mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-19 02:34:01 +08:00
1fe72bcfac
The irq_create_fwspec_mapping() returns a proper virq value on success
and 0 upon any failure. The pru_handle_intrmap() treats this as an error
and disposes all firmware event mappings correctly, but is returning
this incorrect value as is, letting the pru_rproc_start() interpret it
as a success and boot the PRU.
Fix this by returning an error value back upon any such failure. While
at this, revise the error trace to print some meaningful info about the
failed event.
Fixes: c75c9fdac6
("remoteproc: pru: Add support for PRU specific interrupt configuration")
Signed-off-by: Suman Anna <s-anna@ti.com>
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Link: https://lore.kernel.org/r/20210407155641.5501-3-s-anna@ti.com
Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
887 lines
24 KiB
C
887 lines
24 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* PRU-ICSS remoteproc driver for various TI SoCs
|
|
*
|
|
* Copyright (C) 2014-2020 Texas Instruments Incorporated - https://www.ti.com/
|
|
*
|
|
* Author(s):
|
|
* Suman Anna <s-anna@ti.com>
|
|
* Andrew F. Davis <afd@ti.com>
|
|
* Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org> for Texas Instruments
|
|
*/
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/irqdomain.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/pruss_driver.h>
|
|
#include <linux/remoteproc.h>
|
|
|
|
#include "remoteproc_internal.h"
|
|
#include "remoteproc_elf_helpers.h"
|
|
#include "pru_rproc.h"
|
|
|
|
/* PRU_ICSS_PRU_CTRL registers */
|
|
#define PRU_CTRL_CTRL 0x0000
|
|
#define PRU_CTRL_STS 0x0004
|
|
#define PRU_CTRL_WAKEUP_EN 0x0008
|
|
#define PRU_CTRL_CYCLE 0x000C
|
|
#define PRU_CTRL_STALL 0x0010
|
|
#define PRU_CTRL_CTBIR0 0x0020
|
|
#define PRU_CTRL_CTBIR1 0x0024
|
|
#define PRU_CTRL_CTPPR0 0x0028
|
|
#define PRU_CTRL_CTPPR1 0x002C
|
|
|
|
/* CTRL register bit-fields */
|
|
#define CTRL_CTRL_SOFT_RST_N BIT(0)
|
|
#define CTRL_CTRL_EN BIT(1)
|
|
#define CTRL_CTRL_SLEEPING BIT(2)
|
|
#define CTRL_CTRL_CTR_EN BIT(3)
|
|
#define CTRL_CTRL_SINGLE_STEP BIT(8)
|
|
#define CTRL_CTRL_RUNSTATE BIT(15)
|
|
|
|
/* PRU_ICSS_PRU_DEBUG registers */
|
|
#define PRU_DEBUG_GPREG(x) (0x0000 + (x) * 4)
|
|
#define PRU_DEBUG_CT_REG(x) (0x0080 + (x) * 4)
|
|
|
|
/* PRU/RTU/Tx_PRU Core IRAM address masks */
|
|
#define PRU_IRAM_ADDR_MASK 0x3ffff
|
|
#define PRU0_IRAM_ADDR_MASK 0x34000
|
|
#define PRU1_IRAM_ADDR_MASK 0x38000
|
|
#define RTU0_IRAM_ADDR_MASK 0x4000
|
|
#define RTU1_IRAM_ADDR_MASK 0x6000
|
|
#define TX_PRU0_IRAM_ADDR_MASK 0xa000
|
|
#define TX_PRU1_IRAM_ADDR_MASK 0xc000
|
|
|
|
/* PRU device addresses for various type of PRU RAMs */
|
|
#define PRU_IRAM_DA 0 /* Instruction RAM */
|
|
#define PRU_PDRAM_DA 0 /* Primary Data RAM */
|
|
#define PRU_SDRAM_DA 0x2000 /* Secondary Data RAM */
|
|
#define PRU_SHRDRAM_DA 0x10000 /* Shared Data RAM */
|
|
|
|
#define MAX_PRU_SYS_EVENTS 160
|
|
|
|
/**
|
|
* enum pru_iomem - PRU core memory/register range identifiers
|
|
*
|
|
* @PRU_IOMEM_IRAM: PRU Instruction RAM range
|
|
* @PRU_IOMEM_CTRL: PRU Control register range
|
|
* @PRU_IOMEM_DEBUG: PRU Debug register range
|
|
* @PRU_IOMEM_MAX: just keep this one at the end
|
|
*/
|
|
