2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-21 19:53:59 +08:00
linux-next/drivers/net/ethoc.c
Richard Cochran 28b041139e net: preserve ifreq parameter when calling generic phy_mii_ioctl().
The phy_mii_ioctl() function unnecessarily throws away the original ifreq.
We need access to the ifreq in order to support PHYs that can perform
hardware time stamping.

Two maverick drivers filter the ioctl commands passed to phy_mii_ioctl().
This is unnecessary since phylib will check the command in any case.

Signed-off-by: Richard Cochran <richard.cochran@omicron.at>
Signed-off-by: David S. Miller <davem@davemloft.net>
2010-07-18 19:15:25 -07:00

1149 lines
27 KiB
C

/*
* linux/drivers/net/ethoc.c
*
* Copyright (C) 2007-2008 Avionic Design Development GmbH
* Copyright (C) 2008-2009 Avionic Design GmbH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Written by Thierry Reding <thierry.reding@avionic-design.de>
*/
#include <linux/etherdevice.h>
#include <linux/crc32.h>
#include <linux/io.h>
#include <linux/mii.h>
#include <linux/phy.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <net/ethoc.h>
static int buffer_size = 0x8000; /* 32 KBytes */
module_param(buffer_size, int, 0);
MODULE_PARM_DESC(buffer_size, "DMA buffer allocation size");
/* register offsets */
#define MODER 0x00
#define INT_SOURCE 0x04
#define INT_MASK 0x08
#define IPGT 0x0c
#define IPGR1 0x10
#define IPGR2 0x14
#define PACKETLEN 0x18
#define COLLCONF 0x1c
#define TX_BD_NUM 0x20
#define CTRLMODER 0x24
#define MIIMODER 0x28
#define MIICOMMAND 0x2c
#define MIIADDRESS 0x30
#define MIITX_DATA 0x34
#define MIIRX_DATA 0x38
#define MIISTATUS 0x3c
#define MAC_ADDR0 0x40
#define MAC_ADDR1 0x44
#define ETH_HASH0 0x48
#define ETH_HASH1 0x4c
#define ETH_TXCTRL 0x50
/* mode register */
#define MODER_RXEN (1 << 0) /* receive enable */
#define MODER_TXEN (1 << 1) /* transmit enable */
#define MODER_NOPRE (1 << 2) /* no preamble */
#define MODER_BRO (1 << 3) /* broadcast address */
#define MODER_IAM (1 << 4) /* individual address mode */
#define MODER_PRO (1 << 5) /* promiscuous mode */
#define MODER_IFG (1 << 6) /* interframe gap for incoming frames */
#define MODER_LOOP (1 << 7) /* loopback */
#define MODER_NBO (1 << 8) /* no back-off */
#define MODER_EDE (1 << 9) /* excess defer enable */
#define MODER_FULLD (1 << 10) /* full duplex */
#define MODER_RESET (1 << 11) /* FIXME: reset (undocumented) */
#define MODER_DCRC (1 << 12) /* delayed CRC enable */
#define MODER_CRC (1 << 13) /* CRC enable */
#define MODER_HUGE (1 << 14) /* huge packets enable */
#define MODER_PAD (1 << 15) /* padding enabled */
#define MODER_RSM (1 << 16) /* receive small packets */
/* interrupt source and mask registers */
#define INT_MASK_TXF (1 << 0) /* transmit frame */
#define INT_MASK_TXE (1 << 1) /* transmit error */
#define INT_MASK_RXF (1 << 2) /* receive frame */
#define INT_MASK_RXE (1 << 3) /* receive error */
#define INT_MASK_BUSY (1 << 4)
#define INT_MASK_TXC (1 << 5) /* transmit control frame */
#define INT_MASK_RXC (1 << 6) /* receive control frame */
#define INT_MASK_TX (INT_MASK_TXF | INT_MASK_TXE)
#define INT_MASK_RX (INT_MASK_RXF | INT_MASK_RXE)
#define INT_MASK_ALL ( \
INT_MASK_TXF | INT_MASK_TXE | \
INT_MASK_RXF | INT_MASK_RXE | \
INT_MASK_TXC | INT_MASK_RXC | \
INT_MASK_BUSY \
)
/* packet length register */
#define PACKETLEN_MIN(min) (((min) & 0xffff) << 16)
