2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-02 10:43:57 +08:00
linux-next/mm/rmap.c
KAMEZAWA Hiroyuki 89c06bd52f memcg: use new logic for page stat accounting
Now, page-stat-per-memcg is recorded into per page_cgroup flag by
duplicating page's status into the flag.  The reason is that memcg has a
feature to move a page from a group to another group and we have race
between "move" and "page stat accounting",

Under current logic, assume CPU-A and CPU-B.  CPU-A does "move" and CPU-B
does "page stat accounting".

When CPU-A goes 1st,

            CPU-A                           CPU-B
                                    update "struct page" info.
    move_lock_mem_cgroup(memcg)
    see pc->flags
    copy page stat to new group
    overwrite pc->mem_cgroup.
    move_unlock_mem_cgroup(memcg)
                                    move_lock_mem_cgroup(mem)
                                    set pc->flags
                                    update page stat accounting
                                    move_unlock_mem_cgroup(mem)

stat accounting is guarded by move_lock_mem_cgroup() and "move" logic
(CPU-A) doesn't see changes in "struct page" information.

But it's costly to have the same information both in 'struct page' and
'struct page_cgroup'.  And, there is a potential problem.

For example, assume we have PG_dirty accounting in memcg.
PG_..is a flag for struct page.
PCG_ is a flag for struct page_cgroup.
(This is just an example. The same problem can be found in any
 kind of page stat accounting.)

	  CPU-A                               CPU-B
      TestSet PG_dirty
      (delay)                        TestClear PG_dirty
                                     if (TestClear(PCG_dirty))
                                          memcg->nr_dirty--
      if (TestSet(PCG_dirty))
          memcg->nr_dirty++

Here, memcg->nr_dirty = +1, this is wrong.  This race was reported by Greg
Thelen <gthelen@google.com>.  Now, only FILE_MAPPED is supported but
fortunately, it's serialized by page table lock and this is not real bug,
_now_,

If this potential problem is caused by having duplicated information in
struct page and struct page_cgroup, we may be able to fix this by using
original 'struct page' information.  But we'll have a problem in "move
account"

Assume we use only PG_dirty.

         CPU-A                   CPU-B
    TestSet PG_dirty
    (delay)                    move_lock_mem_cgroup()
                               if (PageDirty(page))
                                      new_memcg->nr_dirty++
                               pc->mem_cgroup = new_memcg;
                               move_unlock_mem_cgroup()
    move_lock_mem_cgroup()
    memcg = pc->mem_cgroup
    new_memcg->nr_dirty++

accounting information may be double-counted.  This was original reason to
have PCG_xxx flags but it seems PCG_xxx has another problem.

I think we need a bigger lock as

     move_lock_mem_cgroup(page)
     TestSetPageDirty(page)
     update page stats (without any checks)
     move_unlock_mem_cgroup(page)

This fixes both of problems and we don't have to duplicate page flag into
page_cgroup.  Please note: move_lock_mem_cgroup() is held only when there
are possibility of "account move" under the system.  So, in most path,
status update will go without atomic locks.

This patch introduces mem_cgroup_begin_update_page_stat() and
mem_cgroup_end_update_page_stat() both should be called at modifying
'struct page' information if memcg takes care of it.  as

     mem_cgroup_begin_update_page_stat()
     modify page information
     mem_cgroup_update_page_stat()
     => never check any 'struct page' info, just update counters.
     mem_cgroup_end_update_page_stat().

This patch is slow because we need to call begin_update_page_stat()/
end_update_page_stat() regardless of accounted will be changed or not.  A
following patch adds an easy optimization and reduces the cost.

[akpm@linux-foundation.org: s/lock/locked/]
[hughd@google.com: fix deadlock by avoiding stat lock when anon]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Greg Thelen <gthelen@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:55:01 -07:00

