2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 03:33:58 +08:00
linux-next/drivers/edac/synopsys_edac.c
Manish Narani 1a81361f75 EDAC, synopsys: Add Error Injection support for ZynqMP DDR controller
Add support for Error Injection for ZynqMP DDR controller IP. For
injecting errors, the Row, Column, Bank, Bank Group and Rank bits
positions are determined via Address Map registers of the Synopsys DDR
controller.

Signed-off-by: Manish Narani <manish.narani@xilinx.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
CC: Mauro Carvalho Chehab <mchehab@kernel.org>
CC: Michal Simek <michal.simek@xilinx.com>
CC: amit.kucheria@linaro.org
CC: devicetree@vger.kernel.org
CC: leoyang.li@nxp.com
CC: linux-arm-kernel@lists.infradead.org
CC: linux-edac <linux-edac@vger.kernel.org>
CC: mark.rutland@arm.com
CC: robh+dt@kernel.org
CC: sudeep.holla@arm.com
Link: http://lkml.kernel.org/r/1540447621-22870-7-git-send-email-manish.narani@xilinx.com
2018-11-06 10:38:27 +01:00

1421 lines
38 KiB
C

/*
* Synopsys DDR ECC Driver
* This driver is based on ppc4xx_edac.c drivers
*
* Copyright (C) 2012 - 2014 Xilinx, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details
*/
#include <linux/edac.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include "edac_module.h"
/* Number of cs_rows needed per memory controller */
#define SYNPS_EDAC_NR_CSROWS 1
/* Number of channels per memory controller */
#define SYNPS_EDAC_NR_CHANS 1
/* Granularity of reported error in bytes */
#define SYNPS_EDAC_ERR_GRAIN 1
#define SYNPS_EDAC_MSG_SIZE 256
#define SYNPS_EDAC_MOD_STRING "synps_edac"
#define SYNPS_EDAC_MOD_VER "1"
/* Synopsys DDR memory controller registers that are relevant to ECC */
#define CTRL_OFST 0x0
#define T_ZQ_OFST 0xA4
/* ECC control register */
#define ECC_CTRL_OFST 0xC4
/* ECC log register */
#define CE_LOG_OFST 0xC8
/* ECC address register */
#define CE_ADDR_OFST 0xCC
/* ECC data[31:0] register */
#define CE_DATA_31_0_OFST 0xD0
/* Uncorrectable error info registers */
#define UE_LOG_OFST 0xDC
#define UE_ADDR_OFST 0xE0
#define UE_DATA_31_0_OFST 0xE4
#define STAT_OFST 0xF0
#define SCRUB_OFST 0xF4
/* Control register bit field definitions */
#define CTRL_BW_MASK 0xC
#define CTRL_BW_SHIFT 2
#define DDRCTL_WDTH_16 1
#define DDRCTL_WDTH_32 0
/* ZQ register bit field definitions */
#define T_ZQ_DDRMODE_MASK 0x2
/* ECC control register bit field definitions */
#define ECC_CTRL_CLR_CE_ERR 0x2
#define ECC_CTRL_CLR_UE_ERR 0x1
/* ECC correctable/uncorrectable error log register definitions */
#define LOG_VALID 0x1
#define CE_LOG_BITPOS_MASK 0xFE
#define CE_LOG_BITPOS_SHIFT 1
