2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-27 08:05:27 +08:00
linux-next/drivers/char/ip2/i2ellis.c
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00

1488 lines
46 KiB
C

/*******************************************************************************
*
* (c) 1998 by Computone Corporation
*
********************************************************************************
*
*
* PACKAGE: Linux tty Device Driver for IntelliPort family of multiport
* serial I/O controllers.
*
* DESCRIPTION: Low-level interface code for the device driver
* (This is included source code, not a separate compilation
* module.)
*
*******************************************************************************/
//---------------------------------------------
// Function declarations private to this module
//---------------------------------------------
// Functions called only indirectly through i2eBordStr entries.
static int iiWriteBuf16(i2eBordStrPtr, unsigned char *, int);
static int iiWriteBuf8(i2eBordStrPtr, unsigned char *, int);
static int iiReadBuf16(i2eBordStrPtr, unsigned char *, int);
static int iiReadBuf8(i2eBordStrPtr, unsigned char *, int);
static unsigned short iiReadWord16(i2eBordStrPtr);
static unsigned short iiReadWord8(i2eBordStrPtr);
static void iiWriteWord16(i2eBordStrPtr, unsigned short);
static void iiWriteWord8(i2eBordStrPtr, unsigned short);
static int iiWaitForTxEmptyII(i2eBordStrPtr, int);
static int iiWaitForTxEmptyIIEX(i2eBordStrPtr, int);
static int iiTxMailEmptyII(i2eBordStrPtr);
static int iiTxMailEmptyIIEX(i2eBordStrPtr);
static int iiTrySendMailII(i2eBordStrPtr, unsigned char);
static int iiTrySendMailIIEX(i2eBordStrPtr, unsigned char);
static unsigned short iiGetMailII(i2eBordStrPtr);
static unsigned short iiGetMailIIEX(i2eBordStrPtr);
static void iiEnableMailIrqII(i2eBordStrPtr);
static void iiEnableMailIrqIIEX(i2eBordStrPtr);
static void iiWriteMaskII(i2eBordStrPtr, unsigned char);
static void iiWriteMaskIIEX(i2eBordStrPtr, unsigned char);
static void ii2DelayTimer(unsigned int);
static void ii2DelayWakeup(unsigned long id);
static void ii2Nop(void);
//***************
//* Static Data *
//***************
static int ii2Safe; // Safe I/O address for delay routine
static int iiDelayed; // Set when the iiResetDelay function is
// called. Cleared when ANY board is reset.
static struct timer_list * pDelayTimer; // Used by iiDelayTimer
static wait_queue_head_t pDelayWait; // Used by iiDelayTimer
static rwlock_t Dl_spinlock;
//********
//* Code *
//********
//=======================================================
// Initialization Routines
//
// iiSetAddress
// iiReset
// iiResetDelay
// iiInitialize
//=======================================================
//******************************************************************************
// Function: iiEllisInit()
// Parameters: None
//
// Returns: Nothing
//
// Description:
//
// This routine performs any required initialization of the iiEllis subsystem.
//
//******************************************************************************
static void
iiEllisInit(void)
{
pDelayTimer = kmalloc ( sizeof (struct timer_list), GFP_KERNEL );
init_timer(pDelayTimer);
init_waitqueue_head(&pDelayWait);
LOCK_INIT(&Dl_spinlock);
}
//******************************************************************************
// Function: iiEllisCleanup()
// Parameters: None
//
// Returns: Nothing
//
// Description:
//
// This routine performs any required cleanup of the iiEllis subsystem.
//
//******************************************************************************
static void
iiEllisCleanup(void)
{
if ( pDelayTimer != NULL ) {
kfree ( pDelayTimer );
}
}
//******************************************************************************
// Function: iiSetAddress(pB, address, delay)
// Parameters: pB - pointer to the board structure
// address - the purported I/O address of the board
// delay - pointer to the 1-ms delay function to use
// in this and any future operations to this board
//
// Returns: True if everything appears copacetic.
// False if there is any error: the pB->i2eError field has the error
//
// Description:
//
// This routine (roughly) checks for address validity, sets the i2eValid OK and
// sets the state to II_STATE_COLD which means that we haven't even sent a reset
// yet.
//
//******************************************************************************
static int
iiSetAddress( i2eBordStrPtr pB, int address, delayFunc_t delay )
{
// Should any failure occur before init is finished...
pB->i2eValid = I2E_INCOMPLETE;
// Cannot check upper limit except extremely: Might be microchannel
// Address must be on an 8-byte boundary
if ((unsigned int)address <= 0x100
|| (unsigned int)address >= 0xfff8
|| (address & 0x7)
)
{
COMPLETE(pB,I2EE_BADADDR);
}
// Initialize accelerators
pB->i2eBase = address;
pB->i2eData = address + FIFO_DATA;
pB->i2eStatus = address + FIFO_STATUS;
pB->i2ePointer = address + FIFO_PTR;
pB->i2eXMail = address + FIFO_MAIL;
pB->i2eXMask = address + FIFO_MASK;
// Initialize i/o address for ii2DelayIO
ii2Safe = address + FIFO_NOP;
// Initialize the delay routine
pB->i2eDelay = ((delay != (delayFunc_t)NULL) ? delay : (delayFunc_t)ii2Nop);
pB->i2eValid = I2E_MAGIC;
pB->i2eState = II_STATE_COLD;
COMPLETE(pB, I2EE_GOOD);
}
//******************************************************************************
// Function: iiReset(pB)
// Parameters: pB - pointer to the board structure
//
// Returns: True if everything appears copacetic.
// False if there is any error: the pB->i2eError field has the error
//
// Description:
//
// Attempts to reset the board (see also i2hw.h). Normally, we would use this to
// reset a board immediately after iiSetAddress(), but it is valid to reset a
// board from any state, say, in order to change or re-load loadware. (Under
// such circumstances, no reason to re-run iiSetAddress(), which is why it is a
// separate routine and not included in this routine.
