2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-05 20:24:09 +08:00
linux-next/arch/x86/mm/init_64.c
Jeremy Fitzhardinge 180c06efce hotplug-memory: make online_page() common
All architectures use an effectively identical definition of online_page(), so
just make it common code.  x86-64, ia64, powerpc and sh are actually
identical; x86-32 is slightly different.

x86-32's differences arise because it puts its hotplug pages in the highmem
zone.  We can handle this in the generic code by inspecting the page to see if
its in highmem, and update the totalhigh_pages count appropriately.  This
leaves init_32.c:free_new_highpage with a single caller, so I folded it into
add_one_highpage_init.

I also removed an incorrect comment referring to the NUMA case; any NUMA
details have already been dealt with by the time online_page() is called.

[akpm@linux-foundation.org: fix indenting]
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Acked-by: Dave Hansen <dave@linux.vnet.ibm.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamez.hiroyu@jp.fujitsu.com>
Tested-by: KAMEZAWA Hiroyuki <kamez.hiroyu@jp.fujitsu.com>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Christoph Lameter <clameter@sgi.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:17 -07:00

993 lines
23 KiB
C

/*
* linux/arch/x86_64/mm/init.c
*
* Copyright (C) 1995 Linus Torvalds
* Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
* Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
*/
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/pagemap.h>
#include <linux/bootmem.h>
#include <linux/proc_fs.h>
#include <linux/pci.h>
#include <linux/pfn.h>
#include <linux/poison.h>
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <linux/memory_hotplug.h>
#include <linux/nmi.h>
#include <asm/processor.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/dma.h>
#include <asm/fixmap.h>
#include <asm/e820.h>
#include <asm/apic.h>
#include <asm/tlb.h>
#include <asm/mmu_context.h>
#include <asm/proto.h>
#include <asm/smp.h>
#include <asm/sections.h>
#include <asm/kdebug.h>
#include <asm/numa.h>
#include <asm/cacheflush.h>
static unsigned long dma_reserve __initdata;
DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
int direct_gbpages __meminitdata
#ifdef CONFIG_DIRECT_GBPAGES
= 1
#endif
;
static int __init parse_direct_gbpages_off(char *arg)
{
direct_gbpages = 0;
return 0;
}
early_param("nogbpages", parse_direct_gbpages_off);
static int __init parse_direct_gbpages_on(char *arg)
{
direct_gbpages = 1;
return 0;
}
early_param("gbpages", parse_direct_gbpages_on);
/*
* NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
* physical space so we can cache the place of the first one and move
* around without checking the pgd every time.
*/
void show_mem(void)
{
long i, total = 0, reserved = 0;
long shared = 0, cached = 0;
struct page *page;
pg_data_t *pgdat;
printk(KERN_INFO "Mem-info:\n");
show_free_areas();
for_each_online_pgdat(pgdat) {
for (i = 0; i < pgdat->node_spanned_pages; ++i) {
/*
* This loop can take a while with 256 GB and
* 4k pages so defer the NMI watchdog:
*/
if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
touch_nmi_watchdog();
if (!pfn_valid(pgdat->node_start_pfn + i))
continue;
page = pfn_to_page(pgdat->node_start_pfn + i);
total++;
if (PageReserved(page))
reserved++;
else if (PageSwapCache(page))
cached++;
else if (page_count(page))
shared += page_count(page) - 1;
}
}
printk(KERN_INFO "%lu pages of RAM\n", total);
printk(KERN_INFO "%lu reserved pages\n", reserved);
printk(KERN_INFO "%lu pages shared\n", shared);
printk(KERN_INFO "%lu pages swap cached\n", cached);
}
int after_bootmem;
static __init void *spp_getpage(void)
{
void *ptr;
if (after_bootmem)
ptr = (void *) get_zeroed_page(GFP_ATOMIC);
else
ptr = alloc_bootmem_pages(PAGE_SIZE);
if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
panic("set_pte_phys: cannot allocate page data %s\n",
after_bootmem ? "after bootmem" : "");
}
pr_debug("spp_getpage %p\n", ptr);
return ptr;
}
static void
set_pte_phys(unsigned long vaddr, unsigned long phys, pgprot_t prot)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte, new_pte;
pr_debug("set_pte_phys %lx to %lx\n", vaddr, phys);
pgd = pgd_offset_k(vaddr);
if (pgd_none(*pgd)) {
printk(KERN_ERR
"PGD FIXMAP MISSING, it should be setup in head.S!\n");
return;
}
pud = pud_offset(pgd, vaddr);
if (pud_none(*pud)) {
pmd = (pmd_t *) spp_getpage();
set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
if (pmd != pmd_offset(pud, 0)) {
printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
pmd, pmd_offset(pud, 0));
return;
}
}
pmd = pmd_offset(pud, vaddr);
if (pmd_none(*pmd)) {
pte = (pte_t *) spp_getpage();
set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER));
if (pte != pte_offset_kernel(pmd, 0)) {
printk(KERN_ERR "PAGETABLE BUG #02!\n");
return;
}
}
new_pte = pfn_pte(phys >> PAGE_SHIFT, prot);
pte = pte_offset_kernel(pmd, vaddr);
if (!pte_none(*pte) && pte_val(new_pte) &&
pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
pte_ERROR(*pte);
set_pte(pte, new_pte);
/*
* It's enough to flush this one mapping.