1839 lines
53 KiB
C

/*
* mm/rmap.c - physical to virtual reverse mappings
*
* Copyright 2001, Rik van Riel <riel@conectiva.com.br>
* Released under the General Public License (GPL).
*
* Simple, low overhead reverse mapping scheme.
* Please try to keep this thing as modular as possible.
*
* Provides methods for unmapping each kind of mapped page:
* the anon methods track anonymous pages, and
* the file methods track pages belonging to an inode.
*
* Original design by Rik van Riel <riel@conectiva.com.br> 2001
* File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
* Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
* Contributions by Hugh Dickins 2003, 2004
*/
/*
* Lock ordering in mm:
*
* inode->i_mutex (while writing or truncating, not reading or faulting)
* mm->mmap_sem
* page->flags PG_locked (lock_page)
* mapping->i_mmap_mutex
* anon_vma->mutex
* mm->page_table_lock or pte_lock
* zone->lru_lock (in mark_page_accessed, isolate_lru_page)
* swap_lock (in swap_duplicate, swap_info_get)
* mmlist_lock (in mmput, drain_mmlist and others)
* mapping->private_lock (in __set_page_dirty_buffers)
* inode->i_lock (in set_page_dirty's __mark_inode_dirty)
* bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
* sb_lock (within inode_lock in fs/fs-writeback.c)
* mapping->tree_lock (widely used, in set_page_dirty,
* in arch-dependent flush_dcache_mmap_lock,
* within bdi.wb->list_lock in __sync_single_inode)
*
* anon_vma->mutex,mapping->i_mutex (memory_failure, collect_procs_anon)
* ->tasklist_lock
* pte map lock
*/
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/ksm.h>
#include <linux/rmap.h>
#include <linux/rcupdate.h>
#include <linux/export.h>
#include <linux/memcontrol.h>
#include <linux/mmu_notifier.h>
#include <linux/migrate.h>
#include <linux/hugetlb.h>
#include <asm/tlbflush.h>
#include "internal.h"
static struct kmem_cache *anon_vma_cachep;
static struct kmem_cache *anon_vma_chain_cachep;
static inline struct anon_vma *anon_vma_alloc(void)
{
struct anon_vma *anon_vma;
anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
if (anon_vma) {
atomic_set(&anon_vma->refcount, 1);
/*
* Initialise the anon_vma root to point to itself. If called
* from fork, the root will be reset to the parents anon_vma.
*/
anon_vma->root = anon_vma;
}
return anon_vma;
}
static inline void anon_vma_free(struct anon_vma *anon_vma)
{
VM_BUG_ON(atomic_read(&anon_vma->refcount));
/*
* Synchronize against page_lock_anon_vma() such that
* we can safely hold the lock without the anon_vma getting
* freed.
*
* Relies on the full mb implied by the atomic_dec_and_test() from
* put_anon_vma() against the acquire barrier implied by
* mutex_trylock() from page_lock_anon_vma(). This orders:
*
* page_lock_anon_vma() VS put_anon_vma()
* mutex_trylock() atomic_dec_and_test()
* LOCK MB
* atomic_read() mutex_is_locked()
*
* LOCK should suffice since the actual taking of the lock must
* happen _before_ what follows.
*/
if (mutex_is_locked(&anon_vma->root->mutex)) {
anon_vma_lock(anon_vma);
anon_vma_unlock(anon_vma);
}
kmem_cache_free(anon_vma_cachep, anon_vma);
}
static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
{
return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
}
static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
{
kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
}
static void anon_vma_chain_link(struct vm_area_struct *vma,
struct anon_vma_chain *avc,
struct anon_vma *anon_vma)
{
avc->vma = vma;
avc->anon_vma = anon_vma;
list_add(&avc->same_vma, &vma->anon_vma_chain);
/*
* It's critical to add new vmas to the tail of the anon_vma,
* see comment in huge_memory.c:__split_huge_page().
*/
list_add_tail(&avc->same_anon_vma, &anon_vma->head);
}
/**
* anon_vma_prepare - attach an anon_vma to a memory region
* @vma: the memory region in question
*
* This makes sure the memory mapping described by 'vma' has
* an 'anon_vma' attached to it, so that we can associate the
* anonymous pages mapped into it with that anon_vma.
*
* The common case will be that we already have one, but if
* not we either need to find an adjacent mapping that we
* can re-use the anon_vma from (very common when the only
* reason for splitting a vma has been mprotect()), or we
* allocate a new one.
*
* Anon-vma allocations are very subtle, because we may have
* optimistically looked up an anon_vma in page_lock_anon_vma()
* and that may actually touch the spinlock even in the newly
* allocated vma (it depends on RCU to make sure that the
* anon_vma isn't actually destroyed).
*
* As a result, we need to do proper anon_vma locking even
* for the new allocation. At the same time, we do not want
* to do any locking for the common case of already having
* an anon_vma.
*
* This must be called with the mmap_sem held for reading.
*/
int anon_vma_prepare(struct vm_area_struct *vma)
{
struct anon_vma *anon_vma = vma->anon_vma;
struct anon_vma_chain *avc;
might_sleep();
if (unlikely(!anon_vma)) {
struct mm_struct *mm = vma->vm_mm;
struct anon_vma *allocated;
avc = anon_vma_chain_alloc(GFP_KERNEL);
if (!avc)
goto out_enomem;
anon_vma = find_mergeable_anon_vma(vma);
allocated = NULL;
if (!anon_vma) {
anon_vma = anon_vma_alloc();
if (unlikely(!anon_vma))
goto out_enomem_free_avc;
allocated = anon_vma;
}
anon_vma_lock(anon_vma);
/* page_table_lock to protect against threads */
spin_lock(&mm->page_table_lock);
if (likely(!vma->anon_vma)) {
vma->anon_vma = anon_vma;
anon_vma_chain_link(vma, avc, anon_vma);
allocated = NULL;
avc = NULL;
}
spin_unlock(&mm->page_table_lock);
anon_vma_unlock(anon_vma);
if (unlikely(allocated))
put_anon_vma(allocated);
if (unlikely(avc))
anon_vma_chain_free(avc);
}
return 0;
out_enomem_free_avc:
anon_vma_chain_free(avc);
out_enomem:
return -ENOMEM;
}
/*
* This is a useful helper function for locking the anon_vma root as
* we traverse the vma->anon_vma_chain, looping over anon_vma's that
* have the same vma.
*
* Such anon_vma's should have the same root, so you'd expect to see
* just a single mutex_lock for the whole traversal.
*/
static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
{
struct anon_vma *new_root = anon_vma->root;
if (new_root != root) {
if (WARN_ON_ONCE(root))
mutex_unlock(&root->mutex);
root = new_root;
mutex_lock(&root->mutex);
}
return root;
}
static inline void unlock_anon_vma_root(struct anon_vma *root)
{
if (root)
mutex_unlock(&root->mutex);
}
/*
* Attach the anon_vmas from src to dst.
* Returns 0 on success, -ENOMEM on failure.
*/
int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
{
struct anon_vma_chain *avc, *pavc;
struct anon_vma *root = NULL;
list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
struct anon_vma *anon_vma;
avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
if (unlikely(!avc)) {
unlock_anon_vma_root(root);
root = NULL;
avc = anon_vma_chain_alloc(GFP_KERNEL);
if (!avc)
goto enomem_failure;
}
anon_vma = pavc->anon_vma;
root = lock_anon_vma_root(root, anon_vma);
anon_vma_chain_link(dst, avc, anon_vma);
}
unlock_anon_vma_root(root);
return 0;
enomem_failure:
unlink_anon_vmas(dst);
return -ENOMEM;
}
/*
* Some rmap walk that needs to find all ptes/hugepmds without false