//
//******************************************************************************
static int
iiReset(i2eBordStrPtr pB)
{
// Magic number should be set, else even the address is suspect
if (pB->i2eValid != I2E_MAGIC)
{
COMPLETE(pB, I2EE_BADMAGIC);
}
OUTB(pB->i2eBase + FIFO_RESET, 0); // Any data will do
iiDelay(pB, 50); // Pause between resets
OUTB(pB->i2eBase + FIFO_RESET, 0); // Second reset
// We must wait before even attempting to read anything from the FIFO: the
// board's P.O.S.T may actually attempt to read and write its end of the
// FIFO in order to check flags, loop back (where supported), etc. On
// completion of this testing it would reset the FIFO, and on completion
// of all // P.O.S.T., write the message. We must not mistake data which
// might have been sent for testing as part of the reset message. To
// better utilize time, say, when resetting several boards, we allow the
// delay to be performed externally; in this way the caller can reset
// several boards, delay a single time, then call the initialization
// routine for all.
pB->i2eState = II_STATE_RESET;
iiDelayed = 0; // i.e., the delay routine hasn't been called since the most
// recent reset.
// Ensure anything which would have been of use to standard loadware is
// blanked out, since board has now forgotten everything!.
pB->i2eUsingIrq = IRQ_UNDEFINED; // Not set up to use an interrupt yet
pB->i2eWaitingForEmptyFifo = 0;
pB->i2eOutMailWaiting = 0;
pB->i2eChannelPtr = NULL;
pB->i2eChannelCnt = 0;
pB->i2eLeadoffWord[0] = 0;
pB->i2eFifoInInts = 0;
pB->i2eFifoOutInts = 0;
pB->i2eFatalTrap = NULL;
pB->i2eFatal = 0;
COMPLETE(pB, I2EE_GOOD);
}
//******************************************************************************
// Function: iiResetDelay(pB)
// Parameters: pB - pointer to the board structure
//
// Returns: True if everything appears copacetic.
// False if there is any error: the pB->i2eError field has the error
//
// Description:
//
// Using the delay defined in board structure, waits two seconds (for board to
// reset).
//
//******************************************************************************
static int
iiResetDelay(i2eBordStrPtr pB)
{
if (pB->i2eValid != I2E_MAGIC) {
COMPLETE(pB, I2EE_BADMAGIC);
}
if (pB->i2eState != II_STATE_RESET) {
COMPLETE(pB, I2EE_BADSTATE);
}
iiDelay(pB,2000); /* Now we wait for two seconds. */
iiDelayed = 1; /* Delay has been called: ok to initialize */
COMPLETE(pB, I2EE_GOOD);
}
//******************************************************************************
// Function: iiInitialize(pB)
// Parameters: pB - pointer to the board structure
//
// Returns: True if everything appears copacetic.
// False if there is any error: the pB->i2eError field has the error
//
// Description:
//
// Attempts to read the Power-on reset message. Initializes any remaining fields
// in the pB structure.
//
// This should be called as the third step of a process beginning with
// iiReset(), then iiResetDelay(). This routine checks to see that the structure
// is "valid" and in the reset state, also confirms that the delay routine has
// been called since the latest reset (to any board! overly strong!).
//
//******************************************************************************
static int
iiInitialize(i2eBordStrPtr pB)
{
int itemp;
unsigned char c;
unsigned short utemp;
unsigned int ilimit;
if (pB->i2eValid != I2E_MAGIC)
{
COMPLETE(pB, I2EE_BADMAGIC);
}
if (pB->i2eState != II_STATE_RESET || !iiDelayed)
{
COMPLETE(pB, I2EE_BADSTATE);
}
// In case there is a failure short of our completely reading the power-up
// message.
pB->i2eValid = I2E_INCOMPLETE;
// Now attempt to read the message.
for (itemp = 0; itemp < sizeof(porStr); itemp++)
{
// We expect the entire message is ready.
if (HAS_NO_INPUT(pB))
{
pB->i2ePomSize = itemp;
COMPLETE(pB, I2EE_PORM_SHORT);
}
pB->i2ePom.c[itemp] = c = BYTE_FROM(pB);
// We check the magic numbers as soon as they are supposed to be read
// (rather than after) to minimize effect of reading something we
// already suspect can't be "us".
if ( (itemp == POR_1_INDEX && c != POR_MAGIC_1) ||
(itemp == POR_2_INDEX && c != POR_MAGIC_2))
{
pB->i2ePomSize = itemp+1;
COMPLETE(pB, I2EE_BADMAGIC);
}
}
pB->i2ePomSize = itemp;
// Ensure that this was all the data...
if (HAS_INPUT(pB))
COMPLETE(pB, I2EE_PORM_LONG);
// For now, we'll fail to initialize if P.O.S.T reports bad chip mapper:
// Implying we will not be able to download any code either: That's ok: the
// condition is pretty explicit.
if (pB->i2ePom.e.porDiag1 & POR_BAD_MAPPER)
{
COMPLETE(pB, I2EE_POSTERR);
}
// Determine anything which must be done differently depending on the family
// of boards!
switch (pB->i2ePom.e.porID & POR_ID_FAMILY)
{
case POR_ID_FII: // IntelliPort-II
pB->i2eFifoStyle = FIFO_II;
pB->i2eFifoSize = 512; // 512 bytes, always
pB->i2eDataWidth16 = NO;
pB->i2eMaxIrq = 15; // Because board cannot tell us it is in an 8-bit
// slot, we do allow it to be done (documentation!)
pB->i2eGoodMap[1] =
pB->i2eGoodMap[2] =
pB->i2eGoodMap[3] =
pB->i2eChannelMap[1] =
pB->i2eChannelMap[2] =
pB->i2eChannelMap[3] = 0;
switch (pB->i2ePom.e.porID & POR_ID_SIZE)
{
case POR_ID_II_4:
pB->i2eGoodMap[0] =
pB->i2eChannelMap[0] = 0x0f; // four-port
// Since porPorts1 is based on the Hardware ID register, the numbers
// should always be consistent for IntelliPort-II. Ditto below...