/* ECC correctable/uncorrectable error address register definitions */
#define ADDR_COL_MASK 0xFFF
#define ADDR_ROW_MASK 0xFFFF000
#define ADDR_ROW_SHIFT 12
#define ADDR_BANK_MASK 0x70000000
#define ADDR_BANK_SHIFT 28
/* ECC statistic register definitions */
#define STAT_UECNT_MASK 0xFF
#define STAT_CECNT_MASK 0xFF00
#define STAT_CECNT_SHIFT 8
/* ECC scrub register definitions */
#define SCRUB_MODE_MASK 0x7
#define SCRUB_MODE_SECDED 0x4
/* DDR ECC Quirks */
#define DDR_ECC_INTR_SUPPORT BIT(0)
#define DDR_ECC_DATA_POISON_SUPPORT BIT(1)
/* ZynqMP Enhanced DDR memory controller registers that are relevant to ECC */
/* ECC Configuration Registers */
#define ECC_CFG0_OFST 0x70
#define ECC_CFG1_OFST 0x74
/* ECC Status Register */
#define ECC_STAT_OFST 0x78
/* ECC Clear Register */
#define ECC_CLR_OFST 0x7C
/* ECC Error count Register */
#define ECC_ERRCNT_OFST 0x80
/* ECC Corrected Error Address Register */
#define ECC_CEADDR0_OFST 0x84
#define ECC_CEADDR1_OFST 0x88
/* ECC Syndrome Registers */
#define ECC_CSYND0_OFST 0x8C
#define ECC_CSYND1_OFST 0x90
#define ECC_CSYND2_OFST 0x94
/* ECC Bit Mask0 Address Register */
#define ECC_BITMASK0_OFST 0x98
#define ECC_BITMASK1_OFST 0x9C
#define ECC_BITMASK2_OFST 0xA0
/* ECC UnCorrected Error Address Register */
#define ECC_UEADDR0_OFST 0xA4
#define ECC_UEADDR1_OFST 0xA8
/* ECC Syndrome Registers */
#define ECC_UESYND0_OFST 0xAC
#define ECC_UESYND1_OFST 0xB0
#define ECC_UESYND2_OFST 0xB4
/* ECC Poison Address Reg */
#define ECC_POISON0_OFST 0xB8
#define ECC_POISON1_OFST 0xBC
#define ECC_ADDRMAP0_OFFSET 0x200
/* Control register bitfield definitions */
#define ECC_CTRL_BUSWIDTH_MASK 0x3000
#define ECC_CTRL_BUSWIDTH_SHIFT 12
#define ECC_CTRL_CLR_CE_ERRCNT BIT(2)
#define ECC_CTRL_CLR_UE_ERRCNT BIT(3)
/* DDR Control Register width definitions */
#define DDRCTL_EWDTH_16 2
#define DDRCTL_EWDTH_32 1
#define DDRCTL_EWDTH_64 0
/* ECC status register definitions */
#define ECC_STAT_UECNT_MASK 0xF0000
#define ECC_STAT_UECNT_SHIFT 16
#define ECC_STAT_CECNT_MASK 0xF00
#define ECC_STAT_CECNT_SHIFT 8
#define ECC_STAT_BITNUM_MASK 0x7F
/* DDR QOS Interrupt register definitions */
#define DDR_QOS_IRQ_STAT_OFST 0x20200
#define DDR_QOSUE_MASK 0x4
#define DDR_QOSCE_MASK 0x2
#define ECC_CE_UE_INTR_MASK 0x6
#define DDR_QOS_IRQ_EN_OFST 0x20208
#define DDR_QOS_IRQ_DB_OFST 0x2020C
/* ECC Corrected Error Register Mask and Shifts*/
#define ECC_CEADDR0_RW_MASK 0x3FFFF
#define ECC_CEADDR0_RNK_MASK BIT(24)
#define ECC_CEADDR1_BNKGRP_MASK 0x3000000
#define ECC_CEADDR1_BNKNR_MASK 0x70000
#define ECC_CEADDR1_BLKNR_MASK 0xFFF
#define ECC_CEADDR1_BNKGRP_SHIFT 24
#define ECC_CEADDR1_BNKNR_SHIFT 16