* negatives (like migrate and split_huge_page) running concurrent
* with operations that copy or move pagetables (like mremap() and
* fork()) to be safe. They depend on the anon_vma "same_anon_vma"
* list to be in a certain order: the dst_vma must be placed after the
* src_vma in the list. This is always guaranteed by fork() but
* mremap() needs to call this function to enforce it in case the
* dst_vma isn't newly allocated and chained with the anon_vma_clone()
* function but just an extension of a pre-existing vma through
* vma_merge.
*
* NOTE: the same_anon_vma list can still be changed by other
* processes while mremap runs because mremap doesn't hold the
* anon_vma mutex to prevent modifications to the list while it
* runs. All we need to enforce is that the relative order of this
* process vmas isn't changing (we don't care about other vmas
* order). Each vma corresponds to an anon_vma_chain structure so
* there's no risk that other processes calling anon_vma_moveto_tail()
* and changing the same_anon_vma list under mremap() will screw with
* the relative order of this process vmas in the list, because we
* they can't alter the order of any vma that belongs to this
* process. And there can't be another anon_vma_moveto_tail() running
* concurrently with mremap() coming from this process because we hold
* the mmap_sem for the whole mremap(). fork() ordering dependency
* also shouldn't be affected because fork() only cares that the
* parent vmas are placed in the list before the child vmas and
* anon_vma_moveto_tail() won't reorder vmas from either the fork()
* parent or child.
*/
void anon_vma_moveto_tail(struct vm_area_struct *dst)
{
struct anon_vma_chain *pavc;
struct anon_vma *root = NULL;
list_for_each_entry_reverse(pavc, &dst->anon_vma_chain, same_vma) {
struct anon_vma *anon_vma = pavc->anon_vma;
VM_BUG_ON(pavc->vma != dst);
root = lock_anon_vma_root(root, anon_vma);
list_del(&pavc->same_anon_vma);
list_add_tail(&pavc->same_anon_vma, &anon_vma->head);
}
unlock_anon_vma_root(root);
}
/*
* Attach vma to its own anon_vma, as well as to the anon_vmas that
* the corresponding VMA in the parent process is attached to.
* Returns 0 on success, non-zero on failure.
*/
int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
{
struct anon_vma_chain *avc;
struct anon_vma *anon_vma;
/* Don't bother if the parent process has no anon_vma here. */
if (!pvma->anon_vma)
return 0;
/*
* First, attach the new VMA to the parent VMA's anon_vmas,
* so rmap can find non-COWed pages in child processes.
*/
if (anon_vma_clone(vma, pvma))
return -ENOMEM;
/* Then add our own anon_vma. */
anon_vma = anon_vma_alloc();
if (!anon_vma)
goto out_error;
avc = anon_vma_chain_alloc(GFP_KERNEL);
if (!avc)
goto out_error_free_anon_vma;
/*
* The root anon_vma's spinlock is the lock actually used when we
* lock any of the anon_vmas in this anon_vma tree.
*/
anon_vma->root = pvma->anon_vma->root;
/*
* With refcounts, an anon_vma can stay around longer than the
* process it belongs to. The root anon_vma needs to be pinned until
* this anon_vma is freed, because the lock lives in the root.
*/
get_anon_vma(anon_vma->root);
/* Mark this anon_vma as the one where our new (COWed) pages go. */
vma->anon_vma = anon_vma;
anon_vma_lock(anon_vma);
anon_vma_chain_link(vma, avc, anon_vma);
anon_vma_unlock(anon_vma);
return 0;
out_error_free_anon_vma:
put_anon_vma(anon_vma);
out_error:
unlink_anon_vmas(vma);
return -ENOMEM;
}
void unlink_anon_vmas(struct vm_area_struct *vma)
{
struct anon_vma_chain *avc, *next;
struct anon_vma *root = NULL;
/*
* Unlink each anon_vma chained to the VMA. This list is ordered
* from newest to oldest, ensuring the root anon_vma gets freed last.
*/
list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
struct anon_vma *anon_vma = avc->anon_vma;
root = lock_anon_vma_root(root, anon_vma);
list_del(&avc->same_anon_vma);
/*
* Leave empty anon_vmas on the list - we'll need
* to free them outside the lock.
*/
if (list_empty(&anon_vma->head))
continue;
list_del(&avc->same_vma);
anon_vma_chain_free(avc);
}
unlock_anon_vma_root(root);
/*
* Iterate the list once more, it now only contains empty and unlinked
* anon_vmas, destroy them. Could not do before due to __put_anon_vma()
* needing to acquire the anon_vma->root->mutex.
*/
list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
struct anon_vma *anon_vma = avc->anon_vma;
put_anon_vma(anon_vma);
list_del(&avc->same_vma);
anon_vma_chain_free(avc);
}
}
static void anon_vma_ctor(void *data)
{
struct anon_vma *anon_vma = data;
mutex_init(&anon_vma->mutex);
atomic_set(&anon_vma->refcount, 0);
INIT_LIST_HEAD(&anon_vma->head);
}
void __init anon_vma_init(void)
{
anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
}
/*
* Getting a lock on a stable anon_vma from a page off the LRU is tricky!
*
* Since there is no serialization what so ever against page_remove_rmap()
* the best this function can do is return a locked anon_vma that might
* have been relevant to this page.
*
* The page might have been remapped to a different anon_vma or the anon_vma
* returned may already be freed (and even reused).
*
* In case it was remapped to a different anon_vma, the new anon_vma will be a
* child of the old anon_vma, and the anon_vma lifetime rules will therefore
* ensure that any anon_vma obtained from the page will still be valid for as
* long as we observe page_mapped() [ hence all those page_mapped() tests ].
*
* All users of this function must be very careful when walking the anon_vma
* chain and verify that the page in question is indeed mapped in it
* [ something equivalent to page_mapped_in_vma() ].
*
* Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
* that the anon_vma pointer from page->mapping is valid if there is a
* mapcount, we can dereference the anon_vma after observing those.
*/
struct anon_vma *page_get_anon_vma(struct page *page)
{
struct anon_vma *anon_vma = NULL;
unsigned long anon_mapping;
rcu_read_lock();
anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
goto out;
if (!page_mapped(page))
goto out;
anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
if (!atomic_inc_not_zero(&anon_vma->refcount)) {
anon_vma = NULL;
goto out;
}
/*
* If this page is still mapped, then its anon_vma cannot have been
* freed. But if it has been unmapped, we have no security against the
* anon_vma structure being freed and reused (for another anon_vma:
* SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
* above cannot corrupt).
*/
if (!page_mapped(page)) {
put_anon_vma(anon_vma);
anon_vma = NULL;
}
out:
rcu_read_unlock();
return anon_vma;
}
/*
* Similar to page_get_anon_vma() except it locks the anon_vma.
*
* Its a little more complex as it tries to keep the fast path to a single
* atomic op -- the trylock. If we fail the trylock, we fall back to getting a
* reference like with page_get_anon_vma() and then block on the mutex.
*/
struct anon_vma *page_lock_anon_vma(struct page *page)
{
struct anon_vma *anon_vma = NULL;
struct anon_vma *root_anon_vma;
unsigned long anon_mapping;
rcu_read_lock();
anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
goto out;
if (!page_mapped(page))
goto out;
anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
root_anon_vma = ACCESS_ONCE(anon_vma->root);
if (mutex_trylock(&root_anon_vma->mutex)) {
/*
* If the page is still mapped, then this anon_vma is still
* its anon_vma, and holding the mutex ensures that it will
* not go away, see anon_vma_free().
*/
if (!page_mapped(page)) {
mutex_unlock(&root_anon_vma->mutex);
anon_vma = NULL;
}
goto out;
}
/* trylock failed, we got to sleep */
if (!atomic_inc_not_zero(&anon_vma->refcount)) {
anon_vma = NULL;
goto out;
}
if (!page_mapped(page)) {
put_anon_vma(anon_vma);
anon_vma = NULL;
goto out;
}
/* we pinned the anon_vma, its safe to sleep */
rcu_read_unlock();
anon_vma_lock(anon_vma);
if (atomic_dec_and_test(&anon_vma->refcount)) {
/*
* Oops, we held the last refcount, release the lock
* and bail -- can't simply use put_anon_vma() because
* we'll deadlock on the anon_vma_lock() recursion.
*/
anon_vma_unlock(anon_vma);
__put_anon_vma(anon_vma);
anon_vma = NULL;
}
return anon_vma;
out:
rcu_read_unlock();
return anon_vma;
}
void page_unlock_anon_vma(struct anon_vma *anon_vma)
{
anon_vma_unlock(anon_vma);
}
/*
* At what user virtual address is page expected in @vma?
* Returns virtual address or -EFAULT if page's index/offset is not
* within the range mapped the @vma.
*/
inline unsigned long
vma_address(struct page *page, struct vm_area_struct *vma)
{
pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
unsigned long address;
if (unlikely(is_vm_hugetlb_page(vma)))
pgoff = page->index << huge_page_order(page_hstate(page));
address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
/* page should be within @vma mapping range */
return -EFAULT;
}
return address;
}
/*
* At what user virtual address is page expected in vma?
* Caller should check the page is actually part of the vma.
*/
unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
{
if (PageAnon(page)) {
struct anon_vma *page__anon_vma = page_anon_vma(page);
/*
* Note: swapoff's unuse_vma() is more efficient with this
* check, and needs it to match anon_vma when KSM is active.
*/
if (!vma->anon_vma || !page__anon_vma ||
vma->anon_vma->root != page__anon_vma->root)
return -EFAULT;
} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
if (!vma->vm_file ||
vma->vm_file->f_mapping != page->mapping)
return -EFAULT;
} else
return -EFAULT;
return vma_address(page, vma);
}
/*
* Check that @page is mapped at @address into @mm.
*
* If @sync is false, page_check_address may perform a racy check to avoid
* the page table lock when the pte is not present (helpful when reclaiming
* highly shared pages).
*
* On success returns with pte mapped and locked.
*/
pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
unsigned long address, spinlock_t **ptlp, int sync)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
spinlock_t *ptl;
if (unlikely(PageHuge(page))) {
pte = huge_pte_offset(mm, address);
ptl = &mm->page_table_lock;
goto check;
}
pgd = pgd_offset(mm, address);
if (!pgd_present(*pgd))
return NULL;
pud = pud_offset(pgd, address);
if (!pud_present(*pud))
return NULL;
pmd = pmd_offset(pud, address);
if (!pmd_present(*pmd))
return NULL;
if (pmd_trans_huge(*pmd))
return NULL;
pte = pte_offset_map(pmd, address);
/* Make a quick check before getting the lock */
if (!sync && !pte_present(*pte)) {
pte_unmap(pte);
return NULL;
}
ptl = pte_lockptr(mm, pmd);
check:
spin_lock(ptl);
if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
*ptlp = ptl;
return pte;
}
pte_unmap_unlock(pte, ptl);
return NULL;
}
/**
* page_mapped_in_vma - check whether a page is really mapped in a VMA
* @page: the page to test
* @vma: the VMA to test
*
* Returns 1 if the page is mapped into the page tables of the VMA, 0
* if the page is not mapped into the page tables of this VMA. Only
* valid for normal file or anonymous VMAs.
*/
int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
{
unsigned long address;
pte_t *pte;
spinlock_t *ptl;
address = vma_address(page, vma);
if (address == -EFAULT) /* out of vma range */
return 0;
pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
if (!pte) /* the page is not in this mm */
return 0;
pte_unmap_unlock(pte, ptl);
return 1;
}
/*
* Subfunctions of page_referenced: page_referenced_one called
* repeatedly from either page_referenced_anon or page_referenced_file.
*/
int page_referenced_one(struct page *page, struct vm_area_struct *vma,
unsigned long address, unsigned int *mapcount,
unsigned long *vm_flags)
{
struct mm_struct *mm = vma->vm_mm;
int referenced = 0;
if (unlikely(PageTransHuge(page))) {
pmd_t *pmd;
spin_lock(&mm->page_table_lock);
/*
* rmap might return false positives; we must filter
* these out using page_check_address_pmd().
*/
pmd = page_check_address_pmd(page, mm, address,
PAGE_CHECK_ADDRESS_PMD_FLAG);
if (!pmd) {
spin_unlock(&mm->page_table_lock);
goto out;
}
if (vma->vm_flags & VM_LOCKED) {
spin_unlock(&mm->page_table_lock);
*mapcount = 0; /* break early from loop */
*vm_flags |= VM_LOCKED;
goto out;
}
/* go ahead even if the pmd is pmd_trans_splitting() */
if (pmdp_clear_flush_young_notify(vma, address, pmd))
referenced++;
spin_unlock(&mm->page_table_lock);
} else {
pte_t *pte;
spinlock_t *ptl;
/*
* rmap might return false positives; we must filter
* these out using page_check_address().
*/
pte = page_check_address(page, mm, address, &ptl, 0);
if (!pte)
goto out;
if (vma->vm_flags & VM_LOCKED) {
pte_unmap_unlock(pte, ptl);
*mapcount = 0; /* break early from loop */
*vm_flags |= VM_LOCKED;
goto out;
}
if (ptep_clear_flush_young_notify(vma, address, pte)) {
/*
* Don't treat a reference through a sequentially read
* mapping as such. If the page has been used in
* another mapping, we will catch it; if this other
* mapping is already gone, the unmap path will have
* set PG_referenced or activated the page.
*/
if (likely(!VM_SequentialReadHint(vma)))
referenced++;
}
pte_unmap_unlock(pte, ptl);
}
/* Pretend the page is referenced if the task has the
swap token and is in the middle of a page fault. */
if (mm != current->mm && has_swap_token(mm) &&
rwsem_is_locked(&mm->mmap_sem))
referenced++;
(*mapcount)--;
if (referenced)
*vm_flags |= vma->vm_flags;
out:
return referenced;
}
static int page_referenced_anon(struct page *page,
struct mem_cgroup *memcg,
unsigned long *vm_flags)
{
unsigned int mapcount;
struct anon_vma *anon_vma;
struct anon_vma_chain *avc;
int referenced = 0;
anon_vma = page_lock_anon_vma(page);
if (!anon_vma)
return referenced;
mapcount = page_mapcount(page);
list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
struct vm_area_struct *vma = avc->vma;
unsigned long address = vma_address(page, vma);
if (address == -EFAULT)
continue;
/*
* If we are reclaiming on behalf of a cgroup, skip
* counting on behalf of references from different
* cgroups
*/
if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
continue;
referenced += page_referenced_one(page, vma, address,
&mapcount, vm_flags);
if (!mapcount)
break;
}
page_unlock_anon_vma(anon_vma);
return referenced;
}
/**
* page_referenced_file - referenced check for object-based rmap
* @page: the page we're checking references on.
* @memcg: target memory control group