if (pB->i2ePom.e.porPorts1 != 4)
{
COMPLETE(pB, I2EE_INCONSIST);
}
break;
case POR_ID_II_8:
case POR_ID_II_8R:
pB->i2eGoodMap[0] =
pB->i2eChannelMap[0] = 0xff; // Eight port
if (pB->i2ePom.e.porPorts1 != 8)
{
COMPLETE(pB, I2EE_INCONSIST);
}
break;
case POR_ID_II_6:
pB->i2eGoodMap[0] =
pB->i2eChannelMap[0] = 0x3f; // Six Port
if (pB->i2ePom.e.porPorts1 != 6)
{
COMPLETE(pB, I2EE_INCONSIST);
}
break;
}
// Fix up the "good channel list based on any errors reported.
if (pB->i2ePom.e.porDiag1 & POR_BAD_UART1)
{
pB->i2eGoodMap[0] &= ~0x0f;
}
if (pB->i2ePom.e.porDiag1 & POR_BAD_UART2)
{
pB->i2eGoodMap[0] &= ~0xf0;
}
break; // POR_ID_FII case
case POR_ID_FIIEX: // IntelliPort-IIEX
pB->i2eFifoStyle = FIFO_IIEX;
itemp = pB->i2ePom.e.porFifoSize;
// Implicit assumption that fifo would not grow beyond 32k,
// nor would ever be less than 256.
if (itemp < 8 || itemp > 15)
{
COMPLETE(pB, I2EE_INCONSIST);
}
pB->i2eFifoSize = (1 << itemp);
// These are based on what P.O.S.T thinks should be there, based on
// box ID registers
ilimit = pB->i2ePom.e.porNumBoxes;
if (ilimit > ABS_MAX_BOXES)
{
ilimit = ABS_MAX_BOXES;
}
// For as many boxes as EXIST, gives the type of box.
// Added 8/6/93: check for the ISA-4 (asic) which looks like an
// expandable but for whom "8 or 16?" is not the right question.
utemp = pB->i2ePom.e.porFlags;
if (utemp & POR_CEX4)
{
pB->i2eChannelMap[0] = 0x000f;
} else {
utemp &= POR_BOXES;
for (itemp = 0; itemp < ilimit; itemp++)
{
pB->i2eChannelMap[itemp] =
((utemp & POR_BOX_16) ? 0xffff : 0x00ff);
utemp >>= 1;
}
}
// These are based on what P.O.S.T actually found.
utemp = (pB->i2ePom.e.porPorts2 << 8) + pB->i2ePom.e.porPorts1;
for (itemp = 0; itemp < ilimit; itemp++)
{
pB->i2eGoodMap[itemp] = 0;
if (utemp & 1) pB->i2eGoodMap[itemp] |= 0x000f;
if (utemp & 2) pB->i2eGoodMap[itemp] |= 0x00f0;
if (utemp & 4) pB->i2eGoodMap[itemp] |= 0x0f00;
if (utemp & 8) pB->i2eGoodMap[itemp] |= 0xf000;
utemp >>= 4;
}
// Now determine whether we should transfer in 8 or 16-bit mode.
switch (pB->i2ePom.e.porBus & (POR_BUS_SLOT16 | POR_BUS_DIP16) )
{
case POR_BUS_SLOT16 | POR_BUS_DIP16:
pB->i2eDataWidth16 = YES;
pB->i2eMaxIrq = 15;
break;
case POR_BUS_SLOT16:
pB->i2eDataWidth16 = NO;
pB->i2eMaxIrq = 15;
break;
case 0:
case POR_BUS_DIP16: // In an 8-bit slot, DIP switch don't care.
default:
pB->i2eDataWidth16 = NO;
pB->i2eMaxIrq = 7;
break;
}
break; // POR_ID_FIIEX case
default: // Unknown type of board
COMPLETE(pB, I2EE_BAD_FAMILY);
break;
} // End the switch based on family
// Temporarily, claim there is no room in the outbound fifo.
// We will maintain this whenever we check for an empty outbound FIFO.
pB->i2eFifoRemains = 0;
// Now, based on the bus type, should we expect to be able to re-configure
// interrupts (say, for testing purposes).
switch (pB->i2ePom.e.porBus & POR_BUS_TYPE)
{
case POR_BUS_T_ISA:
case POR_BUS_T_UNK: // If the type of bus is undeclared, assume ok.
pB->i2eChangeIrq = YES;
break;
case POR_BUS_T_MCA:
case POR_BUS_T_EISA:
pB->i2eChangeIrq = NO;
break;
default:
COMPLETE(pB, I2EE_BADBUS);
}
if (pB->i2eDataWidth16 == YES)
{
pB->i2eWriteBuf = iiWriteBuf16;
pB->i2eReadBuf = iiReadBuf16;
pB->i2eWriteWord = iiWriteWord16;
pB->i2eReadWord = iiReadWord16;
} else {
pB->i2eWriteBuf = iiWriteBuf8;
pB->i2eReadBuf = iiReadBuf8;
pB->i2eWriteWord = iiWriteWord8;
pB->i2eReadWord = iiReadWord8;
}
switch(pB->i2eFifoStyle)
{
case FIFO_II:
pB->i2eWaitForTxEmpty = iiWaitForTxEmptyII;
pB->i2eTxMailEmpty = iiTxMailEmptyII;
pB->i2eTrySendMail = iiTrySendMailII;
pB->i2eGetMail = iiGetMailII;
pB->i2eEnableMailIrq = iiEnableMailIrqII;
pB->i2eWriteMask = iiWriteMaskII;
break;
case FIFO_IIEX:
pB->i2eWaitForTxEmpty = iiWaitForTxEmptyIIEX;
pB->i2eTxMailEmpty = iiTxMailEmptyIIEX;
pB->i2eTrySendMail = iiTrySendMailIIEX;
pB->i2eGetMail = iiGetMailIIEX;
pB->i2eEnableMailIrq = iiEnableMailIrqIIEX;
pB->i2eWriteMask = iiWriteMaskIIEX;
break;
default:
COMPLETE(pB, I2EE_INCONSIST);
}
// Initialize state information.
pB->i2eState = II_STATE_READY; // Ready to load loadware.