enum pru_iomem {
|
|
PRU_IOMEM_IRAM = 0,
|
|
PRU_IOMEM_CTRL,
|
|
PRU_IOMEM_DEBUG,
|
|
PRU_IOMEM_MAX,
|
|
};
|
|
|
|
/**
|
|
* enum pru_type - PRU core type identifier
|
|
*
|
|
* @PRU_TYPE_PRU: Programmable Real-time Unit
|
|
* @PRU_TYPE_RTU: Auxiliary Programmable Real-Time Unit
|
|
* @PRU_TYPE_TX_PRU: Transmit Programmable Real-Time Unit
|
|
* @PRU_TYPE_MAX: just keep this one at the end
|
|
*/
|
|
enum pru_type {
|
|
PRU_TYPE_PRU = 0,
|
|
PRU_TYPE_RTU,
|
|
PRU_TYPE_TX_PRU,
|
|
PRU_TYPE_MAX,
|
|
};
|
|
|
|
/**
|
|
* struct pru_private_data - device data for a PRU core
|
|
* @type: type of the PRU core (PRU, RTU, Tx_PRU)
|
|
* @is_k3: flag used to identify the need for special load handling
|
|
*/
|
|
struct pru_private_data {
|
|
enum pru_type type;
|
|
unsigned int is_k3 : 1;
|
|
};
|
|
|
|
/**
|
|
* struct pru_rproc - PRU remoteproc structure
|
|
* @id: id of the PRU core within the PRUSS
|
|
* @dev: PRU core device pointer
|
|
* @pruss: back-reference to parent PRUSS structure
|
|
* @rproc: remoteproc pointer for this PRU core
|
|
* @data: PRU core specific data
|
|
* @mem_regions: data for each of the PRU memory regions
|
|
* @fw_name: name of firmware image used during loading
|
|
* @mapped_irq: virtual interrupt numbers of created fw specific mapping
|
|
* @pru_interrupt_map: pointer to interrupt mapping description (firmware)
|
|
* @pru_interrupt_map_sz: pru_interrupt_map size
|
|
* @dbg_single_step: debug state variable to set PRU into single step mode
|
|
* @dbg_continuous: debug state variable to restore PRU execution mode
|
|
* @evt_count: number of mapped events
|
|
*/
|
|
struct pru_rproc {
|
|
int id;
|
|
struct device *dev;
|
|
struct pruss *pruss;
|
|
struct rproc *rproc;
|
|
const struct pru_private_data *data;
|
|
struct pruss_mem_region mem_regions[PRU_IOMEM_MAX];
|
|
const char *fw_name;
|
|
unsigned int *mapped_irq;
|
|
struct pru_irq_rsc *pru_interrupt_map;
|
|
size_t pru_interrupt_map_sz;
|
|
u32 dbg_single_step;
|
|
u32 dbg_continuous;
|
|
u8 evt_count;
|
|
};
|
|
|
|
static inline u32 pru_control_read_reg(struct pru_rproc *pru, unsigned int reg)
|
|
{
|
|
return readl_relaxed(pru->mem_regions[PRU_IOMEM_CTRL].va + reg);
|
|
}
|
|
|
|
static inline
|
|
void pru_control_write_reg(struct pru_rproc *pru, unsigned int reg, u32 val)
|
|
{
|
|
writel_relaxed(val, pru->mem_regions[PRU_IOMEM_CTRL].va + reg);
|
|
}
|
|
|
|
static inline u32 pru_debug_read_reg(struct pru_rproc *pru, unsigned int reg)
|
|
{
|
|
return readl_relaxed(pru->mem_regions[PRU_IOMEM_DEBUG].va + reg);
|
|
}
|
|
|
|
static int regs_show(struct seq_file *s, void *data)
|
|
{
|
|
struct rproc *rproc = s->private;
|
|
struct pru_rproc *pru = rproc->priv;
|
|
int i, nregs = 32;
|
|
u32 pru_sts;
|
|
int pru_is_running;
|
|
|
|
seq_puts(s, "============== Control Registers ==============\n");
|
|
seq_printf(s, "CTRL := 0x%08x\n",
|
|
pru_control_read_reg(pru, PRU_CTRL_CTRL));
|
|
pru_sts = pru_control_read_reg(pru, PRU_CTRL_STS);
|
|
seq_printf(s, "STS (PC) := 0x%08x (0x%08x)\n", pru_sts, pru_sts << 2);
|
|
seq_printf(s, "WAKEUP_EN := 0x%08x\n",
|
|
pru_control_read_reg(pru, PRU_CTRL_WAKEUP_EN));
|
|
seq_printf(s, "CYCLE := 0x%08x\n",
|
|
pru_control_read_reg(pru, PRU_CTRL_CYCLE));
|
|
seq_printf(s, "STALL := 0x%08x\n",
|
|