#define PACKETLEN_MAX(max) (((max) & 0xffff) << 0)
#define PACKETLEN_MIN_MAX(min, max) (PACKETLEN_MIN(min) | \
PACKETLEN_MAX(max))
/* transmit buffer number register */
#define TX_BD_NUM_VAL(x) (((x) <= 0x80) ? (x) : 0x80)
/* control module mode register */
#define CTRLMODER_PASSALL (1 << 0) /* pass all receive frames */
#define CTRLMODER_RXFLOW (1 << 1) /* receive control flow */
#define CTRLMODER_TXFLOW (1 << 2) /* transmit control flow */
/* MII mode register */
#define MIIMODER_CLKDIV(x) ((x) & 0xfe) /* needs to be an even number */
#define MIIMODER_NOPRE (1 << 8) /* no preamble */
/* MII command register */
#define MIICOMMAND_SCAN (1 << 0) /* scan status */
#define MIICOMMAND_READ (1 << 1) /* read status */
#define MIICOMMAND_WRITE (1 << 2) /* write control data */
/* MII address register */
#define MIIADDRESS_FIAD(x) (((x) & 0x1f) << 0)
#define MIIADDRESS_RGAD(x) (((x) & 0x1f) << 8)
#define MIIADDRESS_ADDR(phy, reg) (MIIADDRESS_FIAD(phy) | \
MIIADDRESS_RGAD(reg))
/* MII transmit data register */
#define MIITX_DATA_VAL(x) ((x) & 0xffff)
/* MII receive data register */
#define MIIRX_DATA_VAL(x) ((x) & 0xffff)
/* MII status register */
#define MIISTATUS_LINKFAIL (1 << 0)
#define MIISTATUS_BUSY (1 << 1)
#define MIISTATUS_INVALID (1 << 2)
/* TX buffer descriptor */
#define TX_BD_CS (1 << 0) /* carrier sense lost */
#define TX_BD_DF (1 << 1) /* defer indication */
#define TX_BD_LC (1 << 2) /* late collision */
#define TX_BD_RL (1 << 3) /* retransmission limit */
#define TX_BD_RETRY_MASK (0x00f0)
#define TX_BD_RETRY(x) (((x) & 0x00f0) >> 4)
#define TX_BD_UR (1 << 8) /* transmitter underrun */
#define TX_BD_CRC (1 << 11) /* TX CRC enable */
#define TX_BD_PAD (1 << 12) /* pad enable for short packets */
#define TX_BD_WRAP (1 << 13)
#define TX_BD_IRQ (1 << 14) /* interrupt request enable */
#define TX_BD_READY (1 << 15) /* TX buffer ready */
#define TX_BD_LEN(x) (((x) & 0xffff) << 16)
#define TX_BD_LEN_MASK (0xffff << 16)
#define TX_BD_STATS (TX_BD_CS | TX_BD_DF | TX_BD_LC | \
TX_BD_RL | TX_BD_RETRY_MASK | TX_BD_UR)
/* RX buffer descriptor */
#define RX_BD_LC (1 << 0) /* late collision */
#define RX_BD_CRC (1 << 1) /* RX CRC error */
#define RX_BD_SF (1 << 2) /* short frame */
#define RX_BD_TL (1 << 3) /* too long */
#define RX_BD_DN (1 << 4) /* dribble nibble */
#define RX_BD_IS (1 << 5) /* invalid symbol */
#define RX_BD_OR (1 << 6) /* receiver overrun */
#define RX_BD_MISS (1 << 7)
#define RX_BD_CF (1 << 8) /* control frame */
#define RX_BD_WRAP (1 << 13)
#define RX_BD_IRQ (1 << 14) /* interrupt request enable */
#define RX_BD_EMPTY (1 << 15)
#define RX_BD_LEN(x) (((x) & 0xffff) << 16)
#define RX_BD_STATS (RX_BD_LC | RX_BD_CRC | RX_BD_SF | RX_BD_TL | \
RX_BD_DN | RX_BD_IS | RX_BD_OR | RX_BD_MISS)
#define ETHOC_BUFSIZ 1536
#define ETHOC_ZLEN 64
#define ETHOC_BD_BASE 0x400
#define ETHOC_TIMEOUT (HZ / 2)
#define ETHOC_MII_TIMEOUT (1 + (HZ / 5))
/**
* struct ethoc - driver-private device structure
* @iobase: pointer to I/O memory region
* @membase: pointer to buffer memory region
* @dma_alloc: dma allocated buffer size
* @io_region_size: I/O memory region size
* @num_tx: number of send buffers
* @cur_tx: last send buffer written
* @dty_tx: last buffer actually sent
* @num_rx: number of receive buffers
* @cur_rx: current receive buffer
* @vma: pointer to array of virtual memory addresses for buffers