// Some Final cleanup:
// For some boards, the bootstrap firmware may perform some sort of test
// resulting in a stray character pending in the incoming mailbox. If one is
// there, it should be read and discarded, especially since for the standard
// firmware, it's the mailbox that interrupts the host.
pB->i2eStartMail = iiGetMail(pB);
// Throw it away and clear the mailbox structure element
pB->i2eStartMail = NO_MAIL_HERE;
// Everything is ok now, return with good status/
pB->i2eValid = I2E_MAGIC;
COMPLETE(pB, I2EE_GOOD);
}
//=======================================================
// Delay Routines
//
// iiDelayIO
// iiNop
//=======================================================
static void
ii2DelayWakeup(unsigned long id)
{
wake_up_interruptible ( &pDelayWait );
}
//******************************************************************************
// Function: ii2DelayTimer(mseconds)
// Parameters: mseconds - number of milliseconds to delay
//
// Returns: Nothing
//
// Description:
//
// This routine delays for approximately mseconds milliseconds and is intended
// to be called indirectly through i2Delay field in i2eBordStr. It uses the
// Linux timer_list mechanism.
//
// The Linux timers use a unit called "jiffies" which are 10mS in the Intel
// architecture. This function rounds the delay period up to the next "jiffy".
// In the Alpha architecture the "jiffy" is 1mS, but this driver is not intended
// for Alpha platforms at this time.
//
//******************************************************************************
static void
ii2DelayTimer(unsigned int mseconds)
{
wait_queue_t wait;
init_waitqueue_entry(&wait, current);
init_timer ( pDelayTimer );
add_wait_queue(&pDelayWait, &wait);
set_current_state( TASK_INTERRUPTIBLE );
pDelayTimer->expires = jiffies + ( mseconds + 9 ) / 10;
pDelayTimer->function = ii2DelayWakeup;
pDelayTimer->data = 0;
add_timer ( pDelayTimer );
schedule();
set_current_state( TASK_RUNNING );
remove_wait_queue(&pDelayWait, &wait);
del_timer ( pDelayTimer );
}
#if 0
//static void ii2DelayIO(unsigned int);
//******************************************************************************
// !!! Not Used, this is DOS crap, some of you young folks may be interested in
// in how things were done in the stone age of caculating machines !!!
// Function: ii2DelayIO(mseconds)
// Parameters: mseconds - number of milliseconds to delay
//
// Returns: Nothing
//
// Description:
//
// This routine delays for approximately mseconds milliseconds and is intended
// to be called indirectly through i2Delay field in i2eBordStr. It is intended
// for use where a clock-based function is impossible: for example, DOS drivers.
//
// This function uses the IN instruction to place bounds on the timing and
// assumes that ii2Safe has been set. This is because I/O instructions are not
// subject to caching and will therefore take a certain minimum time. To ensure
// the delay is at least long enough on fast machines, it is based on some
// fastest-case calculations. On slower machines this may cause VERY long
// delays. (3 x fastest case). In the fastest case, everything is cached except
// the I/O instruction itself.
//
// Timing calculations:
// The fastest bus speed for I/O operations is likely to be 10 MHz. The I/O
// operation in question is a byte operation to an odd address. For 8-bit
// operations, the architecture generally enforces two wait states. At 10 MHz, a
// single cycle time is 100nS. A read operation at two wait states takes 6
// cycles for a total time of 600nS. Therefore approximately 1666 iterations
// would be required to generate a single millisecond delay. The worst
// (reasonable) case would be an 8MHz system with no cacheing. In this case, the
// I/O instruction would take 125nS x 6 cyles = 750 nS. More importantly, code
// fetch of other instructions in the loop would take time (zero wait states,
// however) and would be hard to estimate. This is minimized by using in-line
// assembler for the in inner loop of IN instructions. This consists of just a
// few bytes. So we'll guess about four code fetches per loop. Each code fetch
// should take four cycles, so we have 125nS * 8 = 1000nS. Worst case then is
// that what should have taken 1 mS takes instead 1666 * (1750) = 2.9 mS.
//
// So much for theoretical timings: results using 1666 value on some actual
// machines:
// IBM 286 6MHz 3.15 mS
// Zenith 386 33MHz 2.45 mS
// (brandX) 386 33MHz 1.90 mS (has cache)
// (brandY) 486 33MHz 2.35 mS
// NCR 486 ?? 1.65 mS (microchannel)
//
// For most machines, it is probably safe to scale this number back (remember,
// for robust operation use an actual timed delay if possible), so we are using
// a value of 1190. This yields 1.17 mS for the fastest machine in our sample,
// 1.75 mS for typical 386 machines, and 2.25 mS the absolute slowest machine.
//
// 1/29/93:
// The above timings are too slow. Actual cycle times might be faster. ISA cycle
// times could approach 500 nS, and ...
// The IBM model 77 being microchannel has no wait states for 8-bit reads and
// seems to be accessing the I/O at 440 nS per access (from start of one to
// start of next). This would imply we need 1000/.440 = 2272 iterations to
// guarantee we are fast enough. In actual testing, we see that 2 * 1190 are in
// fact enough. For diagnostics, we keep the level at 1190, but developers note
// this needs tuning.