/* ECC Poison register shifts */
#define ECC_POISON0_RANK_SHIFT 24
#define ECC_POISON0_RANK_MASK BIT(24)
#define ECC_POISON0_COLUMN_SHIFT 0
#define ECC_POISON0_COLUMN_MASK 0xFFF
#define ECC_POISON1_BG_SHIFT 28
#define ECC_POISON1_BG_MASK 0x30000000
#define ECC_POISON1_BANKNR_SHIFT 24
#define ECC_POISON1_BANKNR_MASK 0x7000000
#define ECC_POISON1_ROW_SHIFT 0
#define ECC_POISON1_ROW_MASK 0x3FFFF
/* DDR Memory type defines */
#define MEM_TYPE_DDR3 0x1
#define MEM_TYPE_LPDDR3 0x8
#define MEM_TYPE_DDR2 0x4
#define MEM_TYPE_DDR4 0x10
#define MEM_TYPE_LPDDR4 0x20
/* DDRC Software control register */
#define DDRC_SWCTL 0x320
/* DDRC ECC CE & UE poison mask */
#define ECC_CEPOISON_MASK 0x3
#define ECC_UEPOISON_MASK 0x1
/* DDRC Device config masks */
#define DDRC_MSTR_CFG_MASK 0xC0000000
#define DDRC_MSTR_CFG_SHIFT 30
#define DDRC_MSTR_CFG_X4_MASK 0x0
#define DDRC_MSTR_CFG_X8_MASK 0x1
#define DDRC_MSTR_CFG_X16_MASK 0x2
#define DDRC_MSTR_CFG_X32_MASK 0x3
#define DDR_MAX_ROW_SHIFT 18
#define DDR_MAX_COL_SHIFT 14
#define DDR_MAX_BANK_SHIFT 3
#define DDR_MAX_BANKGRP_SHIFT 2
#define ROW_MAX_VAL_MASK 0xF
#define COL_MAX_VAL_MASK 0xF
#define BANK_MAX_VAL_MASK 0x1F
#define BANKGRP_MAX_VAL_MASK 0x1F
#define RANK_MAX_VAL_MASK 0x1F
#define ROW_B0_BASE 6
#define ROW_B1_BASE 7
#define ROW_B2_BASE 8
#define ROW_B3_BASE 9
#define ROW_B4_BASE 10
#define ROW_B5_BASE 11
#define ROW_B6_BASE 12
#define ROW_B7_BASE 13
#define ROW_B8_BASE 14
#define ROW_B9_BASE 15
#define ROW_B10_BASE 16
#define ROW_B11_BASE 17
#define ROW_B12_BASE 18
#define ROW_B13_BASE 19
#define ROW_B14_BASE 20
#define ROW_B15_BASE 21
#define ROW_B16_BASE 22
#define ROW_B17_BASE 23
#define COL_B2_BASE 2
#define COL_B3_BASE 3
#define COL_B4_BASE 4
#define COL_B5_BASE 5
#define COL_B6_BASE 6
#define COL_B7_BASE 7
#define COL_B8_BASE 8
#define COL_B9_BASE 9
#define COL_B10_BASE 10
#define COL_B11_BASE 11
#define COL_B12_BASE 12
#define COL_B13_BASE 13
#define BANK_B0_BASE 2
#define BANK_B1_BASE 3
#define BANK_B2_BASE 4
#define BANKGRP_B0_BASE 2
#define BANKGRP_B1_BASE 3
#define RANK_B0_BASE 6
/**
* struct ecc_error_info - ECC error log information.
* @row: Row number.
* @col: Column number.
* @bank: Bank number.
* @bitpos: Bit position.
* @data: Data causing the error.
* @bankgrpnr: Bank group number.
* @blknr: Block number.
*/
struct ecc_error_info {
u32 row;
u32 col;
u32 bank;
u32 bitpos;
u32 data;
u32 bankgrpnr;
u32 blknr;
};
/**
* struct synps_ecc_status - ECC status information to report.
* @ce_cnt: Correctable error count.
* @ue_cnt: Uncorrectable error count.
* @ceinfo: Correctable error log information.
* @ueinfo: Uncorrectable error log information.