* @netdev: pointer to network device structure
* @napi: NAPI structure
* @msg_enable: device state flags
* @rx_lock: receive lock
* @lock: device lock
* @phy: attached PHY
* @mdio: MDIO bus for PHY access
* @phy_id: address of attached PHY
*/
struct ethoc {
void __iomem *iobase;
void __iomem *membase;
int dma_alloc;
resource_size_t io_region_size;
unsigned int num_tx;
unsigned int cur_tx;
unsigned int dty_tx;
unsigned int num_rx;
unsigned int cur_rx;
void** vma;
struct net_device *netdev;
struct napi_struct napi;
u32 msg_enable;
spinlock_t rx_lock;
spinlock_t lock;
struct phy_device *phy;
struct mii_bus *mdio;
s8 phy_id;
};
/**
* struct ethoc_bd - buffer descriptor
* @stat: buffer statistics
* @addr: physical memory address
*/
struct ethoc_bd {
u32 stat;
u32 addr;
};
static inline u32 ethoc_read(struct ethoc *dev, loff_t offset)
{
return ioread32(dev->iobase + offset);
}
static inline void ethoc_write(struct ethoc *dev, loff_t offset, u32 data)
{
iowrite32(data, dev->iobase + offset);
}
static inline void ethoc_read_bd(struct ethoc *dev, int index,
struct ethoc_bd *bd)
{
loff_t offset = ETHOC_BD_BASE + (index * sizeof(struct ethoc_bd));
bd->stat = ethoc_read(dev, offset + 0);
bd->addr = ethoc_read(dev, offset + 4);
}
static inline void ethoc_write_bd(struct ethoc *dev, int index,
const struct ethoc_bd *bd)
{
loff_t offset = ETHOC_BD_BASE + (index * sizeof(struct ethoc_bd));
ethoc_write(dev, offset + 0, bd->stat);
ethoc_write(dev, offset + 4, bd->addr);
}
static inline void ethoc_enable_irq(struct ethoc *dev, u32 mask)
{
u32 imask = ethoc_read(dev, INT_MASK);
imask |= mask;
ethoc_write(dev, INT_MASK, imask);
}
static inline void ethoc_disable_irq(struct ethoc *dev, u32 mask)
{
u32 imask = ethoc_read(dev, INT_MASK);
imask &= ~mask;
ethoc_write(dev, INT_MASK, imask);
}
static inline void ethoc_ack_irq(struct ethoc *dev, u32 mask)
{
ethoc_write(dev, INT_SOURCE, mask);
}
static inline void ethoc_enable_rx_and_tx(struct ethoc *dev)
{
u32 mode = ethoc_read(dev, MODER);
mode |= MODER_RXEN | MODER_TXEN;
ethoc_write(dev, MODER, mode);
}
static inline void ethoc_disable_rx_and_tx(struct ethoc *dev)
{
u32 mode = ethoc_read(dev, MODER);
mode &= ~(MODER_RXEN | MODER_TXEN);
ethoc_write(dev, MODER, mode);
}
static int ethoc_init_ring(struct ethoc *dev, unsigned long mem_start)
{
struct ethoc_bd bd;
int i;
void* vma;
dev->cur_tx = 0;
dev->dty_tx = 0;
dev->cur_rx = 0;
ethoc_write(dev, TX_BD_NUM, dev->num_tx);
/* setup transmission buffers */
bd.addr = mem_start;
bd.stat = TX_BD_IRQ | TX_BD_CRC;
vma = dev->membase;
for (i = 0; i < dev->num_tx; i++) {
if (i == dev->num_tx - 1)
bd.stat |= TX_BD_WRAP;
ethoc_write_bd(dev, i, &bd);
bd.addr += ETHOC_BUFSIZ;
dev->vma[i] = vma;
vma += ETHOC_BUFSIZ;
}
bd.stat = RX_BD_EMPTY | RX_BD_IRQ;
for (i = 0; i < dev->num_rx; i++) {
if (i == dev->num_rx - 1)
bd.stat |= RX_BD_WRAP;
ethoc_write_bd(dev, dev->num_tx + i, &bd);
bd.addr += ETHOC_BUFSIZ;
dev->vma[dev->num_tx + i] = vma;
vma += ETHOC_BUFSIZ;
}
return 0;
}
static int ethoc_reset(struct ethoc *dev)
{
u32 mode;
/* TODO: reset controller? */
ethoc_disable_rx_and_tx(dev);
/* TODO: setup registers */
/* enable FCS generation and automatic padding */
mode = ethoc_read(dev, MODER);
mode |= MODER_CRC | MODER_PAD;
ethoc_write(dev, MODER, mode);
/* set full-duplex mode */
mode = ethoc_read(dev, MODER);