//
// Safe assumption: 2270 i/o reads = 1 millisecond
//
//******************************************************************************
static int ii2DelValue = 1190; // See timing calculations below
// 1666 for fastest theoretical machine
// 1190 safe for most fast 386 machines
// 1000 for fastest machine tested here
// 540 (sic) for AT286/6Mhz
static void
ii2DelayIO(unsigned int mseconds)
{
if (!ii2Safe)
return; /* Do nothing if this variable uninitialized */
while(mseconds--) {
int i = ii2DelValue;
while ( i-- ) {
INB ( ii2Safe );
}
}
}
#endif
//******************************************************************************
// Function: ii2Nop()
// Parameters: None
//
// Returns: Nothing
//
// Description:
//
// iiInitialize will set i2eDelay to this if the delay parameter is NULL. This
// saves checking for a NULL pointer at every call.
//******************************************************************************
static void
ii2Nop(void)
{
return; // no mystery here
}
//=======================================================
// Routines which are available in 8/16-bit versions, or
// in different fifo styles. These are ALL called
// indirectly through the board structure.
//=======================================================
//******************************************************************************
// Function: iiWriteBuf16(pB, address, count)
// Parameters: pB - pointer to board structure
// address - address of data to write
// count - number of data bytes to write
//
// Returns: True if everything appears copacetic.
// False if there is any error: the pB->i2eError field has the error
//
// Description:
//
// Writes 'count' bytes from 'address' to the data fifo specified by the board
// structure pointer pB. Should count happen to be odd, an extra pad byte is
// sent (identity unknown...). Uses 16-bit (word) operations. Is called
// indirectly through pB->i2eWriteBuf.
//
//******************************************************************************
static int
iiWriteBuf16(i2eBordStrPtr pB, unsigned char *address, int count)
{
// Rudimentary sanity checking here.
if (pB->i2eValid != I2E_MAGIC)
COMPLETE(pB, I2EE_INVALID);
OUTSW ( pB->i2eData, address, count);
COMPLETE(pB, I2EE_GOOD);
}
//******************************************************************************
// Function: iiWriteBuf8(pB, address, count)
// Parameters: pB - pointer to board structure
// address - address of data to write
// count - number of data bytes to write
//
// Returns: True if everything appears copacetic.
// False if there is any error: the pB->i2eError field has the error
//
// Description:
//
// Writes 'count' bytes from 'address' to the data fifo specified by the board
// structure pointer pB. Should count happen to be odd, an extra pad byte is
// sent (identity unknown...). This is to be consistent with the 16-bit version.
// Uses 8-bit (byte) operations. Is called indirectly through pB->i2eWriteBuf.
//
//******************************************************************************
static int
iiWriteBuf8(i2eBordStrPtr pB, unsigned char *address, int count)
{
/* Rudimentary sanity checking here */
if (pB->i2eValid != I2E_MAGIC)
COMPLETE(pB, I2EE_INVALID);
OUTSB ( pB->i2eData, address, count );
COMPLETE(pB, I2EE_GOOD);
}
//******************************************************************************
// Function: iiReadBuf16(pB, address, count)
// Parameters: pB - pointer to board structure
// address - address to put data read
// count - number of data bytes to read
//
// Returns: True if everything appears copacetic.
// False if there is any error: the pB->i2eError field has the error
//
// Description:
//
// Reads 'count' bytes into 'address' from the data fifo specified by the board
// structure pointer pB. Should count happen to be odd, an extra pad byte is
// received (identity unknown...). Uses 16-bit (word) operations. Is called
// indirectly through pB->i2eReadBuf.
//
//******************************************************************************
static int
iiReadBuf16(i2eBordStrPtr pB, unsigned char *address, int count)
{
// Rudimentary sanity checking here.
if (pB->i2eValid != I2E_MAGIC)
COMPLETE(pB, I2EE_INVALID);
INSW ( pB->i2eData, address, count);
COMPLETE(pB, I2EE_GOOD);
}
//******************************************************************************
// Function: iiReadBuf8(pB, address, count)
// Parameters: pB - pointer to board structure
// address - address to put data read
// count - number of data bytes to read
//
// Returns: True if everything appears copacetic.
// False if there is any error: the pB->i2eError field has the error
//
// Description:
//
// Reads 'count' bytes into 'address' from the data fifo specified by the board
// structure pointer pB. Should count happen to be odd, an extra pad byte is
// received (identity unknown...). This to match the 16-bit behaviour. Uses
// 8-bit (byte) operations. Is called indirectly through pB->i2eReadBuf.
//
//******************************************************************************
static int
iiReadBuf8(i2eBordStrPtr pB, unsigned char *address, int count)
{
// Rudimentary sanity checking here.
if (pB->i2eValid != I2E_MAGIC)
COMPLETE(pB, I2EE_INVALID);
INSB ( pB->i2eData, address, count);
COMPLETE(pB, I2EE_GOOD);
}
//******************************************************************************
// Function: iiReadWord16(pB)
// Parameters: pB - pointer to board structure
//
// Returns: True if everything appears copacetic.
// False if there is any error: the pB->i2eError field has the error
//
// Description:
//
// Returns the word read from the data fifo specified by the board-structure
// pointer pB. Uses a 16-bit operation. Is called indirectly through
// pB->i2eReadWord.
//
//******************************************************************************
static unsigned short
iiReadWord16(i2eBordStrPtr pB)
{
return (unsigned short)( INW(pB->i2eData) );
}
//******************************************************************************
// Function: iiReadWord8(pB)
// Parameters: pB - pointer to board structure
//
// Returns: True if everything appears copacetic.
// False if there is any error: the pB->i2eError field has the error
//
// Description:
//
// Returns the word read from the data fifo specified by the board-structure
// pointer pB. Uses two 8-bit operations. Bytes are assumed to be LSB first. Is
// called indirectly through pB->i2eReadWord.
//
//******************************************************************************
static unsigned short
iiReadWord8(i2eBordStrPtr pB)
{
unsigned short urs;
urs = INB ( pB->i2eData );
return ( ( INB ( pB->i2eData ) << 8 ) | urs );
}
//******************************************************************************
// Function: iiWriteWord16(pB, value)
// Parameters: pB - pointer to board structure
// value - data to write
//
// Returns: True if everything appears copacetic.