* @vm_flags: collect encountered vma->vm_flags who actually referenced the page
*
* For an object-based mapped page, find all the places it is mapped and
* check/clear the referenced flag. This is done by following the page->mapping
* pointer, then walking the chain of vmas it holds. It returns the number
* of references it found.
*
* This function is only called from page_referenced for object-based pages.
*/
static int page_referenced_file(struct page *page,
struct mem_cgroup *memcg,
unsigned long *vm_flags)
{
unsigned int mapcount;
struct address_space *mapping = page->mapping;
pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
struct vm_area_struct *vma;
struct prio_tree_iter iter;
int referenced = 0;
/*
* The caller's checks on page->mapping and !PageAnon have made
* sure that this is a file page: the check for page->mapping
* excludes the case just before it gets set on an anon page.
*/
BUG_ON(PageAnon(page));
/*
* The page lock not only makes sure that page->mapping cannot
* suddenly be NULLified by truncation, it makes sure that the
* structure at mapping cannot be freed and reused yet,
* so we can safely take mapping->i_mmap_mutex.
*/
BUG_ON(!PageLocked(page));
mutex_lock(&mapping->i_mmap_mutex);
/*
* i_mmap_mutex does not stabilize mapcount at all, but mapcount
* is more likely to be accurate if we note it after spinning.
*/
mapcount = page_mapcount(page);
vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
unsigned long address = vma_address(page, vma);
if (address == -EFAULT)
continue;
/*
* If we are reclaiming on behalf of a cgroup, skip
* counting on behalf of references from different
* cgroups
*/
if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
continue;
referenced += page_referenced_one(page, vma, address,
&mapcount, vm_flags);
if (!mapcount)
break;
}
mutex_unlock(&mapping->i_mmap_mutex);
return referenced;
}
/**
* page_referenced - test if the page was referenced
* @page: the page to test
* @is_locked: caller holds lock on the page
* @memcg: target memory cgroup
* @vm_flags: collect encountered vma->vm_flags who actually referenced the page
*
* Quick test_and_clear_referenced for all mappings to a page,
* returns the number of ptes which referenced the page.
*/
int page_referenced(struct page *page,
int is_locked,
struct mem_cgroup *memcg,
unsigned long *vm_flags)
{
int referenced = 0;
int we_locked = 0;
*vm_flags = 0;
if (page_mapped(page) && page_rmapping(page)) {
if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
we_locked = trylock_page(page);
if (!we_locked) {
referenced++;
goto out;
}
}
if (unlikely(PageKsm(page)))
referenced += page_referenced_ksm(page, memcg,
vm_flags);
else if (PageAnon(page))
referenced += page_referenced_anon(page, memcg,
vm_flags);
else if (page->mapping)
referenced += page_referenced_file(page, memcg,
vm_flags);
if (we_locked)
unlock_page(page);
if (page_test_and_clear_young(page_to_pfn(page)))
referenced++;
}
out:
return referenced;
}
static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
unsigned long address)
{
struct mm_struct *mm = vma->vm_mm;
pte_t *pte;
spinlock_t *ptl;
int ret = 0;
pte = page_check_address(page, mm, address, &ptl, 1);
if (!pte)
goto out;
if (pte_dirty(*pte) || pte_write(*pte)) {
pte_t entry;
flush_cache_page(vma, address, pte_pfn(*pte));
entry = ptep_clear_flush_notify(vma, address, pte);
entry = pte_wrprotect(entry);
entry = pte_mkclean(entry);
set_pte_at(mm, address, pte, entry);
ret = 1;
}
pte_unmap_unlock(pte, ptl);
out:
return ret;
}
static int page_mkclean_file(struct address_space *mapping, struct page *page)
{
pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
struct vm_area_struct *vma;
struct prio_tree_iter iter;
int ret = 0;
BUG_ON(PageAnon(page));
mutex_lock(&mapping->i_mmap_mutex);
vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
if (vma->vm_flags & VM_SHARED) {
unsigned long address = vma_address(page, vma);
if (address == -EFAULT)
continue;
ret += page_mkclean_one(page, vma, address);
}
}
mutex_unlock(&mapping->i_mmap_mutex);
return ret;
}
int page_mkclean(struct page *page)
{
int ret = 0;
BUG_ON(!PageLocked(page));
if (page_mapped(page)) {
struct address_space *mapping = page_mapping(page);
if (mapping) {
ret = page_mkclean_file(mapping, page);
if (page_test_and_clear_dirty(page_to_pfn(page), 1))
ret = 1;
}
}
return ret;
}
EXPORT_SYMBOL_GPL(page_mkclean);
/**
* page_move_anon_rmap - move a page to our anon_vma
* @page: the page to move to our anon_vma
* @vma: the vma the page belongs to
* @address: the user virtual address mapped
*
* When a page belongs exclusively to one process after a COW event,
* that page can be moved into the anon_vma that belongs to just that
* process, so the rmap code will not search the parent or sibling
* processes.
*/
void page_move_anon_rmap(struct page *page,
struct vm_area_struct *vma, unsigned long address)
{
struct anon_vma *anon_vma = vma->anon_vma;
VM_BUG_ON(!PageLocked(page));
VM_BUG_ON(!anon_vma);
VM_BUG_ON(page->index != linear_page_index(vma, address));
anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
page->mapping = (struct address_space *) anon_vma;
}
/**
* __page_set_anon_rmap - set up new anonymous rmap
* @page: Page to add to rmap
* @vma: VM area to add page to.
* @address: User virtual address of the mapping
* @exclusive: the page is exclusively owned by the current process
*/
static void __page_set_anon_rmap(struct page *page,
struct vm_area_struct *vma, unsigned long address, int exclusive)
{
struct anon_vma *anon_vma = vma->anon_vma;
BUG_ON(!anon_vma);
if (PageAnon(page))
return;
/*
* If the page isn't exclusively mapped into this vma,
* we must use the _oldest_ possible anon_vma for the
* page mapping!
*/
if (!exclusive)
anon_vma = anon_vma->root;
anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
page->mapping = (struct address_space *) anon_vma;
page->index = linear_page_index(vma, address);
}
/**
* __page_check_anon_rmap - sanity check anonymous rmap addition
* @page: the page to add the mapping to
* @vma: the vm area in which the mapping is added
* @address: the user virtual address mapped
*/
static void __page_check_anon_rmap(struct page *page,
struct vm_area_struct *vma, unsigned long address)
{
#ifdef CONFIG_DEBUG_VM
/*
* The page's anon-rmap details (mapping and index) are guaranteed to
* be set up correctly at this point.
*
* We have exclusion against page_add_anon_rmap because the caller
* always holds the page locked, except if called from page_dup_rmap,
* in which case the page is already known to be setup.
*
* We have exclusion against page_add_new_anon_rmap because those pages
* are initially only visible via the pagetables, and the pte is locked
* over the call to page_add_new_anon_rmap.
*/
BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
BUG_ON(page->index != linear_page_index(vma, address));
#endif
}
/**
* page_add_anon_rmap - add pte mapping to an anonymous page
* @page: the page to add the mapping to
* @vma: the vm area in which the mapping is added
* @address: the user virtual address mapped
*
* The caller needs to hold the pte lock, and the page must be locked in
* the anon_vma case: to serialize mapping,index checking after setting,