pru_control_read_reg(pru, PRU_CTRL_STALL));
|
|
seq_printf(s, "CTBIR0 := 0x%08x\n",
|
|
pru_control_read_reg(pru, PRU_CTRL_CTBIR0));
|
|
seq_printf(s, "CTBIR1 := 0x%08x\n",
|
|
pru_control_read_reg(pru, PRU_CTRL_CTBIR1));
|
|
seq_printf(s, "CTPPR0 := 0x%08x\n",
|
|
pru_control_read_reg(pru, PRU_CTRL_CTPPR0));
|
|
seq_printf(s, "CTPPR1 := 0x%08x\n",
|
|
pru_control_read_reg(pru, PRU_CTRL_CTPPR1));
|
|
|
|
seq_puts(s, "=============== Debug Registers ===============\n");
|
|
pru_is_running = pru_control_read_reg(pru, PRU_CTRL_CTRL) &
|
|
CTRL_CTRL_RUNSTATE;
|
|
if (pru_is_running) {
|
|
seq_puts(s, "PRU is executing, cannot print/access debug registers.\n");
|
|
return 0;
|
|
}
|
|
|
|
for (i = 0; i < nregs; i++) {
|
|
seq_printf(s, "GPREG%-2d := 0x%08x\tCT_REG%-2d := 0x%08x\n",
|
|
i, pru_debug_read_reg(pru, PRU_DEBUG_GPREG(i)),
|
|
i, pru_debug_read_reg(pru, PRU_DEBUG_CT_REG(i)));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
DEFINE_SHOW_ATTRIBUTE(regs);
|
|
|
|
/*
|
|
* Control PRU single-step mode
|
|
*
|
|
* This is a debug helper function used for controlling the single-step
|
|
* mode of the PRU. The PRU Debug registers are not accessible when the
|
|
* PRU is in RUNNING state.
|
|
*
|
|
* Writing a non-zero value sets the PRU into single-step mode irrespective
|
|
* of its previous state. The PRU mode is saved only on the first set into
|
|
* a single-step mode. Writing a zero value will restore the PRU into its
|
|
* original mode.
|
|
*/
|
|
static int pru_rproc_debug_ss_set(void *data, u64 val)
|
|
{
|
|
struct rproc *rproc = data;
|
|
struct pru_rproc *pru = rproc->priv;
|
|
u32 reg_val;
|
|
|
|
val = val ? 1 : 0;
|
|
if (!val && !pru->dbg_single_step)
|
|
return 0;
|
|
|
|
reg_val = pru_control_read_reg(pru, PRU_CTRL_CTRL);
|
|
|
|
if (val && !pru->dbg_single_step)
|
|
pru->dbg_continuous = reg_val;
|
|
|
|
if (val)
|
|
reg_val |= CTRL_CTRL_SINGLE_STEP | CTRL_CTRL_EN;
|
|
else
|
|
reg_val = pru->dbg_continuous;
|
|
|
|
pru->dbg_single_step = val;
|
|
pru_control_write_reg(pru, PRU_CTRL_CTRL, reg_val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pru_rproc_debug_ss_get(void *data, u64 *val)
|
|
{
|
|
struct rproc *rproc = data;
|
|
struct pru_rproc *pru = rproc->priv;
|
|
|
|
*val = pru->dbg_single_step;
|
|
|
|
return 0;
|
|
}
|
|
DEFINE_DEBUGFS_ATTRIBUTE(pru_rproc_debug_ss_fops, pru_rproc_debug_ss_get,
|
|
pru_rproc_debug_ss_set, "%llu\n");
|
|
|
|
/*
|
|
* Create PRU-specific debugfs entries
|
|
*
|
|
* The entries are created only if the parent remoteproc debugfs directory
|
|
* exists, and will be cleaned up by the remoteproc core.
|
|
*/
|
|
static void pru_rproc_create_debug_entries(struct rproc *rproc)
|
|
{
|
|
if (!rproc->dbg_dir)
|
|
return;
|
|
|
|
debugfs_create_file("regs", 0400, rproc->dbg_dir,
|
|
rproc, ®s_fops);
|
|
debugfs_create_file("single_step", 0600, rproc->dbg_dir,
|
|
rproc, &pru_rproc_debug_ss_fops);
|
|
}
|
|
|
|
static void pru_dispose_irq_mapping(struct pru_rproc *pru)
|
|
{
|
|
while (pru->evt_count--) {
|
|
if (pru->mapped_irq[pru->evt_count] > 0)
|
|
irq_dispose_mapping(pru->mapped_irq[pru->evt_count]);
|
|
}
|
|
|
|
kfree(pru->mapped_irq);
|
|
}
|
|
|
|
/*
|
|
* Parse the custom PRU interrupt map resource and configure the INTC
|
|
* appropriately.