mode |= MODER_FULLD;
ethoc_write(dev, MODER, mode);
ethoc_write(dev, IPGT, 0x15);
ethoc_ack_irq(dev, INT_MASK_ALL);
ethoc_enable_irq(dev, INT_MASK_ALL);
ethoc_enable_rx_and_tx(dev);
return 0;
}
static unsigned int ethoc_update_rx_stats(struct ethoc *dev,
struct ethoc_bd *bd)
{
struct net_device *netdev = dev->netdev;
unsigned int ret = 0;
if (bd->stat & RX_BD_TL) {
dev_err(&netdev->dev, "RX: frame too long\n");
netdev->stats.rx_length_errors++;
ret++;
}
if (bd->stat & RX_BD_SF) {
dev_err(&netdev->dev, "RX: frame too short\n");
netdev->stats.rx_length_errors++;
ret++;
}
if (bd->stat & RX_BD_DN) {
dev_err(&netdev->dev, "RX: dribble nibble\n");
netdev->stats.rx_frame_errors++;
}
if (bd->stat & RX_BD_CRC) {
dev_err(&netdev->dev, "RX: wrong CRC\n");
netdev->stats.rx_crc_errors++;
ret++;
}
if (bd->stat & RX_BD_OR) {
dev_err(&netdev->dev, "RX: overrun\n");
netdev->stats.rx_over_errors++;
ret++;
}
if (bd->stat & RX_BD_MISS)
netdev->stats.rx_missed_errors++;
if (bd->stat & RX_BD_LC) {
dev_err(&netdev->dev, "RX: late collision\n");
netdev->stats.collisions++;
ret++;
}
return ret;
}
static int ethoc_rx(struct net_device *dev, int limit)
{
struct ethoc *priv = netdev_priv(dev);
int count;
for (count = 0; count < limit; ++count) {
unsigned int entry;
struct ethoc_bd bd;
entry = priv->num_tx + (priv->cur_rx % priv->num_rx);
ethoc_read_bd(priv, entry, &bd);
if (bd.stat & RX_BD_EMPTY)
break;
if (ethoc_update_rx_stats(priv, &bd) == 0) {
int size = bd.stat >> 16;
struct sk_buff *skb;
size -= 4; /* strip the CRC */
skb = netdev_alloc_skb_ip_align(dev, size);
if (likely(skb)) {
void *src = priv->vma[entry];
memcpy_fromio(skb_put(skb, size), src, size);
skb->protocol = eth_type_trans(skb, dev);
dev->stats.rx_packets++;
dev->stats.rx_bytes += size;
netif_receive_skb(skb);
} else {
if (net_ratelimit())
dev_warn(&dev->dev, "low on memory - "
"packet dropped\n");
dev->stats.rx_dropped++;
break;
}
}
/* clear the buffer descriptor so it can be reused */
bd.stat &= ~RX_BD_STATS;
bd.stat |= RX_BD_EMPTY;
ethoc_write_bd(priv, entry, &bd);
priv->cur_rx++;
}
return count;
}
static int ethoc_update_tx_stats(struct ethoc *dev, struct ethoc_bd *bd)
{
struct net_device *netdev = dev->netdev;
if (bd->stat & TX_BD_LC) {
dev_err(&netdev->dev, "TX: late collision\n");
netdev->stats.tx_window_errors++;
}
if (bd->stat & TX_BD_RL) {
dev_err(&netdev->dev, "TX: retransmit limit\n");
netdev->stats.tx_aborted_errors++;
}
if (bd->stat & TX_BD_UR) {
dev_err(&netdev->dev, "TX: underrun\n");
netdev->stats.tx_fifo_errors++;
}
if (bd->stat & TX_BD_CS) {
dev_err(&netdev->dev, "TX: carrier sense lost\n");
netdev->stats.tx_carrier_errors++;
}
if (bd->stat & TX_BD_STATS)
netdev->stats.tx_errors++;
netdev->stats.collisions += (bd->stat >> 4) & 0xf;
netdev->stats.tx_bytes += bd->stat >> 16;
netdev->stats.tx_packets++;
return 0;
}
static void ethoc_tx(struct net_device *dev)
{
struct ethoc *priv = netdev_priv(dev);
spin_lock(&priv->lock);
while (priv->dty_tx != priv->cur_tx) {
unsigned int entry = priv->dty_tx % priv->num_tx;
struct ethoc_bd bd;
ethoc_read_bd(priv, entry, &bd);
if (bd.stat & TX_BD_READY)
break;
entry = (++priv->dty_tx) % priv->num_tx;
(void)ethoc_update_tx_stats(priv, &bd);
}
if ((priv->cur_tx - priv->dty_tx) <= (priv->num_tx / 2))
netif_wake_queue(dev);
ethoc_ack_irq(priv, INT_MASK_TX);
spin_unlock(&priv->lock);
}