* and to ensure that PageAnon is not being upgraded racily to PageKsm
* (but PageKsm is never downgraded to PageAnon).
*/
void page_add_anon_rmap(struct page *page,
struct vm_area_struct *vma, unsigned long address)
{
do_page_add_anon_rmap(page, vma, address, 0);
}
/*
* Special version of the above for do_swap_page, which often runs
* into pages that are exclusively owned by the current process.
* Everybody else should continue to use page_add_anon_rmap above.
*/
void do_page_add_anon_rmap(struct page *page,
struct vm_area_struct *vma, unsigned long address, int exclusive)
{
int first = atomic_inc_and_test(&page->_mapcount);
if (first) {
if (!PageTransHuge(page))
__inc_zone_page_state(page, NR_ANON_PAGES);
else
__inc_zone_page_state(page,
NR_ANON_TRANSPARENT_HUGEPAGES);
}
if (unlikely(PageKsm(page)))
return;
VM_BUG_ON(!PageLocked(page));
/* address might be in next vma when migration races vma_adjust */
if (first)
__page_set_anon_rmap(page, vma, address, exclusive);
else
__page_check_anon_rmap(page, vma, address);
}
/**
* page_add_new_anon_rmap - add pte mapping to a new anonymous page
* @page: the page to add the mapping to
* @vma: the vm area in which the mapping is added
* @address: the user virtual address mapped
*
* Same as page_add_anon_rmap but must only be called on *new* pages.
* This means the inc-and-test can be bypassed.
* Page does not have to be locked.
*/
void page_add_new_anon_rmap(struct page *page,
struct vm_area_struct *vma, unsigned long address)
{
VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
SetPageSwapBacked(page);
atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
if (!PageTransHuge(page))
__inc_zone_page_state(page, NR_ANON_PAGES);
else
__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
__page_set_anon_rmap(page, vma, address, 1);
if (page_evictable(page, vma))
lru_cache_add_lru(page, LRU_ACTIVE_ANON);
else
add_page_to_unevictable_list(page);
}
/**
* page_add_file_rmap - add pte mapping to a file page
* @page: the page to add the mapping to
*
* The caller needs to hold the pte lock.
*/
void page_add_file_rmap(struct page *page)
{
bool locked;
unsigned long flags;
mem_cgroup_begin_update_page_stat(page, &locked, &flags);
if (atomic_inc_and_test(&page->_mapcount)) {
__inc_zone_page_state(page, NR_FILE_MAPPED);
mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
}
mem_cgroup_end_update_page_stat(page, &locked, &flags);
}
/**
* page_remove_rmap - take down pte mapping from a page
* @page: page to remove mapping from
*
* The caller needs to hold the pte lock.
*/
void page_remove_rmap(struct page *page)
{
bool anon = PageAnon(page);
bool locked;
unsigned long flags;
/*
* The anon case has no mem_cgroup page_stat to update; but may
* uncharge_page() below, where the lock ordering can deadlock if
* we hold the lock against page_stat move: so avoid it on anon.
*/
if (!anon)
mem_cgroup_begin_update_page_stat(page, &locked, &flags);
/* page still mapped by someone else? */
if (!atomic_add_negative(-1, &page->_mapcount))
goto out;
/*
* Now that the last pte has gone, s390 must transfer dirty
* flag from storage key to struct page. We can usually skip
* this if the page is anon, so about to be freed; but perhaps
* not if it's in swapcache - there might be another pte slot
* containing the swap entry, but page not yet written to swap.
*/
if ((!anon || PageSwapCache(page)) &&
page_test_and_clear_dirty(page_to_pfn(page), 1))
set_page_dirty(page);
/*
* Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
* and not charged by memcg for now.
*/
if (unlikely(PageHuge(page)))
goto out;
if (anon) {
mem_cgroup_uncharge_page(page);
if (!PageTransHuge(page))
__dec_zone_page_state(page, NR_ANON_PAGES);
else
__dec_zone_page_state(page,
NR_ANON_TRANSPARENT_HUGEPAGES);
} else {
__dec_zone_page_state(page, NR_FILE_MAPPED);
mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
}
/*
* It would be tidy to reset the PageAnon mapping here,
* but that might overwrite a racing page_add_anon_rmap
* which increments mapcount after us but sets mapping
* before us: so leave the reset to free_hot_cold_page,
* and remember that it's only reliable while mapped.
* Leaving it set also helps swapoff to reinstate ptes
* faster for those pages still in swapcache.
*/
out:
if (!anon)
mem_cgroup_end_update_page_stat(page, &locked, &flags);
}
/*
* Subfunctions of try_to_unmap: try_to_unmap_one called
* repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
*/
int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
unsigned long address, enum ttu_flags flags)
{
struct mm_struct *mm = vma->vm_mm;
pte_t *pte;
pte_t pteval;
spinlock_t *ptl;
int ret = SWAP_AGAIN;
pte = page_check_address(page, mm, address, &ptl, 0);
if (!pte)
goto out;
/*
* If the page is mlock()d, we cannot swap it out.
* If it's recently referenced (perhaps page_referenced
* skipped over this mm) then we should reactivate it.
*/
if (!(flags & TTU_IGNORE_MLOCK)) {
if (vma->vm_flags & VM_LOCKED)
goto out_mlock;
if (TTU_ACTION(flags) == TTU_MUNLOCK)
goto out_unmap;
}
if (!(flags & TTU_IGNORE_ACCESS)) {
if (ptep_clear_flush_young_notify(vma, address, pte)) {
ret = SWAP_FAIL;
goto out_unmap;
}
}
/* Nuke the page table entry. */
flush_cache_page(vma, address, page_to_pfn(page));
pteval = ptep_clear_flush_notify(vma, address, pte);
/* Move the dirty bit to the physical page now the pte is gone. */
if (pte_dirty(pteval))
set_page_dirty(page);
/* Update high watermark before we lower rss */
update_hiwater_rss(mm);
if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
if (PageAnon(page))
dec_mm_counter(mm, MM_ANONPAGES);
else
dec_mm_counter(mm, MM_FILEPAGES);
set_pte_at(mm, address, pte,
swp_entry_to_pte(make_hwpoison_entry(page)));
} else if (PageAnon(page)) {
swp_entry_t entry = { .val = page_private(page) };
if (PageSwapCache(page)) {
/*
* Store the swap location in the pte.
* See handle_pte_fault() ...
*/
if (swap_duplicate(entry) < 0) {
set_pte_at(mm, address, pte, pteval);
ret = SWAP_FAIL;
goto out_unmap;
}
if (list_empty(&mm->mmlist)) {
spin_lock(&mmlist_lock);
if (list_empty(&mm->mmlist))
list_add(&mm->mmlist, &init_mm.mmlist);
spin_unlock(&mmlist_lock);
}
dec_mm_counter(mm, MM_ANONPAGES);
inc_mm_counter(mm, MM_SWAPENTS);
} else if (IS_ENABLED(CONFIG_MIGRATION)) {
/*
* Store the pfn of the page in a special migration
* pte. do_swap_page() will wait until the migration
* pte is removed and then restart fault handling.
*/
BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
entry = make_migration_entry(page, pte_write(pteval));
}
set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
BUG_ON(pte_file(*pte));
} else if (IS_ENABLED(CONFIG_MIGRATION) &&
(TTU_ACTION(flags) == TTU_MIGRATION)) {
/* Establish migration entry for a file page */
swp_entry_t entry;
entry = make_migration_entry(page, pte_write(pteval));
set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
} else
dec_mm_counter(mm, MM_FILEPAGES);
page_remove_rmap(page);
page_cache_release(page);
out_unmap:
pte_unmap_unlock(pte, ptl);
out:
return ret;
out_mlock:
pte_unmap_unlock(pte, ptl);
/*
* We need mmap_sem locking, Otherwise VM_LOCKED check makes