|
|
*/
|
|
static int pru_handle_intrmap(struct rproc *rproc)
|
|
{
|
|
struct device *dev = rproc->dev.parent;
|
|
struct pru_rproc *pru = rproc->priv;
|
|
struct pru_irq_rsc *rsc = pru->pru_interrupt_map;
|
|
struct irq_fwspec fwspec;
|
|
struct device_node *parent, *irq_parent;
|
|
int i, ret = 0;
|
|
|
|
/* not having pru_interrupt_map is not an error */
|
|
if (!rsc)
|
|
return 0;
|
|
|
|
/* currently supporting only type 0 */
|
|
if (rsc->type != 0) {
|
|
dev_err(dev, "unsupported rsc type: %d\n", rsc->type);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (rsc->num_evts > MAX_PRU_SYS_EVENTS)
|
|
return -EINVAL;
|
|
|
|
if (sizeof(*rsc) + rsc->num_evts * sizeof(struct pruss_int_map) !=
|
|
pru->pru_interrupt_map_sz)
|
|
return -EINVAL;
|
|
|
|
pru->evt_count = rsc->num_evts;
|
|
pru->mapped_irq = kcalloc(pru->evt_count, sizeof(unsigned int),
|
|
GFP_KERNEL);
|
|
if (!pru->mapped_irq)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* parse and fill in system event to interrupt channel and
|
|
* channel-to-host mapping. The interrupt controller to be used
|
|
* for these mappings for a given PRU remoteproc is always its
|
|
* corresponding sibling PRUSS INTC node.
|
|
*/
|
|
parent = of_get_parent(dev_of_node(pru->dev));
|
|
if (!parent)
|
|
return -ENODEV;
|
|
|
|
irq_parent = of_get_child_by_name(parent, "interrupt-controller");
|
|
of_node_put(parent);
|
|
if (!irq_parent) {
|
|
kfree(pru->mapped_irq);
|
|
return -ENODEV;
|
|
}
|
|
|
|
fwspec.fwnode = of_node_to_fwnode(irq_parent);
|
|
fwspec.param_count = 3;
|
|
for (i = 0; i < pru->evt_count; i++) {
|
|
fwspec.param[0] = rsc->pru_intc_map[i].event;
|
|
fwspec.param[1] = rsc->pru_intc_map[i].chnl;
|
|
fwspec.param[2] = rsc->pru_intc_map[i].host;
|
|
|
|
dev_dbg(dev, "mapping%d: event %d, chnl %d, host %d\n",
|
|
i, fwspec.param[0], fwspec.param[1], fwspec.param[2]);
|
|
|
|
pru->mapped_irq[i] = irq_create_fwspec_mapping(&fwspec);
|
|
if (!pru->mapped_irq[i]) {
|
|
dev_err(dev, "failed to get virq for fw mapping %d: event %d chnl %d host %d\n",
|
|
i, fwspec.param[0], fwspec.param[1],
|
|
fwspec.param[2]);
|
|
ret = -EINVAL;
|
|
goto map_fail;
|
|
}
|
|
}
|
|
of_node_put(irq_parent);
|
|
|
|
return ret;
|
|
|
|
map_fail:
|
|
pru_dispose_irq_mapping(pru);
|
|
of_node_put(irq_parent);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int pru_rproc_start(struct rproc *rproc)
|
|
{
|
|
struct device *dev = &rproc->dev;
|
|
struct pru_rproc *pru = rproc->priv;
|
|
const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" };
|
|
u32 val;
|
|
int ret;
|
|
|
|
dev_dbg(dev, "starting %s%d: entry-point = 0x%llx\n",
|
|
names[pru->data->type], pru->id, (rproc->bootaddr >> 2));
|
|
|
|
ret = pru_handle_intrmap(rproc);
|
|
/*
|
|
* reset references to pru interrupt map - they will stop being valid
|
|
* after rproc_start returns
|
|
*/
|
|
pru->pru_interrupt_map = NULL;
|
|
pru->pru_interrupt_map_sz = 0;
|
|
if (ret)
|
|
return ret;
|
|
|
|
val = CTRL_CTRL_EN | ((rproc->bootaddr >> 2) << 16);
|
|
pru_control_write_reg(pru, PRU_CTRL_CTRL, val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pru_rproc_stop(struct rproc *rproc)
|
|
{
|
|
struct device *dev = &rproc->dev;
|
|
struct pru_rproc *pru = rproc->priv;
|
|
const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" };
|
|
u32 val;
|
|
|
|
dev_dbg(dev, "stopping %s%d\n", names[pru->data->type], pru->id);
|
|
|
|
val = pru_control_read_reg(pru, PRU_CTRL_CTRL);
|
|
val &= ~CTRL_CTRL_EN;
|
|
pru_control_write_reg(pru, PRU_CTRL_CTRL, val);
|
|
|
|
/* dispose irq mapping - new firmware can provide new mapping */
|
|
if (pru->mapped_irq)
|
|
pru_dispose_irq_mapping(pru);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Convert PRU device address (data spaces only) to kernel virtual address.