static irqreturn_t ethoc_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct ethoc *priv = netdev_priv(dev);
u32 pending;
ethoc_disable_irq(priv, INT_MASK_ALL);
pending = ethoc_read(priv, INT_SOURCE);
if (unlikely(pending == 0)) {
ethoc_enable_irq(priv, INT_MASK_ALL);
return IRQ_NONE;
}
ethoc_ack_irq(priv, pending);
if (pending & INT_MASK_BUSY) {
dev_err(&dev->dev, "packet dropped\n");
dev->stats.rx_dropped++;
}
if (pending & INT_MASK_RX) {
if (napi_schedule_prep(&priv->napi))
__napi_schedule(&priv->napi);
} else {
ethoc_enable_irq(priv, INT_MASK_RX);
}
if (pending & INT_MASK_TX)
ethoc_tx(dev);
ethoc_enable_irq(priv, INT_MASK_ALL & ~INT_MASK_RX);
return IRQ_HANDLED;
}
static int ethoc_get_mac_address(struct net_device *dev, void *addr)
{
struct ethoc *priv = netdev_priv(dev);
u8 *mac = (u8 *)addr;
u32 reg;
reg = ethoc_read(priv, MAC_ADDR0);
mac[2] = (reg >> 24) & 0xff;
mac[3] = (reg >> 16) & 0xff;
mac[4] = (reg >> 8) & 0xff;
mac[5] = (reg >> 0) & 0xff;
reg = ethoc_read(priv, MAC_ADDR1);
mac[0] = (reg >> 8) & 0xff;
mac[1] = (reg >> 0) & 0xff;
return 0;
}
static int ethoc_poll(struct napi_struct *napi, int budget)
{
struct ethoc *priv = container_of(napi, struct ethoc, napi);
int work_done = 0;
work_done = ethoc_rx(priv->netdev, budget);
if (work_done < budget) {
ethoc_enable_irq(priv, INT_MASK_RX);
napi_complete(napi);
}
return work_done;
}
static int ethoc_mdio_read(struct mii_bus *bus, int phy, int reg)
{
unsigned long timeout = jiffies + ETHOC_MII_TIMEOUT;
struct ethoc *priv = bus->priv;
ethoc_write(priv, MIIADDRESS, MIIADDRESS_ADDR(phy, reg));
ethoc_write(priv, MIICOMMAND, MIICOMMAND_READ);
while (time_before(jiffies, timeout)) {
u32 status = ethoc_read(priv, MIISTATUS);
if (!(status & MIISTATUS_BUSY)) {
u32 data = ethoc_read(priv, MIIRX_DATA);
/* reset MII command register */
ethoc_write(priv, MIICOMMAND, 0);
return data;
}
schedule();
}
return -EBUSY;
}
static int ethoc_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
{
unsigned long timeout = jiffies + ETHOC_MII_TIMEOUT;
struct ethoc *priv = bus->priv;
ethoc_write(priv, MIIADDRESS, MIIADDRESS_ADDR(phy, reg));
ethoc_write(priv, MIITX_DATA, val);
ethoc_write(priv, MIICOMMAND, MIICOMMAND_WRITE);
while (time_before(jiffies, timeout)) {
u32 stat = ethoc_read(priv, MIISTATUS);
if (!(stat & MIISTATUS_BUSY)) {
/* reset MII command register */
ethoc_write(priv, MIICOMMAND, 0);
return 0;
}
schedule();
}
return -EBUSY;
}
static int ethoc_mdio_reset(struct mii_bus *bus)
{
return 0;
}
static void ethoc_mdio_poll(struct net_device *dev)
{
}
static int ethoc_mdio_probe(struct net_device *dev)
{
struct ethoc *priv = netdev_priv(dev);
struct phy_device *phy;
int err;
if (priv->phy_id != -1) {
phy = priv->mdio->phy_map[priv->phy_id];
} else {
phy = phy_find_first(priv->mdio);
}
if (!phy) {
dev_err(&dev->dev, "no PHY found\n");
return -ENXIO;
}
err = phy_connect_direct(dev, phy, ethoc_mdio_poll, 0,
PHY_INTERFACE_MODE_GMII);
if (err) {
dev_err(&dev->dev, "could not attach to PHY\n");
return err;
}
priv->phy = phy;
return 0;
}
static int ethoc_open(struct net_device *dev)
{
struct ethoc *priv = netdev_priv(dev);
int ret;
ret = request_irq(dev->irq, ethoc_interrupt, IRQF_SHARED,
dev->name, dev);
if (ret)
return ret;
ethoc_init_ring(priv, dev->mem_start);
ethoc_reset(priv);
if (netif_queue_stopped(dev)) {
dev_dbg(&dev->dev, " resuming queue\n");
netif_wake_queue(dev);
} else {