* unstable result and race. Plus, We can't wait here because
* we now hold anon_vma->mutex or mapping->i_mmap_mutex.
* if trylock failed, the page remain in evictable lru and later
* vmscan could retry to move the page to unevictable lru if the
* page is actually mlocked.
*/
if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
if (vma->vm_flags & VM_LOCKED) {
mlock_vma_page(page);
ret = SWAP_MLOCK;
}
up_read(&vma->vm_mm->mmap_sem);
}
return ret;
}
/*
* objrmap doesn't work for nonlinear VMAs because the assumption that
* offset-into-file correlates with offset-into-virtual-addresses does not hold.
* Consequently, given a particular page and its ->index, we cannot locate the
* ptes which are mapping that page without an exhaustive linear search.
*
* So what this code does is a mini "virtual scan" of each nonlinear VMA which
* maps the file to which the target page belongs. The ->vm_private_data field
* holds the current cursor into that scan. Successive searches will circulate
* around the vma's virtual address space.
*
* So as more replacement pressure is applied to the pages in a nonlinear VMA,
* more scanning pressure is placed against them as well. Eventually pages
* will become fully unmapped and are eligible for eviction.
*
* For very sparsely populated VMAs this is a little inefficient - chances are
* there there won't be many ptes located within the scan cluster. In this case
* maybe we could scan further - to the end of the pte page, perhaps.
*
* Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
* acquire it without blocking. If vma locked, mlock the pages in the cluster,
* rather than unmapping them. If we encounter the "check_page" that vmscan is
* trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
*/
#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
struct vm_area_struct *vma, struct page *check_page)
{
struct mm_struct *mm = vma->vm_mm;
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
pte_t pteval;
spinlock_t *ptl;
struct page *page;
unsigned long address;
unsigned long end;
int ret = SWAP_AGAIN;
int locked_vma = 0;
address = (vma->vm_start + cursor) & CLUSTER_MASK;
end = address + CLUSTER_SIZE;
if (address < vma->vm_start)
address = vma->vm_start;
if (end > vma->vm_end)
end = vma->vm_end;
pgd = pgd_offset(mm, address);
if (!pgd_present(*pgd))
return ret;
pud = pud_offset(pgd, address);
if (!pud_present(*pud))
return ret;
pmd = pmd_offset(pud, address);
if (!pmd_present(*pmd))
return ret;
/*
* If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
* keep the sem while scanning the cluster for mlocking pages.
*/
if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
locked_vma = (vma->vm_flags & VM_LOCKED);
if (!locked_vma)
up_read(&vma->vm_mm->mmap_sem); /* don't need it */
}
pte = pte_offset_map_lock(mm, pmd, address, &ptl);
/* Update high watermark before we lower rss */
update_hiwater_rss(mm);
for (; address < end; pte++, address += PAGE_SIZE) {
if (!pte_present(*pte))
continue;
page = vm_normal_page(vma, address, *pte);
BUG_ON(!page || PageAnon(page));
if (locked_vma) {
mlock_vma_page(page); /* no-op if already mlocked */
if (page == check_page)
ret = SWAP_MLOCK;
continue; /* don't unmap */
}
if (ptep_clear_flush_young_notify(vma, address, pte))
continue;
/* Nuke the page table entry. */
flush_cache_page(vma, address, pte_pfn(*pte));
pteval = ptep_clear_flush_notify(vma, address, pte);
/* If nonlinear, store the file page offset in the pte. */
if (page->index != linear_page_index(vma, address))
set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
/* Move the dirty bit to the physical page now the pte is gone. */
if (pte_dirty(pteval))
set_page_dirty(page);
page_remove_rmap(page);
page_cache_release(page);
dec_mm_counter(mm, MM_FILEPAGES);
(*mapcount)--;
}
pte_unmap_unlock(pte - 1, ptl);
if (locked_vma)
up_read(&vma->vm_mm->mmap_sem);
return ret;
}
bool is_vma_temporary_stack(struct vm_area_struct *vma)
{
int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
if (!maybe_stack)
return false;
if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
VM_STACK_INCOMPLETE_SETUP)
return true;
return false;
}
/**
* try_to_unmap_anon - unmap or unlock anonymous page using the object-based
* rmap method
* @page: the page to unmap/unlock
* @flags: action and flags
*
* Find all the mappings of a page using the mapping pointer and the vma chains
* contained in the anon_vma struct it points to.
*
* This function is only called from try_to_unmap/try_to_munlock for
* anonymous pages.
* When called from try_to_munlock(), the mmap_sem of the mm containing the vma
* where the page was found will be held for write. So, we won't recheck
* vm_flags for that VMA. That should be OK, because that vma shouldn't be
* 'LOCKED.
*/
static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
{
struct anon_vma *anon_vma;
struct anon_vma_chain *avc;
int ret = SWAP_AGAIN;
anon_vma = page_lock_anon_vma(page);
if (!anon_vma)
return ret;
list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
struct vm_area_struct *vma = avc->vma;
unsigned long address;
/*
* During exec, a temporary VMA is setup and later moved.
* The VMA is moved under the anon_vma lock but not the
* page tables leading to a race where migration cannot
* find the migration ptes. Rather than increasing the
* locking requirements of exec(), migration skips
* temporary VMAs until after exec() completes.
*/
if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
is_vma_temporary_stack(vma))
continue;
address = vma_address(page, vma);
if (address == -EFAULT)
continue;
ret = try_to_unmap_one(page, vma, address, flags);
if (ret != SWAP_AGAIN || !page_mapped(page))
break;
}
page_unlock_anon_vma(anon_vma);
return ret;
}
/**
* try_to_unmap_file - unmap/unlock file page using the object-based rmap method
* @page: the page to unmap/unlock
* @flags: action and flags
*
* Find all the mappings of a page using the mapping pointer and the vma chains
* contained in the address_space struct it points to.
*
* This function is only called from try_to_unmap/try_to_munlock for
* object-based pages.
* When called from try_to_munlock(), the mmap_sem of the mm containing the vma
* where the page was found will be held for write. So, we won't recheck
* vm_flags for that VMA. That should be OK, because that vma shouldn't be
* 'LOCKED.
*/
static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
{
struct address_space *mapping = page->mapping;
pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
struct vm_area_struct *vma;
struct prio_tree_iter iter;
int ret = SWAP_AGAIN;
unsigned long cursor;
unsigned long max_nl_cursor = 0;
unsigned long max_nl_size = 0;
unsigned int mapcount;
mutex_lock(&mapping->i_mmap_mutex);
vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
unsigned long address = vma_address(page, vma);
if (address == -EFAULT)
continue;
ret = try_to_unmap_one(page, vma, address, flags);
if (ret != SWAP_AGAIN || !page_mapped(page))
goto out;
}
if (list_empty(&mapping->i_mmap_nonlinear))
goto out;
/*
* We don't bother to try to find the munlocked page in nonlinears.
* It's costly. Instead, later, page reclaim logic may call
* try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
