|
|
|
|
gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
|
|
*gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
|
|
|
|
ret = ggtt_probe_common(dev, gtt_size);
|
|
|
|
dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
|
|
dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void gen6_gmch_remove(struct i915_address_space *vm)
|
|
{
|
|
|
|
struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
|
|
|
|
drm_mm_takedown(&vm->mm);
|
|
iounmap(gtt->gsm);
|
|
teardown_scratch_page(vm->dev);
|
|
}
|
|
|
|
static int i915_gmch_probe(struct drm_device *dev,
|
|
size_t *gtt_total,
|
|
size_t *stolen,
|
|
phys_addr_t *mappable_base,
|
|
unsigned long *mappable_end)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
|
|
if (!ret) {
|
|
DRM_ERROR("failed to set up gmch\n");
|
|
return -EIO;
|
|
}
|
|
|
|
intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
|
|
|
|
dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
|
|
dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void i915_gmch_remove(struct i915_address_space *vm)
|
|
{
|
|
intel_gmch_remove();
|
|
}
|
|
|
|
int i915_gem_gtt_init(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct i915_gtt *gtt = &dev_priv->gtt;
|
|
int ret;
|
|
|
|
if (INTEL_INFO(dev)->gen <= 5) {
|
|
gtt->gtt_probe = i915_gmch_probe;
|
|
gtt->base.cleanup = i915_gmch_remove;
|
|
} else if (INTEL_INFO(dev)->gen < 8) {
|
|
gtt->gtt_probe = gen6_gmch_probe;
|
|
gtt->base.cleanup = gen6_gmch_remove;
|
|
if (IS_HASWELL(dev) && dev_priv->ellc_size)
|
|
gtt->base.pte_encode = iris_pte_encode;
|
|
else if (IS_HASWELL(dev))
|
|
gtt->base.pte_encode = hsw_pte_encode;
|
|
else if (IS_VALLEYVIEW(dev))
|
|
gtt->base.pte_encode = byt_pte_encode;
|
|
else if (INTEL_INFO(dev)->gen >= 7)
|
|
gtt->base.pte_encode = ivb_pte_encode;
|
|
else
|
|
gtt->base.pte_encode = snb_pte_encode;
|
|
} else {
|
|
dev_priv->gtt.gtt_probe = gen8_gmch_probe;
|
|
dev_priv->gtt.base.cleanup = gen6_gmch_remove;
|
|
}
|
|
|
|
ret = gtt->gtt_probe(dev, >t->base.total, >t->stolen_size,
|
|
>t->mappable_base, >t->mappable_end);
|
|
if (ret)
|
|
return ret;
|
|
|
|
gtt->base.dev = dev;
|
|
|
|
/* GMADR is the PCI mmio aperture into the global GTT. */
|
|
DRM_INFO("Memory usable by graphics device = %zdM\n",
|
|
gtt->base.total >> 20);
|
|
DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
|
|
DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
|
|
struct i915_address_space *vm)
|
|
{
|
|
struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
|
|
if (vma == NULL)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
INIT_LIST_HEAD(&vma->vma_link);
|
|
INIT_LIST_HEAD(&vma->mm_list);
|
|
INIT_LIST_HEAD(&vma->exec_list);
|
|
vma->vm = vm;
|
|
vma->obj = obj;
|
|
|
|
switch (INTEL_INFO(vm->dev)->gen) {
|
|
case 8:
|
|
case 7:
|
|
case 6:
|
|
vma->unbind_vma = ggtt_unbind_vma;
|
|
vma->bind_vma = ggtt_bind_vma;
|
|
break;
|
|
case 5:
|
|
case 4:
|
|
case 3:
|
|
case 2:
|
|
BUG_ON(!i915_is_ggtt(vm));
|
|
vma->unbind_vma = i915_ggtt_unbind_vma;
|
|
vma->bind_vma = i915_ggtt_bind_vma;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
/* Keep GGTT vmas first to make debug easier */
|
|
if (i915_is_ggtt(vm))
|
|
list_add(&vma->vma_link, &obj->vma_list);
|
|
else
|
|
list_add_tail(&vma->vma_link, &obj->vma_list);
|
|
|
|
return vma;
|
|
}
|
|
|
|
struct i915_vma *
|
|
i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
|
|
struct i915_address_space *vm)
|
|
{
|
|
struct i915_vma *vma;
|
|
|
|
vma = i915_gem_obj_to_vma(obj, vm);
|
|
if (!vma)
|
|
vma = __i915_gem_vma_create(obj, vm);
|
|
|
|
return vma;
|
|
}
|