// False if there is any error: the pB->i2eError field has the error
//
// Description:
//
// Writes the word 'value' to the data fifo specified by the board-structure
// pointer pB. Uses 16-bit operation. Is called indirectly through
// pB->i2eWriteWord.
//
//******************************************************************************
static void
iiWriteWord16(i2eBordStrPtr pB, unsigned short value)
{
WORD_TO(pB, (int)value);
}
//******************************************************************************
// Function: iiWriteWord8(pB, value)
// Parameters: pB - pointer to board structure
// value - data to write
//
// Returns: True if everything appears copacetic.
// False if there is any error: the pB->i2eError field has the error
//
// Description:
//
// Writes the word 'value' to the data fifo specified by the board-structure
// pointer pB. Uses two 8-bit operations (writes LSB first). Is called
// indirectly through pB->i2eWriteWord.
//
//******************************************************************************
static void
iiWriteWord8(i2eBordStrPtr pB, unsigned short value)
{
BYTE_TO(pB, (char)value);
BYTE_TO(pB, (char)(value >> 8) );
}
//******************************************************************************
// Function: iiWaitForTxEmptyII(pB, mSdelay)
// Parameters: pB - pointer to board structure
// mSdelay - period to wait before returning
//
// Returns: True if the FIFO is empty.
// False if it not empty in the required time: the pB->i2eError
// field has the error.
//
// Description:
//
// Waits up to "mSdelay" milliseconds for the outgoing FIFO to become empty; if
// not empty by the required time, returns false and error in pB->i2eError,
// otherwise returns true.
//
// mSdelay == 0 is taken to mean must be empty on the first test.
//
// This version operates on IntelliPort-II - style FIFO's
//
// Note this routine is organized so that if status is ok there is no delay at
// all called either before or after the test. Is called indirectly through
// pB->i2eWaitForTxEmpty.
//
//******************************************************************************
static int
iiWaitForTxEmptyII(i2eBordStrPtr pB, int mSdelay)
{
unsigned long flags;
int itemp;
for (;;)
{
// This routine hinges on being able to see the "other" status register
// (as seen by the local processor). His incoming fifo is our outgoing
// FIFO.
//
// By the nature of this routine, you would be using this as part of a
// larger atomic context: i.e., you would use this routine to ensure the
// fifo empty, then act on this information. Between these two halves,
// you will generally not want to service interrupts or in any way
// disrupt the assumptions implicit in the larger context.
//
// Even worse, however, this routine "shifts" the status register to
// point to the local status register which is not the usual situation.
// Therefore for extra safety, we force the critical section to be
// completely atomic, and pick up after ourselves before allowing any
// interrupts of any kind.
WRITE_LOCK_IRQSAVE(&Dl_spinlock,flags)
OUTB(pB->i2ePointer, SEL_COMMAND);
OUTB(pB->i2ePointer, SEL_CMD_SH);
itemp = INB(pB->i2eStatus);
OUTB(pB->i2ePointer, SEL_COMMAND);
OUTB(pB->i2ePointer, SEL_CMD_UNSH);
if (itemp & ST_IN_EMPTY)
{
UPDATE_FIFO_ROOM(pB);
WRITE_UNLOCK_IRQRESTORE(&Dl_spinlock,flags)
COMPLETE(pB, I2EE_GOOD);
}
WRITE_UNLOCK_IRQRESTORE(&Dl_spinlock,flags)
if (mSdelay-- == 0)
break;
iiDelay(pB, 1); /* 1 mS granularity on checking condition */
}
COMPLETE(pB, I2EE_TXE_TIME);
}
//******************************************************************************
// Function: iiWaitForTxEmptyIIEX(pB, mSdelay)
// Parameters: pB - pointer to board structure
// mSdelay - period to wait before returning
//
// Returns: True if the FIFO is empty.
// False if it not empty in the required time: the pB->i2eError
// field has the error.
//
// Description:
//
// Waits up to "mSdelay" milliseconds for the outgoing FIFO to become empty; if
// not empty by the required time, returns false and error in pB->i2eError,
// otherwise returns true.
//
// mSdelay == 0 is taken to mean must be empty on the first test.
//
// This version operates on IntelliPort-IIEX - style FIFO's
//
// Note this routine is organized so that if status is ok there is no delay at
// all called either before or after the test. Is called indirectly through
// pB->i2eWaitForTxEmpty.
//
//******************************************************************************
static int
iiWaitForTxEmptyIIEX(i2eBordStrPtr pB, int mSdelay)
{
unsigned long flags;
for (;;)
{
// By the nature of this routine, you would be using this as part of a
// larger atomic context: i.e., you would use this routine to ensure the
// fifo empty, then act on this information. Between these two halves,
// you will generally not want to service interrupts or in any way
// disrupt the assumptions implicit in the larger context.
WRITE_LOCK_IRQSAVE(&Dl_spinlock,flags)
if (INB(pB->i2eStatus) & STE_OUT_MT) {
UPDATE_FIFO_ROOM(pB);
WRITE_UNLOCK_IRQRESTORE(&Dl_spinlock,flags)
COMPLETE(pB, I2EE_GOOD);
}
WRITE_UNLOCK_IRQRESTORE(&Dl_spinlock,flags)
if (mSdelay-- == 0)
break;
iiDelay(pB, 1); // 1 mS granularity on checking condition
}
COMPLETE(pB, I2EE_TXE_TIME);
}
//******************************************************************************
// Function: iiTxMailEmptyII(pB)
// Parameters: pB - pointer to board structure
//
// Returns: True if the transmit mailbox is empty.
// False if it not empty.
//
// Description:
//
// Returns true or false according to whether the transmit mailbox is empty (and
// therefore able to accept more mail)
//
// This version operates on IntelliPort-II - style FIFO's
//
//******************************************************************************
static int
iiTxMailEmptyII(i2eBordStrPtr pB)
{
int port = pB->i2ePointer;
OUTB ( port, SEL_OUTMAIL );
return ( INB(port) == 0 );
}
//******************************************************************************
// Function: iiTxMailEmptyIIEX(pB)
// Parameters: pB - pointer to board structure
//
// Returns: True if the transmit mailbox is empty.