* (PGE mappings get flushed as well)
*/
__flush_tlb_one(vaddr);
}
/*
* The head.S code sets up the kernel high mapping:
*
* from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
*
* phys_addr holds the negative offset to the kernel, which is added
* to the compile time generated pmds. This results in invalid pmds up
* to the point where we hit the physaddr 0 mapping.
*
* We limit the mappings to the region from _text to _end. _end is
* rounded up to the 2MB boundary. This catches the invalid pmds as
* well, as they are located before _text:
*/
void __init cleanup_highmap(void)
{
unsigned long vaddr = __START_KERNEL_map;
unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
pmd_t *pmd = level2_kernel_pgt;
pmd_t *last_pmd = pmd + PTRS_PER_PMD;
for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
if (!pmd_present(*pmd))
continue;
if (vaddr < (unsigned long) _text || vaddr > end)
set_pmd(pmd, __pmd(0));
}
}
/* NOTE: this is meant to be run only at boot */
void __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t prot)
{
unsigned long address = __fix_to_virt(idx);
if (idx >= __end_of_fixed_addresses) {
printk(KERN_ERR "Invalid __set_fixmap\n");
return;
}
set_pte_phys(address, phys, prot);
}
static unsigned long __initdata table_start;
static unsigned long __meminitdata table_end;
static __meminit void *alloc_low_page(unsigned long *phys)
{
unsigned long pfn = table_end++;
void *adr;
if (after_bootmem) {
adr = (void *)get_zeroed_page(GFP_ATOMIC);
*phys = __pa(adr);
return adr;
}
if (pfn >= end_pfn)
panic("alloc_low_page: ran out of memory");
adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
memset(adr, 0, PAGE_SIZE);
*phys = pfn * PAGE_SIZE;
return adr;
}
static __meminit void unmap_low_page(void *adr)
{
if (after_bootmem)
return;
early_iounmap(adr, PAGE_SIZE);
}
/* Must run before zap_low_mappings */
__meminit void *early_ioremap(unsigned long addr, unsigned long size)
{
pmd_t *pmd, *last_pmd;
unsigned long vaddr;
int i, pmds;
pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
vaddr = __START_KERNEL_map;
pmd = level2_kernel_pgt;
last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1;
for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) {
for (i = 0; i < pmds; i++) {
if (pmd_present(pmd[i]))
goto continue_outer_loop;
}
vaddr += addr & ~PMD_MASK;
addr &= PMD_MASK;
for (i = 0; i < pmds; i++, addr += PMD_SIZE)
set_pmd(pmd+i, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
__flush_tlb_all();
return (void *)vaddr;
continue_outer_loop:
;
}
printk(KERN_ERR "early_ioremap(0x%lx, %lu) failed\n", addr, size);
return NULL;
}
/*
* To avoid virtual aliases later:
*/
__meminit void early_iounmap(void *addr, unsigned long size)
{
unsigned long vaddr;
pmd_t *pmd;
int i, pmds;
vaddr = (unsigned long)addr;
pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
pmd = level2_kernel_pgt + pmd_index(vaddr);
for (i = 0; i < pmds; i++)
pmd_clear(pmd + i);
__flush_tlb_all();
}
static unsigned long __meminit
phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
{
int i = pmd_index(address);
for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
pmd_t *pmd = pmd_page + pmd_index(address);
if (address >= end) {
if (!after_bootmem) {
for (; i < PTRS_PER_PMD; i++, pmd++)
set_pmd(pmd, __pmd(0));
}
break;
}
if (pmd_val(*pmd))
continue;
set_pte((pte_t *)pmd,
pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
}
return address;
}
static unsigned long __meminit
phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
{