dev_dbg(&dev->dev, " starting queue\n");
netif_start_queue(dev);
}
phy_start(priv->phy);
napi_enable(&priv->napi);
if (netif_msg_ifup(priv)) {
dev_info(&dev->dev, "I/O: %08lx Memory: %08lx-%08lx\n",
dev->base_addr, dev->mem_start, dev->mem_end);
}
return 0;
}
static int ethoc_stop(struct net_device *dev)
{
struct ethoc *priv = netdev_priv(dev);
napi_disable(&priv->napi);
if (priv->phy)
phy_stop(priv->phy);
ethoc_disable_rx_and_tx(priv);
free_irq(dev->irq, dev);
if (!netif_queue_stopped(dev))
netif_stop_queue(dev);
return 0;
}
static int ethoc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct ethoc *priv = netdev_priv(dev);
struct mii_ioctl_data *mdio = if_mii(ifr);
struct phy_device *phy = NULL;
if (!netif_running(dev))
return -EINVAL;
if (cmd != SIOCGMIIPHY) {
if (mdio->phy_id >= PHY_MAX_ADDR)
return -ERANGE;
phy = priv->mdio->phy_map[mdio->phy_id];
if (!phy)
return -ENODEV;
} else {
phy = priv->phy;
}
return phy_mii_ioctl(phy, ifr, cmd);
}
static int ethoc_config(struct net_device *dev, struct ifmap *map)
{
return -ENOSYS;
}
static int ethoc_set_mac_address(struct net_device *dev, void *addr)
{
struct ethoc *priv = netdev_priv(dev);
u8 *mac = (u8 *)addr;
ethoc_write(priv, MAC_ADDR0, (mac[2] << 24) | (mac[3] << 16) |
(mac[4] << 8) | (mac[5] << 0));
ethoc_write(priv, MAC_ADDR1, (mac[0] << 8) | (mac[1] << 0));
return 0;
}
static void ethoc_set_multicast_list(struct net_device *dev)
{
struct ethoc *priv = netdev_priv(dev);
u32 mode = ethoc_read(priv, MODER);
struct netdev_hw_addr *ha;
u32 hash[2] = { 0, 0 };
/* set loopback mode if requested */
if (dev->flags & IFF_LOOPBACK)
mode |= MODER_LOOP;
else
mode &= ~MODER_LOOP;
/* receive broadcast frames if requested */
if (dev->flags & IFF_BROADCAST)
mode &= ~MODER_BRO;
else
mode |= MODER_BRO;
/* enable promiscuous mode if requested */
if (dev->flags & IFF_PROMISC)
mode |= MODER_PRO;
else
mode &= ~MODER_PRO;
ethoc_write(priv, MODER, mode);
/* receive multicast frames */
if (dev->flags & IFF_ALLMULTI) {
hash[0] = 0xffffffff;
hash[1] = 0xffffffff;
} else {
netdev_for_each_mc_addr(ha, dev) {
u32 crc = ether_crc(ETH_ALEN, ha->addr);
int bit = (crc >> 26) & 0x3f;
hash[bit >> 5] |= 1 << (bit & 0x1f);
}
}
ethoc_write(priv, ETH_HASH0, hash[0]);
ethoc_write(priv, ETH_HASH1, hash[1]);
}
static int ethoc_change_mtu(struct net_device *dev, int new_mtu)
{
return -ENOSYS;
}
static void ethoc_tx_timeout(struct net_device *dev)
{
struct ethoc *priv = netdev_priv(dev);
u32 pending = ethoc_read(priv, INT_SOURCE);
if (likely(pending))
ethoc_interrupt(dev->irq, dev);
}
static struct net_device_stats *ethoc_stats(struct net_device *dev)
{
return &dev->stats;
}
static netdev_tx_t ethoc_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct ethoc *priv = netdev_priv(dev);
struct ethoc_bd bd;
unsigned int entry;
void *dest;
if (unlikely(skb->len > ETHOC_BUFSIZ)) {
dev->stats.tx_errors++;
goto out;
}
entry = priv->cur_tx % priv->num_tx;
spin_lock_irq(&priv->lock);
priv->cur_tx++;
ethoc_read_bd(priv, entry, &bd);
if (unlikely(skb->len < ETHOC_ZLEN))
bd.stat |= TX_BD_PAD;
else
bd.stat &= ~TX_BD_PAD;
dest = priv->vma[entry];
memcpy_toio(dest, skb->data, skb->len);
bd.stat &= ~(TX_BD_STATS | TX_BD_LEN_MASK);
bd.stat |= TX_BD_LEN(skb->len);
ethoc_write_bd(priv, entry, &bd);
bd.stat |= TX_BD_READY;
ethoc_write_bd(priv, entry, &bd);
if (priv->cur_tx == (priv->dty_tx + priv->num_tx)) {