// False if it not empty.
//
// Description:
//
// Returns true or false according to whether the transmit mailbox is empty (and
// therefore able to accept more mail)
//
// This version operates on IntelliPort-IIEX - style FIFO's
//
//******************************************************************************
static int
iiTxMailEmptyIIEX(i2eBordStrPtr pB)
{
return !(INB(pB->i2eStatus) & STE_OUT_MAIL);
}
//******************************************************************************
// Function: iiTrySendMailII(pB,mail)
// Parameters: pB - pointer to board structure
// mail - value to write to mailbox
//
// Returns: True if the transmit mailbox is empty, and mail is sent.
// False if it not empty.
//
// Description:
//
// If outgoing mailbox is empty, sends mail and returns true. If outgoing
// mailbox is not empty, returns false.
//
// This version operates on IntelliPort-II - style FIFO's
//
//******************************************************************************
static int
iiTrySendMailII(i2eBordStrPtr pB, unsigned char mail)
{
int port = pB->i2ePointer;
OUTB(port, SEL_OUTMAIL);
if (INB(port) == 0) {
OUTB(port, SEL_OUTMAIL);
OUTB(port, mail);
return 1;
}
return 0;
}
//******************************************************************************
// Function: iiTrySendMailIIEX(pB,mail)
// Parameters: pB - pointer to board structure
// mail - value to write to mailbox
//
// Returns: True if the transmit mailbox is empty, and mail is sent.
// False if it not empty.
//
// Description:
//
// If outgoing mailbox is empty, sends mail and returns true. If outgoing
// mailbox is not empty, returns false.
//
// This version operates on IntelliPort-IIEX - style FIFO's
//
//******************************************************************************
static int
iiTrySendMailIIEX(i2eBordStrPtr pB, unsigned char mail)
{
if(INB(pB->i2eStatus) & STE_OUT_MAIL) {
return 0;
}
OUTB(pB->i2eXMail, mail);
return 1;
}
//******************************************************************************
// Function: iiGetMailII(pB,mail)
// Parameters: pB - pointer to board structure
//
// Returns: Mailbox data or NO_MAIL_HERE.
//
// Description:
//
// If no mail available, returns NO_MAIL_HERE otherwise returns the data from
// the mailbox, which is guaranteed != NO_MAIL_HERE.
//
// This version operates on IntelliPort-II - style FIFO's
//
//******************************************************************************
static unsigned short
iiGetMailII(i2eBordStrPtr pB)
{
if (HAS_MAIL(pB)) {
OUTB(pB->i2ePointer, SEL_INMAIL);
return INB(pB->i2ePointer);
} else {
return NO_MAIL_HERE;
}
}
//******************************************************************************
// Function: iiGetMailIIEX(pB,mail)
// Parameters: pB - pointer to board structure
//
// Returns: Mailbox data or NO_MAIL_HERE.
//
// Description:
//
// If no mail available, returns NO_MAIL_HERE otherwise returns the data from
// the mailbox, which is guaranteed != NO_MAIL_HERE.
//
// This version operates on IntelliPort-IIEX - style FIFO's
//
//******************************************************************************
static unsigned short
iiGetMailIIEX(i2eBordStrPtr pB)
{
if (HAS_MAIL(pB)) {
return INB(pB->i2eXMail);
} else {
return NO_MAIL_HERE;
}
}
//******************************************************************************
// Function: iiEnableMailIrqII(pB)
// Parameters: pB - pointer to board structure
//
// Returns: Nothing
//
// Description:
//
// Enables board to interrupt host (only) by writing to host's in-bound mailbox.
//
// This version operates on IntelliPort-II - style FIFO's
//
//******************************************************************************
static void
iiEnableMailIrqII(i2eBordStrPtr pB)
{
OUTB(pB->i2ePointer, SEL_MASK);
OUTB(pB->i2ePointer, ST_IN_MAIL);
}
//******************************************************************************
// Function: iiEnableMailIrqIIEX(pB)
// Parameters: pB - pointer to board structure
//
// Returns: Nothing
//
// Description:
//
// Enables board to interrupt host (only) by writing to host's in-bound mailbox.
//
// This version operates on IntelliPort-IIEX - style FIFO's
//
//******************************************************************************
static void
iiEnableMailIrqIIEX(i2eBordStrPtr pB)
{
OUTB(pB->i2eXMask, MX_IN_MAIL);
}
//******************************************************************************
// Function: iiWriteMaskII(pB)
// Parameters: pB - pointer to board structure
//
// Returns: Nothing
//
// Description:
//
// Writes arbitrary value to the mask register.
//
// This version operates on IntelliPort-II - style FIFO's
//
//******************************************************************************
static void
iiWriteMaskII(i2eBordStrPtr pB, unsigned char value)
{
OUTB(pB->i2ePointer, SEL_MASK);
OUTB(pB->i2ePointer, value);
}
//******************************************************************************
// Function: iiWriteMaskIIEX(pB)
// Parameters: pB - pointer to board structure
//
// Returns: Nothing
//
// Description:
//
// Writes arbitrary value to the mask register.
//
// This version operates on IntelliPort-IIEX - style FIFO's
//
//******************************************************************************
static void
iiWriteMaskIIEX(i2eBordStrPtr pB, unsigned char value)
{
OUTB(pB->i2eXMask, value);
}
//******************************************************************************
// Function: iiDownloadBlock(pB, pSource, isStandard)
// Parameters: pB - pointer to board structure
// pSource - loadware block to download
// isStandard - True if "standard" loadware, else false.
//
// Returns: Success or Failure
//
// Description:
//
// Downloads a single block (at pSource)to the board referenced by pB. Caller
// sets isStandard to true/false according to whether the "standard" loadware is
// what's being loaded. The normal process, then, is to perform an iiInitialize
// to the board, then perform some number of iiDownloadBlocks using the returned
// state to determine when download is complete.