pmd_t *pmd = pmd_offset(pud, 0);
unsigned long last_map_addr;
spin_lock(&init_mm.page_table_lock);
last_map_addr = phys_pmd_init(pmd, address, end);
spin_unlock(&init_mm.page_table_lock);
__flush_tlb_all();
return last_map_addr;
}
static unsigned long __meminit
phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
{
unsigned long last_map_addr = end;
int i = pud_index(addr);
for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
unsigned long pmd_phys;
pud_t *pud = pud_page + pud_index(addr);
pmd_t *pmd;
if (addr >= end)
break;
if (!after_bootmem &&
!e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
set_pud(pud, __pud(0));
continue;
}
if (pud_val(*pud)) {
if (!pud_large(*pud))
last_map_addr = phys_pmd_update(pud, addr, end);
continue;
}
if (direct_gbpages) {
set_pte((pte_t *)pud,
pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
continue;
}
pmd = alloc_low_page(&pmd_phys);
spin_lock(&init_mm.page_table_lock);
set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
last_map_addr = phys_pmd_init(pmd, addr, end);
spin_unlock(&init_mm.page_table_lock);
unmap_low_page(pmd);
}
__flush_tlb_all();
return last_map_addr >> PAGE_SHIFT;
}
static void __init find_early_table_space(unsigned long end)
{
unsigned long puds, pmds, tables, start;
puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
if (!direct_gbpages) {
pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
}
/*
* RED-PEN putting page tables only on node 0 could
* cause a hotspot and fill up ZONE_DMA. The page tables
* need roughly 0.5KB per GB.
*/
start = 0x8000;
table_start = find_e820_area(start, end, tables, PAGE_SIZE);
if (table_start == -1UL)
panic("Cannot find space for the kernel page tables");
table_start >>= PAGE_SHIFT;
table_end = table_start;
early_printk("kernel direct mapping tables up to %lx @ %lx-%lx\n",
end, table_start << PAGE_SHIFT,
(table_start << PAGE_SHIFT) + tables);
}
static void __init init_gbpages(void)
{
if (direct_gbpages && cpu_has_gbpages)
printk(KERN_INFO "Using GB pages for direct mapping\n");
else
direct_gbpages = 0;
}
#ifdef CONFIG_MEMTEST_BOOTPARAM
static void __init memtest(unsigned long start_phys, unsigned long size,
unsigned pattern)
{
unsigned long i;
unsigned long *start;
unsigned long start_bad;
unsigned long last_bad;
unsigned long val;
unsigned long start_phys_aligned;
unsigned long count;
unsigned long incr;
switch (pattern) {
case 0:
val = 0UL;
break;
case 1:
val = -1UL;
break;
case 2:
val = 0x5555555555555555UL;
break;
case 3:
val = 0xaaaaaaaaaaaaaaaaUL;
break;
default:
return;
}
incr = sizeof(unsigned long);
start_phys_aligned = ALIGN(start_phys, incr);
count = (size - (start_phys_aligned - start_phys))/incr;
start = __va(start_phys_aligned);
start_bad = 0;
last_bad = 0;
for (i = 0; i < count; i++)
start[i] = val;
for (i = 0; i < count; i++, start++, start_phys_aligned += incr) {
if (*start != val) {
if (start_phys_aligned == last_bad + incr) {
last_bad += incr;
} else {
if (start_bad) {
printk(KERN_CONT "\n %016lx bad mem addr %016lx - %016lx reserved",
val, start_bad, last_bad + incr);
reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
}
start_bad = last_bad = start_phys_aligned;
}
}
}
if (start_bad) {
printk(KERN_CONT "\n %016lx bad mem addr %016lx - %016lx reserved",
val, start_bad, last_bad + incr);
reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
}
}
static int memtest_pattern __initdata = CONFIG_MEMTEST_BOOTPARAM_VALUE;
static int __init parse_memtest(char *arg)
{
if (arg)
memtest_pattern = simple_strtoul(arg, NULL, 0);