*/
if (TTU_ACTION(flags) == TTU_MUNLOCK)
goto out;
list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
shared.vm_set.list) {
cursor = (unsigned long) vma->vm_private_data;
if (cursor > max_nl_cursor)
max_nl_cursor = cursor;
cursor = vma->vm_end - vma->vm_start;
if (cursor > max_nl_size)
max_nl_size = cursor;
}
if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
ret = SWAP_FAIL;
goto out;
}
/*
* We don't try to search for this page in the nonlinear vmas,
* and page_referenced wouldn't have found it anyway. Instead
* just walk the nonlinear vmas trying to age and unmap some.
* The mapcount of the page we came in with is irrelevant,
* but even so use it as a guide to how hard we should try?
*/
mapcount = page_mapcount(page);
if (!mapcount)
goto out;
cond_resched();
max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
if (max_nl_cursor == 0)
max_nl_cursor = CLUSTER_SIZE;
do {
list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
shared.vm_set.list) {
cursor = (unsigned long) vma->vm_private_data;
while ( cursor < max_nl_cursor &&
cursor < vma->vm_end - vma->vm_start) {
if (try_to_unmap_cluster(cursor, &mapcount,
vma, page) == SWAP_MLOCK)
ret = SWAP_MLOCK;
cursor += CLUSTER_SIZE;
vma->vm_private_data = (void *) cursor;
if ((int)mapcount <= 0)
goto out;
}
vma->vm_private_data = (void *) max_nl_cursor;
}
cond_resched();
max_nl_cursor += CLUSTER_SIZE;
} while (max_nl_cursor <= max_nl_size);
/*
* Don't loop forever (perhaps all the remaining pages are
* in locked vmas). Reset cursor on all unreserved nonlinear
* vmas, now forgetting on which ones it had fallen behind.
*/
list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
vma->vm_private_data = NULL;
out:
mutex_unlock(&mapping->i_mmap_mutex);
return ret;
}
/**
* try_to_unmap - try to remove all page table mappings to a page
* @page: the page to get unmapped
* @flags: action and flags
*
* Tries to remove all the page table entries which are mapping this
* page, used in the pageout path. Caller must hold the page lock.
* Return values are:
*
* SWAP_SUCCESS - we succeeded in removing all mappings
* SWAP_AGAIN - we missed a mapping, try again later
* SWAP_FAIL - the page is unswappable
* SWAP_MLOCK - page is mlocked.
*/
int try_to_unmap(struct page *page, enum ttu_flags flags)
{
int ret;
BUG_ON(!PageLocked(page));
VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
if (unlikely(PageKsm(page)))
ret = try_to_unmap_ksm(page, flags);
else if (PageAnon(page))
ret = try_to_unmap_anon(page, flags);
else
ret = try_to_unmap_file(page, flags);
if (ret != SWAP_MLOCK && !page_mapped(page))
ret = SWAP_SUCCESS;
return ret;
}
/**
* try_to_munlock - try to munlock a page
* @page: the page to be munlocked
*
* Called from munlock code. Checks all of the VMAs mapping the page
* to make sure nobody else has this page mlocked. The page will be
* returned with PG_mlocked cleared if no other vmas have it mlocked.
*
* Return values are:
*
* SWAP_AGAIN - no vma is holding page mlocked, or,
* SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
* SWAP_FAIL - page cannot be located at present
* SWAP_MLOCK - page is now mlocked.
*/
int try_to_munlock(struct page *page)
{
VM_BUG_ON(!PageLocked(page) || PageLRU(page));
if (unlikely(PageKsm(page)))
return try_to_unmap_ksm(page, TTU_MUNLOCK);
else if (PageAnon(page))
return try_to_unmap_anon(page, TTU_MUNLOCK);
else
return try_to_unmap_file(page, TTU_MUNLOCK);
}
void __put_anon_vma(struct anon_vma *anon_vma)
{
struct anon_vma *root = anon_vma->root;
if (root != anon_vma && atomic_dec_and_test(&root->refcount))
anon_vma_free(root);
anon_vma_free(anon_vma);
}
#ifdef CONFIG_MIGRATION
/*
* rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
* Called by migrate.c to remove migration ptes, but might be used more later.
*/
static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
struct vm_area_struct *, unsigned long, void *), void *arg)
{
struct anon_vma *anon_vma;
struct anon_vma_chain *avc;
int ret = SWAP_AGAIN;
/*
* Note: remove_migration_ptes() cannot use page_lock_anon_vma()
* because that depends on page_mapped(); but not all its usages
* are holding mmap_sem. Users without mmap_sem are required to
* take a reference count to prevent the anon_vma disappearing
*/
anon_vma = page_anon_vma(page);
if (!anon_vma)
return ret;
anon_vma_lock(anon_vma);
list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
struct vm_area_struct *vma = avc->vma;
unsigned long address = vma_address(page, vma);
if (address == -EFAULT)
continue;
ret = rmap_one(page, vma, address, arg);
if (ret != SWAP_AGAIN)
break;
}
anon_vma_unlock(anon_vma);
return ret;
}
static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
struct vm_area_struct *, unsigned long, void *), void *arg)
{
struct address_space *mapping = page->mapping;
pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
struct vm_area_struct *vma;
struct prio_tree_iter iter;
int ret = SWAP_AGAIN;
if (!mapping)
return ret;
mutex_lock(&mapping->i_mmap_mutex);
vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
unsigned long address = vma_address(page, vma);
if (address == -EFAULT)
continue;
ret = rmap_one(page, vma, address, arg);
if (ret != SWAP_AGAIN)
break;
}
/*
* No nonlinear handling: being always shared, nonlinear vmas
* never contain migration ptes. Decide what to do about this
* limitation to linear when we need rmap_walk() on nonlinear.
*/
mutex_unlock(&mapping->i_mmap_mutex);
return ret;
}
int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
struct vm_area_struct *, unsigned long, void *), void *arg)
{
VM_BUG_ON(!PageLocked(page));
if (unlikely(PageKsm(page)))
return rmap_walk_ksm(page, rmap_one, arg);
else if (PageAnon(page))
return rmap_walk_anon(page, rmap_one, arg);
else
return rmap_walk_file(page, rmap_one, arg);
}
#endif /* CONFIG_MIGRATION */
#ifdef CONFIG_HUGETLB_PAGE
/*
* The following three functions are for anonymous (private mapped) hugepages.
* Unlike common anonymous pages, anonymous hugepages have no accounting code
* and no lru code, because we handle hugepages differently from common pages.
*/
static void __hugepage_set_anon_rmap(struct page *page,
struct vm_area_struct *vma, unsigned long address, int exclusive)
{
struct anon_vma *anon_vma = vma->anon_vma;
BUG_ON(!anon_vma);
if (PageAnon(page))
return;
if (!exclusive)
anon_vma = anon_vma->root;
anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
page->mapping = (struct address_space *) anon_vma;
page->index = linear_page_index(vma, address);
}
void hugepage_add_anon_rmap(struct page *page,
struct vm_area_struct *vma, unsigned long address)
{
struct anon_vma *anon_vma = vma->anon_vma;
int first;
BUG_ON(!PageLocked(page));
BUG_ON(!anon_vma);
/* address might be in next vma when migration races vma_adjust */
first = atomic_inc_and_test(&page->_mapcount);
if (first)
__hugepage_set_anon_rmap(page, vma, address, 0);
}
void hugepage_add_new_anon_rmap(struct page *page,
struct vm_area_struct *vma, unsigned long address)
{
BUG_ON(address < vma->vm_start || address >= vma->vm_end);
atomic_set(&page->_mapcount, 0);
__hugepage_set_anon_rmap(page, vma, address, 1);
}
#endif /* CONFIG_HUGETLB_PAGE */