2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-21 11:44:01 +08:00
linux-next/kernel/sched/completion.c
Linus Torvalds 5f82e71a00 Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar:

 - Add 'cross-release' support to lockdep, which allows APIs like
   completions, where it's not the 'owner' who releases the lock, to be
   tracked. It's all activated automatically under
   CONFIG_PROVE_LOCKING=y.

 - Clean up (restructure) the x86 atomics op implementation to be more
   readable, in preparation of KASAN annotations. (Dmitry Vyukov)

 - Fix static keys (Paolo Bonzini)

 - Add killable versions of down_read() et al (Kirill Tkhai)

 - Rework and fix jump_label locking (Marc Zyngier, Paolo Bonzini)

 - Rework (and fix) tlb_flush_pending() barriers (Peter Zijlstra)

 - Remove smp_mb__before_spinlock() and convert its usages, introduce
   smp_mb__after_spinlock() (Peter Zijlstra)

* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (56 commits)
  locking/lockdep/selftests: Fix mixed read-write ABBA tests
  sched/completion: Avoid unnecessary stack allocation for COMPLETION_INITIALIZER_ONSTACK()
  acpi/nfit: Fix COMPLETION_INITIALIZER_ONSTACK() abuse
  locking/pvqspinlock: Relax cmpxchg's to improve performance on some architectures
  smp: Avoid using two cache lines for struct call_single_data
  locking/lockdep: Untangle xhlock history save/restore from task independence
  locking/refcounts, x86/asm: Disable CONFIG_ARCH_HAS_REFCOUNT for the time being
  futex: Remove duplicated code and fix undefined behaviour
  Documentation/locking/atomic: Finish the document...
  locking/lockdep: Fix workqueue crossrelease annotation
  workqueue/lockdep: 'Fix' flush_work() annotation
  locking/lockdep/selftests: Add mixed read-write ABBA tests
  mm, locking/barriers: Clarify tlb_flush_pending() barriers
  locking/lockdep: Make CONFIG_LOCKDEP_CROSSRELEASE and CONFIG_LOCKDEP_COMPLETIONS truly non-interactive
  locking/lockdep: Explicitly initialize wq_barrier::done::map
  locking/lockdep: Rename CONFIG_LOCKDEP_COMPLETE to CONFIG_LOCKDEP_COMPLETIONS
  locking/lockdep: Reword title of LOCKDEP_CROSSRELEASE config
  locking/lockdep: Make CONFIG_LOCKDEP_CROSSRELEASE part of CONFIG_PROVE_LOCKING
  locking/refcounts, x86/asm: Implement fast refcount overflow protection
  locking/lockdep: Fix the rollback and overwrite detection logic in crossrelease
  ...
2017-09-04 11:52:29 -07:00