*/
struct synps_ecc_status {
u32 ce_cnt;
u32 ue_cnt;
struct ecc_error_info ceinfo;
struct ecc_error_info ueinfo;
};
/**
* struct synps_edac_priv - DDR memory controller private instance data.
* @baseaddr: Base address of the DDR controller.
* @message: Buffer for framing the event specific info.
* @stat: ECC status information.
* @p_data: Platform data.
* @ce_cnt: Correctable Error count.
* @ue_cnt: Uncorrectable Error count.
* @poison_addr: Data poison address.
* @row_shift: Bit shifts for row bit.
* @col_shift: Bit shifts for column bit.
* @bank_shift: Bit shifts for bank bit.
* @bankgrp_shift: Bit shifts for bank group bit.
* @rank_shift: Bit shifts for rank bit.
*/
struct synps_edac_priv {
void __iomem *baseaddr;
char message[SYNPS_EDAC_MSG_SIZE];
struct synps_ecc_status stat;
const struct synps_platform_data *p_data;
u32 ce_cnt;
u32 ue_cnt;
#ifdef CONFIG_EDAC_DEBUG
ulong poison_addr;
u32 row_shift[18];
u32 col_shift[14];
u32 bank_shift[3];
u32 bankgrp_shift[2];
u32 rank_shift[1];
#endif
};
/**
* struct synps_platform_data - synps platform data structure.
* @get_error_info: Get EDAC error info.
* @get_mtype: Get mtype.
* @get_dtype: Get dtype.
* @get_ecc_state: Get ECC state.
* @quirks: To differentiate IPs.
*/
struct synps_platform_data {
int (*get_error_info)(struct synps_edac_priv *priv);
enum mem_type (*get_mtype)(const void __iomem *base);
enum dev_type (*get_dtype)(const void __iomem *base);
bool (*get_ecc_state)(void __iomem *base);
int quirks;
};
/**
* zynq_get_error_info - Get the current ECC error info.
* @priv: DDR memory controller private instance data.
*
* Return: one if there is no error, otherwise zero.
*/
static int zynq_get_error_info(struct synps_edac_priv *priv)
{
struct synps_ecc_status *p;
u32 regval, clearval = 0;
void __iomem *base;
base = priv->baseaddr;
p = &priv->stat;
regval = readl(base + STAT_OFST);
if (!regval)
return 1;
p->ce_cnt = (regval & STAT_CECNT_MASK) >> STAT_CECNT_SHIFT;
p->ue_cnt = regval & STAT_UECNT_MASK;
regval = readl(base + CE_LOG_OFST);
if (!(p->ce_cnt && (regval & LOG_VALID)))
goto ue_err;
p->ceinfo.bitpos = (regval & CE_LOG_BITPOS_MASK) >> CE_LOG_BITPOS_SHIFT;
regval = readl(base + CE_ADDR_OFST);
p->ceinfo.row = (regval & ADDR_ROW_MASK) >> ADDR_ROW_SHIFT;
p->ceinfo.col = regval & ADDR_COL_MASK;
p->ceinfo.bank = (regval & ADDR_BANK_MASK) >> ADDR_BANK_SHIFT;
p->ceinfo.data = readl(base + CE_DATA_31_0_OFST);
edac_dbg(3, "CE bit position: %d data: %d\n", p->ceinfo.bitpos,
p->ceinfo.data);
clearval = ECC_CTRL_CLR_CE_ERR;
ue_err:
regval = readl(base + UE_LOG_OFST);
if (!(p->ue_cnt && (regval & LOG_VALID)))
goto out;
regval = readl(base + UE_ADDR_OFST);
p->ueinfo.row = (regval & ADDR_ROW_MASK) >> ADDR_ROW_SHIFT;
p->ueinfo.col = regval & ADDR_COL_MASK;
p->ueinfo.bank = (regval & ADDR_BANK_MASK) >> ADDR_BANK_SHIFT;
p->ueinfo.data = readl(base + UE_DATA_31_0_OFST);
clearval |= ECC_CTRL_CLR_UE_ERR;
out:
writel(clearval, base + ECC_CTRL_OFST);
writel(0x0, base + ECC_CTRL_OFST);
return 0;
}
/**
* zynqmp_get_error_info - Get the current ECC error info.