return 0;
}
early_param("memtest", parse_memtest);
static void __init early_memtest(unsigned long start, unsigned long end)
{
unsigned long t_start, t_size;
unsigned pattern;
if (!memtest_pattern)
return;
printk(KERN_INFO "early_memtest: pattern num %d", memtest_pattern);
for (pattern = 0; pattern < memtest_pattern; pattern++) {
t_start = start;
t_size = 0;
while (t_start < end) {
t_start = find_e820_area_size(t_start, &t_size, 1);
/* done ? */
if (t_start >= end)
break;
if (t_start + t_size > end)
t_size = end - t_start;
printk(KERN_CONT "\n %016lx - %016lx pattern %d",
t_start, t_start + t_size, pattern);
memtest(t_start, t_size, pattern);
t_start += t_size;
}
}
printk(KERN_CONT "\n");
}
#else
static void __init early_memtest(unsigned long start, unsigned long end)
{
}
#endif
/*
* Setup the direct mapping of the physical memory at PAGE_OFFSET.
* This runs before bootmem is initialized and gets pages directly from
* the physical memory. To access them they are temporarily mapped.
*/
unsigned long __init_refok init_memory_mapping(unsigned long start, unsigned long end)
{
unsigned long next, last_map_addr = end;
unsigned long start_phys = start, end_phys = end;
printk(KERN_INFO "init_memory_mapping\n");
/*
* Find space for the kernel direct mapping tables.
*
* Later we should allocate these tables in the local node of the
* memory mapped. Unfortunately this is done currently before the
* nodes are discovered.
*/
if (!after_bootmem) {
init_gbpages();
find_early_table_space(end);
}
start = (unsigned long)__va(start);
end = (unsigned long)__va(end);
for (; start < end; start = next) {
pgd_t *pgd = pgd_offset_k(start);
unsigned long pud_phys;
pud_t *pud;
if (after_bootmem)
pud = pud_offset(pgd, start & PGDIR_MASK);
else
pud = alloc_low_page(&pud_phys);
next = start + PGDIR_SIZE;
if (next > end)
next = end;
last_map_addr = phys_pud_init(pud, __pa(start), __pa(next));
if (!after_bootmem)
set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys));
unmap_low_page(pud);
}
if (!after_bootmem)
mmu_cr4_features = read_cr4();
__flush_tlb_all();
if (!after_bootmem)
reserve_early(table_start << PAGE_SHIFT,
table_end << PAGE_SHIFT, "PGTABLE");
if (!after_bootmem)
early_memtest(start_phys, end_phys);
return last_map_addr;
}
#ifndef CONFIG_NUMA
void __init paging_init(void)
{
unsigned long max_zone_pfns[MAX_NR_ZONES];
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
max_zone_pfns[ZONE_NORMAL] = end_pfn;
memory_present(0, 0, end_pfn);
sparse_init();
free_area_init_nodes(max_zone_pfns);
}
#endif
/*
* Memory hotplug specific functions
*/
#ifdef CONFIG_MEMORY_HOTPLUG
/*
* Memory is added always to NORMAL zone. This means you will never get
* additional DMA/DMA32 memory.
*/
int arch_add_memory(int nid, u64 start, u64 size)
{
struct pglist_data *pgdat = NODE_DATA(nid);
struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
unsigned long nr_pages = size >> PAGE_SHIFT;
int ret;
last_mapped_pfn = init_memory_mapping(start, start + size-1);
if (last_mapped_pfn > max_pfn_mapped)
max_pfn_mapped = last_mapped_pfn;
ret = __add_pages(zone, start_pfn, nr_pages);
WARN_ON(1);
return ret;
}
EXPORT_SYMBOL_GPL(arch_add_memory);
#if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
int memory_add_physaddr_to_nid(u64 start)
{
return 0;
}
EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
#endif
#endif /* CONFIG_MEMORY_HOTPLUG */
/*
* devmem_is_allowed() checks to see if /dev/mem access to a certain address
* is valid. The argument is a physical page number.