337 lines
10 KiB
C

/*
* Generic wait-for-completion handler;
*
* It differs from semaphores in that their default case is the opposite,
* wait_for_completion default blocks whereas semaphore default non-block. The
* interface also makes it easy to 'complete' multiple waiting threads,
* something which isn't entirely natural for semaphores.
*
* But more importantly, the primitive documents the usage. Semaphores would
* typically be used for exclusion which gives rise to priority inversion.
* Waiting for completion is a typically sync point, but not an exclusion point.
*/
#include <linux/sched/signal.h>
#include <linux/sched/debug.h>
#include <linux/completion.h>
/**
* complete: - signals a single thread waiting on this completion
* @x: holds the state of this particular completion
*
* This will wake up a single thread waiting on this completion. Threads will be
* awakened in the same order in which they were queued.
*
* See also complete_all(), wait_for_completion() and related routines.
*
* It may be assumed that this function implies a write memory barrier before
* changing the task state if and only if any tasks are woken up.
*/
void complete(struct completion *x)
{
unsigned long flags;
spin_lock_irqsave(&x->wait.lock, flags);
/*
* Perform commit of crossrelease here.
*/
complete_release_commit(x);
if (x->done != UINT_MAX)
x->done++;
__wake_up_locked(&x->wait, TASK_NORMAL, 1);
spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);
/**
* complete_all: - signals all threads waiting on this completion
* @x: holds the state of this particular completion
*
* This will wake up all threads waiting on this particular completion event.
*
* It may be assumed that this function implies a write memory barrier before
* changing the task state if and only if any tasks are woken up.
*
* Since complete_all() sets the completion of @x permanently to done
* to allow multiple waiters to finish, a call to reinit_completion()
* must be used on @x if @x is to be used again. The code must make
* sure that all waiters have woken and finished before reinitializing
* @x. Also note that the function completion_done() can not be used
* to know if there are still waiters after complete_all() has been called.
*/
void complete_all(struct completion *x)
{
unsigned long flags;
spin_lock_irqsave(&x->wait.lock, flags);
x->done = UINT_MAX;
__wake_up_locked(&x->wait, TASK_NORMAL, 0);
spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);
static inline long __sched
do_wait_for_common(struct completion *x,
long (*action)(long), long timeout, int state)
{
if (!x->done) {
DECLARE_WAITQUEUE(wait, current);
__add_wait_queue_entry_tail_exclusive(&x->wait, &wait);
do {
if (signal_pending_state(state, current)) {
timeout = -ERESTARTSYS;
break;
}
__set_current_state(state);
spin_unlock_irq(&x->wait.lock);
timeout = action(timeout);
spin_lock_irq(&x->wait.lock);
} while (!x->done && timeout);
__remove_wait_queue(&x->wait, &wait);
if (!x->done)
return timeout;
}
if (x->done != UINT_MAX)
x->done--;
return timeout ?: 1;
}
static inline long __sched
__wait_for_common(struct completion *x,
long (*action)(long), long timeout, int state)
{
might_sleep();
complete_acquire(x);
spin_lock_irq(&x->wait.lock);
timeout = do_wait_for_common(x, action, timeout, state);
spin_unlock_irq(&x->wait.lock);
complete_release(x);
return timeout;
}
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
{
return __wait_for_common(x, schedule_timeout, timeout, state);
}
static long __sched
wait_for_common_io(struct completion *x, long timeout, int state)
{
return __wait_for_common(x, io_schedule_timeout, timeout, state);
}
/**
* wait_for_completion: - waits for completion of a task
* @x: holds the state of this particular completion
*
* This waits to be signaled for completion of a specific task. It is NOT
* interruptible and there is no timeout.
*
* See also similar routines (i.e. wait_for_completion_timeout()) with timeout
* and interrupt capability. Also see complete().
*/
void __sched wait_for_completion(struct completion *x)
{
wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion);
/**
* wait_for_completion_timeout: - waits for completion of a task (w/timeout)
* @x: holds the state of this particular completion
* @timeout: timeout value in jiffies
*
* This waits for either a completion of a specific task to be signaled or for a
* specified timeout to expire. The timeout is in jiffies. It is not
* interruptible.
*
* Return: 0 if timed out, and positive (at least 1, or number of jiffies left
* till timeout) if completed.
*/
unsigned long __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_timeout);
/**
* wait_for_completion_io: - waits for completion of a task
* @x: holds the state of this particular completion
*
* This waits to be signaled for completion of a specific task. It is NOT
* interruptible and there is no timeout. The caller is accounted as waiting
* for IO (which traditionally means blkio only).
*/
void __sched wait_for_completion_io(struct completion *x)
{
wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_io);
/**
* wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
* @x: holds the state of this particular completion
* @timeout: timeout value in jiffies
*
* This waits for either a completion of a specific task to be signaled or for a
* specified timeout to expire. The timeout is in jiffies. It is not
* interruptible. The caller is accounted as waiting for IO (which traditionally
* means blkio only).
*
* Return: 0 if timed out, and positive (at least 1, or number of jiffies left
* till timeout) if completed.
*/
unsigned long __sched
wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
{
return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_io_timeout);
/**
* wait_for_completion_interruptible: - waits for completion of a task (w/intr)
* @x: holds the state of this particular completion
*
* This waits for completion of a specific task to be signaled. It is
* interruptible.
*
* Return: -ERESTARTSYS if interrupted, 0 if completed.
*/
int __sched wait_for_completion_interruptible(struct completion *x)
{
long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
if (t == -ERESTARTSYS)
return t;
return 0;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);
/**
* wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
* @x: holds the state of this particular completion
* @timeout: timeout value in jiffies
*
* This waits for either a completion of a specific task to be signaled or for a
* specified timeout to expire. It is interruptible. The timeout is in jiffies.
*
* Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
* or number of jiffies left till timeout) if completed.
*/
long __sched
wait_for_completion_interruptible_timeout(struct completion *x,
unsigned long timeout)
{
return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
/**
* wait_for_completion_killable: - waits for completion of a task (killable)
* @x: holds the state of this particular completion
*
* This waits to be signaled for completion of a specific task. It can be
* interrupted by a kill signal.
*
* Return: -ERESTARTSYS if interrupted, 0 if completed.
*/
int __sched wait_for_completion_killable(struct completion *x)
{
long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
if (t == -ERESTARTSYS)
return t;
return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);
/**
* wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
* @x: holds the state of this particular completion
* @timeout: timeout value in jiffies
*
* This waits for either a completion of a specific task to be
* signaled or for a specified timeout to expire. It can be
* interrupted by a kill signal. The timeout is in jiffies.
*
* Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
* or number of jiffies left till timeout) if completed.
*/
long __sched
wait_for_completion_killable_timeout(struct completion *x,
unsigned long timeout)
{
return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);
/**
* try_wait_for_completion - try to decrement a completion without blocking
* @x: completion structure
*
* Return: 0 if a decrement cannot be done without blocking
* 1 if a decrement succeeded.
*
* If a completion is being used as a counting completion,
* attempt to decrement the counter without blocking. This
* enables us to avoid waiting if the resource the completion
* is protecting is not available.
*/
bool try_wait_for_completion(struct completion *x)
{
unsigned long flags;
int ret = 1;
/*
* Since x->done will need to be locked only
* in the non-blocking case, we check x->done
* first without taking the lock so we can
* return early in the blocking case.
*/
if (!READ_ONCE(x->done))
return 0;
spin_lock_irqsave(&x->wait.lock, flags);
if (!x->done)
ret = 0;
else if (x->done != UINT_MAX)
x->done--;
spin_unlock_irqrestore(&x->wait.lock, flags);
return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);
/**
* completion_done - Test to see if a completion has any waiters
* @x: completion structure
*
* Return: 0 if there are waiters (wait_for_completion() in progress)
* 1 if there are no waiters.
*
* Note, this will always return true if complete_all() was called on @X.
*/
bool completion_done(struct completion *x)
{
unsigned long flags;
if (!READ_ONCE(x->done))
return false;
/*
* If ->done, we need to wait for complete() to release ->wait.lock
* otherwise we can end up freeing the completion before complete()
* is done referencing it.
*/
spin_lock_irqsave(&x->wait.lock, flags);
spin_unlock_irqrestore(&x->wait.lock, flags);
return true;
}
EXPORT_SYMBOL(completion_done);