|
|
*
|
|
* Each PRU has access to all data memories within the PRUSS, accessible at
|
|
* different ranges. So, look through both its primary and secondary Data
|
|
* RAMs as well as any shared Data RAM to convert a PRU device address to
|
|
* kernel virtual address. Data RAM0 is primary Data RAM for PRU0 and Data
|
|
* RAM1 is primary Data RAM for PRU1.
|
|
*/
|
|
static void *pru_d_da_to_va(struct pru_rproc *pru, u32 da, size_t len)
|
|
{
|
|
struct pruss_mem_region dram0, dram1, shrd_ram;
|
|
struct pruss *pruss = pru->pruss;
|
|
u32 offset;
|
|
void *va = NULL;
|
|
|
|
if (len == 0)
|
|
return NULL;
|
|
|
|
dram0 = pruss->mem_regions[PRUSS_MEM_DRAM0];
|
|
dram1 = pruss->mem_regions[PRUSS_MEM_DRAM1];
|
|
/* PRU1 has its local RAM addresses reversed */
|
|
if (pru->id == 1)
|
|
swap(dram0, dram1);
|
|
shrd_ram = pruss->mem_regions[PRUSS_MEM_SHRD_RAM2];
|
|
|
|
if (da >= PRU_PDRAM_DA && da + len <= PRU_PDRAM_DA + dram0.size) {
|
|
offset = da - PRU_PDRAM_DA;
|
|
va = (__force void *)(dram0.va + offset);
|
|
} else if (da >= PRU_SDRAM_DA &&
|
|
da + len <= PRU_SDRAM_DA + dram1.size) {
|
|
offset = da - PRU_SDRAM_DA;
|
|
va = (__force void *)(dram1.va + offset);
|
|
} else if (da >= PRU_SHRDRAM_DA &&
|
|
da + len <= PRU_SHRDRAM_DA + shrd_ram.size) {
|
|
offset = da - PRU_SHRDRAM_DA;
|
|
va = (__force void *)(shrd_ram.va + offset);
|
|
}
|
|
|
|
return va;
|
|
}
|
|
|
|
/*
|
|
* Convert PRU device address (instruction space) to kernel virtual address.
|
|
*
|
|
* A PRU does not have an unified address space. Each PRU has its very own
|
|
* private Instruction RAM, and its device address is identical to that of
|
|
* its primary Data RAM device address.
|
|
*/
|
|
static void *pru_i_da_to_va(struct pru_rproc *pru, u32 da, size_t len)
|
|
{
|
|
u32 offset;
|
|
void *va = NULL;
|
|
|
|
if (len == 0)
|
|
return NULL;
|
|
|
|
if (da >= PRU_IRAM_DA &&
|
|
da + len <= PRU_IRAM_DA + pru->mem_regions[PRU_IOMEM_IRAM].size) {
|
|
offset = da - PRU_IRAM_DA;
|
|
va = (__force void *)(pru->mem_regions[PRU_IOMEM_IRAM].va +
|
|
offset);
|
|
}
|
|
|
|
return va;
|
|
}
|
|
|
|
/*
|
|
* Provide address translations for only PRU Data RAMs through the remoteproc
|
|
* core for any PRU client drivers. The PRU Instruction RAM access is restricted
|
|
* only to the PRU loader code.
|
|
*/
|
|
static void *pru_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
|
|
{
|
|
struct pru_rproc *pru = rproc->priv;
|
|
|
|
return pru_d_da_to_va(pru, da, len);
|
|
}
|
|
|
|
/* PRU-specific address translator used by PRU loader. */
|
|
static void *pru_da_to_va(struct rproc *rproc, u64 da, size_t len, bool is_iram)
|
|
{
|
|
struct pru_rproc *pru = rproc->priv;
|
|
void *va;
|
|
|
|
if (is_iram)
|
|
va = pru_i_da_to_va(pru, da, len);
|
|
else
|
|
va = pru_d_da_to_va(pru, da, len);
|
|
|
|
return va;
|
|
}
|
|
|
|
static struct rproc_ops pru_rproc_ops = {
|
|
.start = pru_rproc_start,
|
|
.stop = pru_rproc_stop,
|
|
.da_to_va = pru_rproc_da_to_va,
|
|
};
|
|
|
|
/*
|
|
* Custom memory copy implementation for ICSSG PRU/RTU/Tx_PRU Cores
|
|
*
|
|
* The ICSSG PRU/RTU/Tx_PRU cores have a memory copying issue with IRAM
|
|
* memories, that is not seen on previous generation SoCs. The data is reflected
|
|
* properly in the IRAM memories only for integer (4-byte) copies. Any unaligned
|
|
* copies result in all the other pre-existing bytes zeroed out within that
|
|
* 4-byte boundary, thereby resulting in wrong text/code in the IRAMs. Also, the
|
|
* IRAM memory port interface does not allow any 8-byte copies (as commonly used
|
|
* by ARM64 memcpy implementation) and throws an exception. The DRAM memory
|
|
* ports do not show this behavior.