dev_dbg(&dev->dev, "stopping queue\n");
netif_stop_queue(dev);
}
spin_unlock_irq(&priv->lock);
out:
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
static const struct net_device_ops ethoc_netdev_ops = {
.ndo_open = ethoc_open,
.ndo_stop = ethoc_stop,
.ndo_do_ioctl = ethoc_ioctl,
.ndo_set_config = ethoc_config,
.ndo_set_mac_address = ethoc_set_mac_address,
.ndo_set_multicast_list = ethoc_set_multicast_list,
.ndo_change_mtu = ethoc_change_mtu,
.ndo_tx_timeout = ethoc_tx_timeout,
.ndo_get_stats = ethoc_stats,
.ndo_start_xmit = ethoc_start_xmit,
};
/**
* ethoc_probe() - initialize OpenCores ethernet MAC
* pdev: platform device
*/
static int ethoc_probe(struct platform_device *pdev)
{
struct net_device *netdev = NULL;
struct resource *res = NULL;
struct resource *mmio = NULL;
struct resource *mem = NULL;
struct ethoc *priv = NULL;
unsigned int phy;
int num_bd;
int ret = 0;
/* allocate networking device */
netdev = alloc_etherdev(sizeof(struct ethoc));
if (!netdev) {
dev_err(&pdev->dev, "cannot allocate network device\n");
ret = -ENOMEM;
goto out;
}
SET_NETDEV_DEV(netdev, &pdev->dev);
platform_set_drvdata(pdev, netdev);
/* obtain I/O memory space */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&pdev->dev, "cannot obtain I/O memory space\n");
ret = -ENXIO;
goto free;
}
mmio = devm_request_mem_region(&pdev->dev, res->start,
resource_size(res), res->name);
if (!mmio) {
dev_err(&pdev->dev, "cannot request I/O memory space\n");
ret = -ENXIO;
goto free;
}
netdev->base_addr = mmio->start;
/* obtain buffer memory space */
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (res) {
mem = devm_request_mem_region(&pdev->dev, res->start,
resource_size(res), res->name);
if (!mem) {
dev_err(&pdev->dev, "cannot request memory space\n");
ret = -ENXIO;
goto free;
}
netdev->mem_start = mem->start;
netdev->mem_end = mem->end;
}
/* obtain device IRQ number */
res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!res) {
dev_err(&pdev->dev, "cannot obtain IRQ\n");
ret = -ENXIO;
goto free;
}
netdev->irq = res->start;
/* setup driver-private data */
priv = netdev_priv(netdev);
priv->netdev = netdev;
priv->dma_alloc = 0;
priv->io_region_size = mmio->end - mmio->start + 1;
priv->iobase = devm_ioremap_nocache(&pdev->dev, netdev->base_addr,
resource_size(mmio));
if (!priv->iobase) {
dev_err(&pdev->dev, "cannot remap I/O memory space\n");
ret = -ENXIO;
goto error;
}
if (netdev->mem_end) {
priv->membase = devm_ioremap_nocache(&pdev->dev,
netdev->mem_start, resource_size(mem));
if (!priv->membase) {
dev_err(&pdev->dev, "cannot remap memory space\n");
ret = -ENXIO;
goto error;
}
} else {
/* Allocate buffer memory */
priv->membase = dmam_alloc_coherent(&pdev->dev,
buffer_size, (void *)&netdev->mem_start,
GFP_KERNEL);
if (!priv->membase) {
dev_err(&pdev->dev, "cannot allocate %dB buffer\n",
buffer_size);
ret = -ENOMEM;
goto error;
}
netdev->mem_end = netdev->mem_start + buffer_size;
priv->dma_alloc = buffer_size;
}
/* calculate the number of TX/RX buffers, maximum 128 supported */
num_bd = min_t(unsigned int,
128, (netdev->mem_end - netdev->mem_start + 1) / ETHOC_BUFSIZ);
priv->num_tx = max(2, num_bd / 4);
priv->num_rx = num_bd - priv->num_tx;
priv->vma = devm_kzalloc(&pdev->dev, num_bd*sizeof(void*), GFP_KERNEL);
if (!priv->vma) {
ret = -ENOMEM;
goto error;
}
/* Allow the platform setup code to pass in a MAC address. */