//
// Possible return values: (see I2ELLIS.H)
// II_DOWN_BADVALID
// II_DOWN_BADFILE
// II_DOWN_CONTINUING
// II_DOWN_GOOD
// II_DOWN_BAD
// II_DOWN_BADSTATE
// II_DOWN_TIMEOUT
//
// Uses the i2eState and i2eToLoad fields (initialized at iiInitialize) to
// determine whether this is the first block, whether to check for magic
// numbers, how many blocks there are to go...
//
//******************************************************************************
static int
iiDownloadBlock ( i2eBordStrPtr pB, loadHdrStrPtr pSource, int isStandard)
{
int itemp;
int loadedFirst;
if (pB->i2eValid != I2E_MAGIC) return II_DOWN_BADVALID;
switch(pB->i2eState)
{
case II_STATE_READY:
// Loading the first block after reset. Must check the magic number of the
// loadfile, store the number of blocks we expect to load.
if (pSource->e.loadMagic != MAGIC_LOADFILE)
{
return II_DOWN_BADFILE;
}
// Next we store the total number of blocks to load, including this one.
pB->i2eToLoad = 1 + pSource->e.loadBlocksMore;
// Set the state, store the version numbers. ('Cause this may have come
// from a file - we might want to report these versions and revisions in
// case of an error!
pB->i2eState = II_STATE_LOADING;
pB->i2eLVersion = pSource->e.loadVersion;
pB->i2eLRevision = pSource->e.loadRevision;
pB->i2eLSub = pSource->e.loadSubRevision;
// The time and date of compilation is also available but don't bother
// storing it for normal purposes.
loadedFirst = 1;
break;
case II_STATE_LOADING:
loadedFirst = 0;
break;
default:
return II_DOWN_BADSTATE;
}
// Now we must be in the II_STATE_LOADING state, and we assume i2eToLoad
// must be positive still, because otherwise we would have cleaned up last
// time and set the state to II_STATE_LOADED.
if (!iiWaitForTxEmpty(pB, MAX_DLOAD_READ_TIME)) {
return II_DOWN_TIMEOUT;
}
if (!iiWriteBuf(pB, pSource->c, LOADWARE_BLOCK_SIZE)) {
return II_DOWN_BADVALID;
}
// If we just loaded the first block, wait for the fifo to empty an extra
// long time to allow for any special startup code in the firmware, like
// sending status messages to the LCD's.
if (loadedFirst) {
if (!iiWaitForTxEmpty(pB, MAX_DLOAD_START_TIME)) {
return II_DOWN_TIMEOUT;
}
}
// Determine whether this was our last block!
if (--(pB->i2eToLoad)) {
return II_DOWN_CONTINUING; // more to come...
}
// It WAS our last block: Clean up operations...
// ...Wait for last buffer to drain from the board...
if (!iiWaitForTxEmpty(pB, MAX_DLOAD_READ_TIME)) {
return II_DOWN_TIMEOUT;
}
// If there were only a single block written, this would come back
// immediately and be harmless, though not strictly necessary.
itemp = MAX_DLOAD_ACK_TIME/10;
while (--itemp) {
if (HAS_INPUT(pB)) {
switch(BYTE_FROM(pB))
{
case LOADWARE_OK:
pB->i2eState =
isStandard ? II_STATE_STDLOADED :II_STATE_LOADED;
// Some revisions of the bootstrap firmware (e.g. ISA-8 1.0.2)
// will, // if there is a debug port attached, require some
// time to send information to the debug port now. It will do
// this before // executing any of the code we just downloaded.
// It may take up to 700 milliseconds.
if (pB->i2ePom.e.porDiag2 & POR_DEBUG_PORT) {
iiDelay(pB, 700);
}
return II_DOWN_GOOD;
case LOADWARE_BAD:
default:
return II_DOWN_BAD;
}
}
iiDelay(pB, 10); // 10 mS granularity on checking condition
}
// Drop-through --> timed out waiting for firmware confirmation
pB->i2eState = II_STATE_BADLOAD;
return II_DOWN_TIMEOUT;
}
//******************************************************************************
// Function: iiDownloadAll(pB, pSource, isStandard, size)
// Parameters: pB - pointer to board structure
// pSource - loadware block to download
// isStandard - True if "standard" loadware, else false.
// size - size of data to download (in bytes)
//
// Returns: Success or Failure
//
// Description:
//
// Given a pointer to a board structure, a pointer to the beginning of some
// loadware, whether it is considered the "standard loadware", and the size of
// the array in bytes loads the entire array to the board as loadware.
//
// Assumes the board has been freshly reset and the power-up reset message read.
// (i.e., in II_STATE_READY). Complains if state is bad, or if there seems to be
// too much or too little data to load, or if iiDownloadBlock complains.
//******************************************************************************
static int
iiDownloadAll(i2eBordStrPtr pB, loadHdrStrPtr pSource, int isStandard, int size)
{
int status;
// We know (from context) board should be ready for the first block of
// download. Complain if not.
if (pB->i2eState != II_STATE_READY) return II_DOWN_BADSTATE;
while (size > 0) {
size -= LOADWARE_BLOCK_SIZE; // How much data should there be left to
// load after the following operation ?
// Note we just bump pSource by "one", because its size is actually that
// of an entire block, same as LOADWARE_BLOCK_SIZE.
status = iiDownloadBlock(pB, pSource++, isStandard);
switch(status)
{
case II_DOWN_GOOD:
return ( (size > 0) ? II_DOWN_OVER : II_DOWN_GOOD);
case II_DOWN_CONTINUING:
break;
default:
return status;
}
}
// We shouldn't drop out: it means "while" caught us with nothing left to
// download, yet the previous DownloadBlock did not return complete. Ergo,
// not enough data to match the size byte in the header.
return II_DOWN_UNDER;
}