|
|
*/
|
|
static int pru_rproc_memcpy(void *dest, const void *src, size_t count)
|
|
{
|
|
const u32 *s = src;
|
|
u32 *d = dest;
|
|
size_t size = count / 4;
|
|
u32 *tmp_src = NULL;
|
|
|
|
/*
|
|
* TODO: relax limitation of 4-byte aligned dest addresses and copy
|
|
* sizes
|
|
*/
|
|
if ((long)dest % 4 || count % 4)
|
|
return -EINVAL;
|
|
|
|
/* src offsets in ELF firmware image can be non-aligned */
|
|
if ((long)src % 4) {
|
|
tmp_src = kmemdup(src, count, GFP_KERNEL);
|
|
if (!tmp_src)
|
|
return -ENOMEM;
|
|
s = tmp_src;
|
|
}
|
|
|
|
while (size--)
|
|
*d++ = *s++;
|
|
|
|
kfree(tmp_src);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
pru_rproc_load_elf_segments(struct rproc *rproc, const struct firmware *fw)
|
|
{
|
|
struct pru_rproc *pru = rproc->priv;
|
|
struct device *dev = &rproc->dev;
|
|
struct elf32_hdr *ehdr;
|
|
struct elf32_phdr *phdr;
|
|
int i, ret = 0;
|
|
const u8 *elf_data = fw->data;
|
|
|
|
ehdr = (struct elf32_hdr *)elf_data;
|
|
phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff);
|
|
|
|
/* go through the available ELF segments */
|
|
for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
|
|
u32 da = phdr->p_paddr;
|
|
u32 memsz = phdr->p_memsz;
|
|
u32 filesz = phdr->p_filesz;
|
|
u32 offset = phdr->p_offset;
|
|
bool is_iram;
|
|
void *ptr;
|
|
|
|
if (phdr->p_type != PT_LOAD || !filesz)
|
|
continue;
|
|
|
|
dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
|
|
phdr->p_type, da, memsz, filesz);
|
|
|
|
if (filesz > memsz) {
|
|
dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n",
|
|
filesz, memsz);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (offset + filesz > fw->size) {
|
|
dev_err(dev, "truncated fw: need 0x%x avail 0x%zx\n",
|
|
offset + filesz, fw->size);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
/* grab the kernel address for this device address */
|
|
is_iram = phdr->p_flags & PF_X;
|
|
ptr = pru_da_to_va(rproc, da, memsz, is_iram);
|
|
if (!ptr) {
|
|
dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (pru->data->is_k3 && is_iram) {
|
|
ret = pru_rproc_memcpy(ptr, elf_data + phdr->p_offset,
|
|
filesz);
|
|
if (ret) {
|
|
dev_err(dev, "PRU memory copy failed for da 0x%x memsz 0x%x\n",
|
|
da, memsz);
|
|
break;
|
|
}
|
|
} else {
|
|
memcpy(ptr, elf_data + phdr->p_offset, filesz);
|
|
}
|
|
|
|
/* skip the memzero logic performed by remoteproc ELF loader */
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const void *
|
|
pru_rproc_find_interrupt_map(struct device *dev, const struct firmware *fw)
|
|
{
|
|
struct elf32_shdr *shdr, *name_table_shdr;
|
|
const char *name_table;
|
|
const u8 *elf_data = fw->data;
|
|
struct elf32_hdr *ehdr = (struct elf32_hdr *)elf_data;
|
|
u16 shnum = ehdr->e_shnum;
|
|
u16 shstrndx = ehdr->e_shstrndx;
|
|
int i;
|
|
|
|
/* first, get the section header */
|
|
shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff);
|
|
/* compute name table section header entry in shdr array */
|
|
name_table_shdr = shdr + shstrndx;
|
|
/* finally, compute the name table section address in elf */
|
|
name_table = elf_data + name_table_shdr->sh_offset;
|
|
|
|
for (i = 0; i < shnum; i++, shdr++) {
|
|
u32 size = shdr->sh_size;
|
|
u32 offset = shdr->sh_offset;
|
|
u32 name = shdr->sh_name;
|
|
|
|
if (strcmp(name_table + name, ".pru_irq_map"))
|
|
continue;
|
|
|
|
/* make sure we have the entire irq map */
|
|
if (offset + size > fw->size || offset + size < size) {
|
|
dev_err(dev, ".pru_irq_map section truncated\n");
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
/* make sure irq map has at least the header */
|
|
if (sizeof(struct pru_irq_rsc) > size) {
|
|
dev_err(dev, "header-less .pru_irq_map section\n");
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
return shdr;
|
|
}
|
|
|
|
dev_dbg(dev, "no .pru_irq_map section found for this fw\n");
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Use a custom parse_fw callback function for dealing with PRU firmware
|
|
* specific sections.