*
*
* On x86, access has to be given to the first megabyte of ram because that area
* contains bios code and data regions used by X and dosemu and similar apps.
* Access has to be given to non-kernel-ram areas as well, these contain the PCI
* mmio resources as well as potential bios/acpi data regions.
*/
int devmem_is_allowed(unsigned long pagenr)
{
if (pagenr <= 256)
return 1;
if (!page_is_ram(pagenr))
return 1;
return 0;
}
static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
kcore_modules, kcore_vsyscall;
void __init mem_init(void)
{
long codesize, reservedpages, datasize, initsize;
pci_iommu_alloc();
/* clear_bss() already clear the empty_zero_page */
reservedpages = 0;
/* this will put all low memory onto the freelists */
#ifdef CONFIG_NUMA
totalram_pages = numa_free_all_bootmem();
#else
totalram_pages = free_all_bootmem();
#endif
reservedpages = end_pfn - totalram_pages -
absent_pages_in_range(0, end_pfn);
after_bootmem = 1;
codesize = (unsigned long) &_etext - (unsigned long) &_text;
datasize = (unsigned long) &_edata - (unsigned long) &_etext;
initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
/* Register memory areas for /proc/kcore */
kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
VMALLOC_END-VMALLOC_START);
kclist_add(&kcore_kernel, &_stext, _end - _stext);
kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
VSYSCALL_END - VSYSCALL_START);
printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
"%ldk reserved, %ldk data, %ldk init)\n",
(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
end_pfn << (PAGE_SHIFT-10),
codesize >> 10,
reservedpages << (PAGE_SHIFT-10),
datasize >> 10,
initsize >> 10);
cpa_init();
}
void free_init_pages(char *what, unsigned long begin, unsigned long end)
{
unsigned long addr = begin;
if (addr >= end)
return;
/*
* If debugging page accesses then do not free this memory but
* mark them not present - any buggy init-section access will
* create a kernel page fault:
*/
#ifdef CONFIG_DEBUG_PAGEALLOC
printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
begin, PAGE_ALIGN(end));
set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
#else
printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
for (; addr < end; addr += PAGE_SIZE) {
ClearPageReserved(virt_to_page(addr));
init_page_count(virt_to_page(addr));
memset((void *)(addr & ~(PAGE_SIZE-1)),
POISON_FREE_INITMEM, PAGE_SIZE);
free_page(addr);
totalram_pages++;
}
#endif
}
void free_initmem(void)
{
free_init_pages("unused kernel memory",
(unsigned long)(&__init_begin),
(unsigned long)(&__init_end));
}
#ifdef CONFIG_DEBUG_RODATA
const int rodata_test_data = 0xC3;
EXPORT_SYMBOL_GPL(rodata_test_data);
void mark_rodata_ro(void)
{
unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
(end - start) >> 10);
set_memory_ro(start, (end - start) >> PAGE_SHIFT);
/*
* The rodata section (but not the kernel text!) should also be
* not-executable.