* @priv: DDR memory controller private instance data.
*
* Return: one if there is no error otherwise returns zero.
*/
static int zynqmp_get_error_info(struct synps_edac_priv *priv)
{
struct synps_ecc_status *p;
u32 regval, clearval = 0;
void __iomem *base;
base = priv->baseaddr;
p = &priv->stat;
regval = readl(base + ECC_STAT_OFST);
if (!regval)
return 1;
p->ce_cnt = (regval & ECC_STAT_CECNT_MASK) >> ECC_STAT_CECNT_SHIFT;
p->ue_cnt = (regval & ECC_STAT_UECNT_MASK) >> ECC_STAT_UECNT_SHIFT;
if (!p->ce_cnt)
goto ue_err;
p->ceinfo.bitpos = (regval & ECC_STAT_BITNUM_MASK);
regval = readl(base + ECC_CEADDR0_OFST);
p->ceinfo.row = (regval & ECC_CEADDR0_RW_MASK);
regval = readl(base + ECC_CEADDR1_OFST);
p->ceinfo.bank = (regval & ECC_CEADDR1_BNKNR_MASK) >>
ECC_CEADDR1_BNKNR_SHIFT;
p->ceinfo.bankgrpnr = (regval & ECC_CEADDR1_BNKGRP_MASK) >>
ECC_CEADDR1_BNKGRP_SHIFT;
p->ceinfo.blknr = (regval & ECC_CEADDR1_BLKNR_MASK);
p->ceinfo.data = readl(base + ECC_CSYND0_OFST);
edac_dbg(2, "ECCCSYN0: 0x%08X ECCCSYN1: 0x%08X ECCCSYN2: 0x%08X\n",
readl(base + ECC_CSYND0_OFST), readl(base + ECC_CSYND1_OFST),
readl(base + ECC_CSYND2_OFST));
ue_err:
if (!p->ue_cnt)
goto out;
regval = readl(base + ECC_UEADDR0_OFST);
p->ueinfo.row = (regval & ECC_CEADDR0_RW_MASK);
regval = readl(base + ECC_UEADDR1_OFST);
p->ueinfo.bankgrpnr = (regval & ECC_CEADDR1_BNKGRP_MASK) >>
ECC_CEADDR1_BNKGRP_SHIFT;
p->ueinfo.bank = (regval & ECC_CEADDR1_BNKNR_MASK) >>
ECC_CEADDR1_BNKNR_SHIFT;
p->ueinfo.blknr = (regval & ECC_CEADDR1_BLKNR_MASK);
p->ueinfo.data = readl(base + ECC_UESYND0_OFST);
out:
clearval = ECC_CTRL_CLR_CE_ERR | ECC_CTRL_CLR_CE_ERRCNT;
clearval |= ECC_CTRL_CLR_UE_ERR | ECC_CTRL_CLR_UE_ERRCNT;
writel(clearval, base + ECC_CLR_OFST);
writel(0x0, base + ECC_CLR_OFST);
return 0;
}
/**
* handle_error - Handle Correctable and Uncorrectable errors.
* @mci: EDAC memory controller instance.
* @p: Synopsys ECC status structure.
*
* Handles ECC correctable and uncorrectable errors.