|
|
*
|
|
* The firmware blob can contain optional ELF sections: .resource_table section
|
|
* and .pru_irq_map one. The second one contains the PRUSS interrupt mapping
|
|
* description, which needs to be setup before powering on the PRU core. To
|
|
* avoid RAM wastage this ELF section is not mapped to any ELF segment (by the
|
|
* firmware linker) and therefore is not loaded to PRU memory.
|
|
*/
|
|
static int pru_rproc_parse_fw(struct rproc *rproc, const struct firmware *fw)
|
|
{
|
|
struct device *dev = &rproc->dev;
|
|
struct pru_rproc *pru = rproc->priv;
|
|
const u8 *elf_data = fw->data;
|
|
const void *shdr;
|
|
u8 class = fw_elf_get_class(fw);
|
|
u64 sh_offset;
|
|
int ret;
|
|
|
|
/* load optional rsc table */
|
|
ret = rproc_elf_load_rsc_table(rproc, fw);
|
|
if (ret == -EINVAL)
|
|
dev_dbg(&rproc->dev, "no resource table found for this fw\n");
|
|
else if (ret)
|
|
return ret;
|
|
|
|
/* find .pru_interrupt_map section, not having it is not an error */
|
|
shdr = pru_rproc_find_interrupt_map(dev, fw);
|
|
if (IS_ERR(shdr))
|
|
return PTR_ERR(shdr);
|
|
|
|
if (!shdr)
|
|
return 0;
|
|
|
|
/* preserve pointer to PRU interrupt map together with it size */
|
|
sh_offset = elf_shdr_get_sh_offset(class, shdr);
|
|
pru->pru_interrupt_map = (struct pru_irq_rsc *)(elf_data + sh_offset);
|
|
pru->pru_interrupt_map_sz = elf_shdr_get_sh_size(class, shdr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Compute PRU id based on the IRAM addresses. The PRU IRAMs are
|
|
* always at a particular offset within the PRUSS address space.
|
|
*/
|
|
static int pru_rproc_set_id(struct pru_rproc *pru)
|
|
{
|
|
int ret = 0;
|
|
|
|
switch (pru->mem_regions[PRU_IOMEM_IRAM].pa & PRU_IRAM_ADDR_MASK) {
|
|
case TX_PRU0_IRAM_ADDR_MASK:
|
|
fallthrough;
|
|
case RTU0_IRAM_ADDR_MASK:
|
|
fallthrough;
|
|
case PRU0_IRAM_ADDR_MASK:
|
|
pru->id = 0;
|
|
break;
|
|
case TX_PRU1_IRAM_ADDR_MASK:
|
|
fallthrough;
|
|
case RTU1_IRAM_ADDR_MASK:
|
|
fallthrough;
|
|
case PRU1_IRAM_ADDR_MASK:
|
|
pru->id = 1;
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int pru_rproc_probe(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct device_node *np = dev->of_node;
|
|
struct platform_device *ppdev = to_platform_device(dev->parent);
|
|
struct pru_rproc *pru;
|
|
const char *fw_name;
|
|
struct rproc *rproc = NULL;
|
|
struct resource *res;
|
|
int i, ret;
|
|
const struct pru_private_data *data;
|
|
const char *mem_names[PRU_IOMEM_MAX] = { "iram", "control", "debug" };
|
|
|
|
data = of_device_get_match_data(&pdev->dev);
|
|
if (!data)
|
|
return -ENODEV;
|
|
|
|
ret = of_property_read_string(np, "firmware-name", &fw_name);
|
|
if (ret) {
|
|
dev_err(dev, "unable to retrieve firmware-name %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
rproc = devm_rproc_alloc(dev, pdev->name, &pru_rproc_ops, fw_name,
|
|
sizeof(*pru));
|
|
if (!rproc) {
|
|
dev_err(dev, "rproc_alloc failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
/* use a custom load function to deal with PRU-specific quirks */
|
|
rproc->ops->load = pru_rproc_load_elf_segments;
|
|
|
|
/* use a custom parse function to deal with PRU-specific resources */
|
|
rproc->ops->parse_fw = pru_rproc_parse_fw;
|
|
|
|
/* error recovery is not supported for PRUs */
|
|
rproc->recovery_disabled = true;
|
|
|
|
/*
|
|
* rproc_add will auto-boot the processor normally, but this is not
|
|
* desired with PRU client driven boot-flow methodology. A PRU
|
|
* application/client driver will boot the corresponding PRU
|
|
* remote-processor as part of its state machine either through the
|
|
* remoteproc sysfs interface or through the equivalent kernel API.