if (pdev->dev.platform_data) {
struct ethoc_platform_data *pdata =
(struct ethoc_platform_data *)pdev->dev.platform_data;
memcpy(netdev->dev_addr, pdata->hwaddr, IFHWADDRLEN);
priv->phy_id = pdata->phy_id;
}
/* Check that the given MAC address is valid. If it isn't, read the
* current MAC from the controller. */
if (!is_valid_ether_addr(netdev->dev_addr))
ethoc_get_mac_address(netdev, netdev->dev_addr);
/* Check the MAC again for validity, if it still isn't choose and
* program a random one. */
if (!is_valid_ether_addr(netdev->dev_addr))
random_ether_addr(netdev->dev_addr);
ethoc_set_mac_address(netdev, netdev->dev_addr);
/* register MII bus */
priv->mdio = mdiobus_alloc();
if (!priv->mdio) {
ret = -ENOMEM;
goto free;
}
priv->mdio->name = "ethoc-mdio";
snprintf(priv->mdio->id, MII_BUS_ID_SIZE, "%s-%d",
priv->mdio->name, pdev->id);
priv->mdio->read = ethoc_mdio_read;
priv->mdio->write = ethoc_mdio_write;
priv->mdio->reset = ethoc_mdio_reset;
priv->mdio->priv = priv;
priv->mdio->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
if (!priv->mdio->irq) {
ret = -ENOMEM;
goto free_mdio;
}
for (phy = 0; phy < PHY_MAX_ADDR; phy++)
priv->mdio->irq[phy] = PHY_POLL;
ret = mdiobus_register(priv->mdio);
if (ret) {
dev_err(&netdev->dev, "failed to register MDIO bus\n");
goto free_mdio;
}
ret = ethoc_mdio_probe(netdev);
if (ret) {
dev_err(&netdev->dev, "failed to probe MDIO bus\n");
goto error;
}
ether_setup(netdev);
/* setup the net_device structure */
netdev->netdev_ops = &ethoc_netdev_ops;
netdev->watchdog_timeo = ETHOC_TIMEOUT;
netdev->features |= 0;
/* setup NAPI */
netif_napi_add(netdev, &priv->napi, ethoc_poll, 64);
spin_lock_init(&priv->rx_lock);
spin_lock_init(&priv->lock);
ret = register_netdev(netdev);
if (ret < 0) {
dev_err(&netdev->dev, "failed to register interface\n");
goto error2;
}
goto out;
error2:
netif_napi_del(&priv->napi);
error:
mdiobus_unregister(priv->mdio);
free_mdio:
kfree(priv->mdio->irq);
mdiobus_free(priv->mdio);
free:
free_netdev(netdev);
out:
return ret;
}
/**
* ethoc_remove() - shutdown OpenCores ethernet MAC
* @pdev: platform device
*/
static int ethoc_remove(struct platform_device *pdev)
{
struct net_device *netdev = platform_get_drvdata(pdev);
struct ethoc *priv = netdev_priv(netdev);
platform_set_drvdata(pdev, NULL);
if (netdev) {
netif_napi_del(&priv->napi);
phy_disconnect(priv->phy);
priv->phy = NULL;
if (priv->mdio) {
mdiobus_unregister(priv->mdio);
kfree(priv->mdio->irq);
mdiobus_free(priv->mdio);
}
unregister_netdev(netdev);
free_netdev(netdev);
}
return 0;
}
#ifdef CONFIG_PM
static int ethoc_suspend(struct platform_device *pdev, pm_message_t state)
{
return -ENOSYS;
}
static int ethoc_resume(struct platform_device *pdev)
{
return -ENOSYS;
}
#else
# define ethoc_suspend NULL
# define ethoc_resume NULL
#endif
static struct platform_driver ethoc_driver = {
.probe = ethoc_probe,
.remove = ethoc_remove,
.suspend = ethoc_suspend,
.resume = ethoc_resume,
.driver = {
.name = "ethoc",
},
};
static int __init ethoc_init(void)
{
return platform_driver_register(&ethoc_driver);
}
static void __exit ethoc_exit(void)
{
platform_driver_unregister(&ethoc_driver);
}
module_init(ethoc_init);
module_exit(ethoc_exit);
MODULE_AUTHOR("Thierry Reding <thierry.reding@avionic-design.de>");
MODULE_DESCRIPTION("OpenCores Ethernet MAC driver");
MODULE_LICENSE("GPL v2");