*/
start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
set_memory_nx(start, (end - start) >> PAGE_SHIFT);
rodata_test();
#ifdef CONFIG_CPA_DEBUG
printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
set_memory_rw(start, (end-start) >> PAGE_SHIFT);
printk(KERN_INFO "Testing CPA: again\n");
set_memory_ro(start, (end-start) >> PAGE_SHIFT);
#endif
}
#endif
#ifdef CONFIG_BLK_DEV_INITRD
void free_initrd_mem(unsigned long start, unsigned long end)
{
free_init_pages("initrd memory", start, end);
}
#endif
void __init reserve_bootmem_generic(unsigned long phys, unsigned len)
{
#ifdef CONFIG_NUMA
int nid, next_nid;
#endif
unsigned long pfn = phys >> PAGE_SHIFT;
if (pfn >= end_pfn) {
/*
* This can happen with kdump kernels when accessing
* firmware tables:
*/
if (pfn < max_pfn_mapped)
return;
printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n",
phys, len);
return;
}
/* Should check here against the e820 map to avoid double free */
#ifdef CONFIG_NUMA
nid = phys_to_nid(phys);
next_nid = phys_to_nid(phys + len - 1);
if (nid == next_nid)
reserve_bootmem_node(NODE_DATA(nid), phys, len, BOOTMEM_DEFAULT);
else
reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
#else
reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
#endif
if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
dma_reserve += len / PAGE_SIZE;
set_dma_reserve(dma_reserve);
}
}
int kern_addr_valid(unsigned long addr)
{
unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
if (above != 0 && above != -1UL)
return 0;
pgd = pgd_offset_k(addr);
if (pgd_none(*pgd))
return 0;
pud = pud_offset(pgd, addr);
if (pud_none(*pud))
return 0;
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd))
return 0;
if (pmd_large(*pmd))
return pfn_valid(pmd_pfn(*pmd));
pte = pte_offset_kernel(pmd, addr);
if (pte_none(*pte))
return 0;
return pfn_valid(pte_pfn(*pte));
}
/*
* A pseudo VMA to allow ptrace access for the vsyscall page. This only
* covers the 64bit vsyscall page now. 32bit has a real VMA now and does
* not need special handling anymore:
*/
static struct vm_area_struct gate_vma = {
.vm_start = VSYSCALL_START,
.vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
.vm_page_prot = PAGE_READONLY_EXEC,
.vm_flags = VM_READ | VM_EXEC
};
struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
{
#ifdef CONFIG_IA32_EMULATION
if (test_tsk_thread_flag(tsk, TIF_IA32))
return NULL;
#endif
return &gate_vma;
}
int in_gate_area(struct task_struct *task, unsigned long addr)
{
struct vm_area_struct *vma = get_gate_vma(task);
if (!vma)
return 0;
return (addr >= vma->vm_start) && (addr < vma->vm_end);
}
/*
* Use this when you have no reliable task/vma, typically from interrupt
* context. It is less reliable than using the task's vma and may give
* false positives:
*/
int in_gate_area_no_task(unsigned long addr)
{
return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
}
const char *arch_vma_name(struct vm_area_struct *vma)
{
if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
return "[vdso]";
if (vma == &gate_vma)
return "[vsyscall]";
return NULL;
}
#ifdef CONFIG_SPARSEMEM_VMEMMAP
/*
* Initialise the sparsemem vmemmap using huge-pages at the PMD level.
*/
static long __meminitdata addr_start, addr_end;
static void __meminitdata *p_start, *p_end;
static int __meminitdata node_start;
int __meminit
vmemmap_populate(struct page *start_page, unsigned long size, int node)
{
unsigned long addr = (unsigned long)start_page;
unsigned long end = (unsigned long)(start_page + size);
unsigned long next;
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
for (; addr < end; addr = next) {
next = pmd_addr_end(addr, end);
pgd = vmemmap_pgd_populate(addr, node);
if (!pgd)
return -ENOMEM;
pud = vmemmap_pud_populate(pgd, addr, node);
if (!pud)
return -ENOMEM;
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd)) {
pte_t entry;
void *p;
p = vmemmap_alloc_block(PMD_SIZE, node);
if (!p)
return -ENOMEM;
entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
PAGE_KERNEL_LARGE);
set_pmd(pmd, __pmd(pte_val(entry)));
/* check to see if we have contiguous blocks */
if (p_end != p || node_start != node) {
if (p_start)
printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
addr_start, addr_end-1, p_start, p_end-1, node_start);
addr_start = addr;
node_start = node;
p_start = p;
}
addr_end = addr + PMD_SIZE;
p_end = p + PMD_SIZE;
} else {
vmemmap_verify((pte_t *)pmd, node, addr, next);
}
}
return 0;
}
void __meminit vmemmap_populate_print_last(void)
{
if (p_start) {
printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
addr_start, addr_end-1, p_start, p_end-1, node_start);
p_start = NULL;
p_end = NULL;
node_start = 0;
}
}
#endif