|
|
*/
|
|
rproc->auto_boot = false;
|
|
|
|
pru = rproc->priv;
|
|
pru->dev = dev;
|
|
pru->data = data;
|
|
pru->pruss = platform_get_drvdata(ppdev);
|
|
pru->rproc = rproc;
|
|
pru->fw_name = fw_name;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(mem_names); i++) {
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
|
|
mem_names[i]);
|
|
pru->mem_regions[i].va = devm_ioremap_resource(dev, res);
|
|
if (IS_ERR(pru->mem_regions[i].va)) {
|
|
dev_err(dev, "failed to parse and map memory resource %d %s\n",
|
|
i, mem_names[i]);
|
|
ret = PTR_ERR(pru->mem_regions[i].va);
|
|
return ret;
|
|
}
|
|
pru->mem_regions[i].pa = res->start;
|
|
pru->mem_regions[i].size = resource_size(res);
|
|
|
|
dev_dbg(dev, "memory %8s: pa %pa size 0x%zx va %pK\n",
|
|
mem_names[i], &pru->mem_regions[i].pa,
|
|
pru->mem_regions[i].size, pru->mem_regions[i].va);
|
|
}
|
|
|
|
ret = pru_rproc_set_id(pru);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
platform_set_drvdata(pdev, rproc);
|
|
|
|
ret = devm_rproc_add(dev, pru->rproc);
|
|
if (ret) {
|
|
dev_err(dev, "rproc_add failed: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
pru_rproc_create_debug_entries(rproc);
|
|
|
|
dev_dbg(dev, "PRU rproc node %pOF probed successfully\n", np);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pru_rproc_remove(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct rproc *rproc = platform_get_drvdata(pdev);
|
|
|
|
dev_dbg(dev, "%s: removing rproc %s\n", __func__, rproc->name);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct pru_private_data pru_data = {
|
|
.type = PRU_TYPE_PRU,
|
|
};
|
|
|
|
static const struct pru_private_data k3_pru_data = {
|
|
.type = PRU_TYPE_PRU,
|
|
.is_k3 = 1,
|
|
};
|
|
|
|
static const struct pru_private_data k3_rtu_data = {
|
|
.type = PRU_TYPE_RTU,
|
|
.is_k3 = 1,
|
|
};
|
|
|
|
static const struct pru_private_data k3_tx_pru_data = {
|
|
.type = PRU_TYPE_TX_PRU,
|
|
.is_k3 = 1,
|
|
};
|
|
|
|
static const struct of_device_id pru_rproc_match[] = {
|
|
{ .compatible = "ti,am3356-pru", .data = &pru_data },
|
|
{ .compatible = "ti,am4376-pru", .data = &pru_data },
|
|
{ .compatible = "ti,am5728-pru", .data = &pru_data },
|
|
{ .compatible = "ti,k2g-pru", .data = &pru_data },
|
|
{ .compatible = "ti,am654-pru", .data = &k3_pru_data },
|
|
{ .compatible = "ti,am654-rtu", .data = &k3_rtu_data },
|
|
{ .compatible = "ti,am654-tx-pru", .data = &k3_tx_pru_data },
|
|
{ .compatible = "ti,j721e-pru", .data = &k3_pru_data },
|
|
{ .compatible = "ti,j721e-rtu", .data = &k3_rtu_data },
|
|
{ .compatible = "ti,j721e-tx-pru", .data = &k3_tx_pru_data },
|
|
{},
|
|
};
|
|
MODULE_DEVICE_TABLE(of, pru_rproc_match);
|
|
|
|
static struct platform_driver pru_rproc_driver = {
|
|
.driver = {
|
|
.name = "pru-rproc",
|
|
.of_match_table = pru_rproc_match,
|
|
.suppress_bind_attrs = true,
|
|
},
|
|
.probe = pru_rproc_probe,
|
|
.remove = pru_rproc_remove,
|
|
};
|
|
module_platform_driver(pru_rproc_driver);
|
|
|
|
MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
|
|
MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>");
|
|
MODULE_AUTHOR("Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>");
|
|
MODULE_DESCRIPTION("PRU-ICSS Remote Processor Driver");
|
|
MODULE_LICENSE("GPL v2");
|