*/
static void handle_error(struct mem_ctl_info *mci, struct synps_ecc_status *p)
{
struct synps_edac_priv *priv = mci->pvt_info;
struct ecc_error_info *pinf;
if (p->ce_cnt) {
pinf = &p->ceinfo;
if (!priv->p_data->quirks) {
snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
"DDR ECC error type:%s Row %d Bank %d Col %d ",
"CE", pinf->row, pinf->bank, pinf->col);
snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
"Bit Position: %d Data: 0x%08x\n",
pinf->bitpos, pinf->data);
} else {
snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
"DDR ECC error type:%s Row %d Bank %d Col %d ",
"CE", pinf->row, pinf->bank, pinf->col);
snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
"BankGroup Number %d Block Number %d ",
pinf->bankgrpnr, pinf->blknr);
snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
"Bit Position: %d Data: 0x%08x\n",
pinf->bitpos, pinf->data);
}
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
p->ce_cnt, 0, 0, 0, 0, 0, -1,
priv->message, "");
}
if (p->ue_cnt) {
pinf = &p->ueinfo;
if (!priv->p_data->quirks) {
snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
"DDR ECC error type :%s Row %d Bank %d Col %d ",
"UE", pinf->row, pinf->bank, pinf->col);
} else {
snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
"DDR ECC error type :%s Row %d Bank %d Col %d ",
"UE", pinf->row, pinf->bank, pinf->col);
snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
"BankGroup Number %d Block Number %d",
pinf->bankgrpnr, pinf->blknr);
}
edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
p->ue_cnt, 0, 0, 0, 0, 0, -1,
priv->message, "");
}
memset(p, 0, sizeof(*p));
}
/**
* intr_handler - Interrupt Handler for ECC interrupts.
* @irq: IRQ number.
* @dev_id: Device ID.
*
* Return: IRQ_NONE, if interrupt not set or IRQ_HANDLED otherwise.
*/
static irqreturn_t intr_handler(int irq, void *dev_id)
{
const struct synps_platform_data *p_data;
struct mem_ctl_info *mci = dev_id;
struct synps_edac_priv *priv;
int status, regval;
priv = mci->pvt_info;
p_data = priv->p_data;
regval = readl(priv->baseaddr + DDR_QOS_IRQ_STAT_OFST);
regval &= (DDR_QOSCE_MASK | DDR_QOSUE_MASK);
if (!(regval & ECC_CE_UE_INTR_MASK))
return IRQ_NONE;
status = p_data->get_error_info(priv);
if (status)
return IRQ_NONE;
priv->ce_cnt += priv->stat.ce_cnt;
priv->ue_cnt += priv->stat.ue_cnt;
handle_error(mci, &priv->stat);
edac_dbg(3, "Total error count CE %d UE %d\n",
priv->ce_cnt, priv->ue_cnt);
writel(regval, priv->baseaddr + DDR_QOS_IRQ_STAT_OFST);
return IRQ_HANDLED;
}
/**
* check_errors - Check controller for ECC errors.
* @mci: EDAC memory controller instance.
*
* Check and post ECC errors. Called by the polling thread.
*/
static void check_errors(struct mem_ctl_info *mci)
{
const struct synps_platform_data *p_data;
struct synps_edac_priv *priv;
int status;
priv = mci->pvt_info;
p_data = priv->p_data;
status = p_data->get_error_info(priv);
if (status)
return;
priv->ce_cnt += priv->stat.ce_cnt;
priv->ue_cnt += priv->stat.ue_cnt;
handle_error(mci, &priv->stat);
edac_dbg(3, "Total error count CE %d UE %d\n",
priv->ce_cnt, priv->ue_cnt);
}
/**
* zynq_get_dtype - Return the controller memory width.
* @base: DDR memory controller base address.
*
* Get the EDAC device type width appropriate for the current controller
* configuration.
*
* Return: a device type width enumeration.
*/
static enum dev_type zynq_get_dtype(const void __iomem *base)
{
enum dev_type dt;
u32 width;
width = readl(base + CTRL_OFST);
width = (width & CTRL_BW_MASK) >> CTRL_BW_SHIFT;
switch (width) {
case DDRCTL_WDTH_16:
dt = DEV_X2;
break;
case DDRCTL_WDTH_32:
dt = DEV_X4;
break;
default:
dt = DEV_UNKNOWN;
}
return dt;
}
/**
* zynqmp_get_dtype - Return the controller memory width.
* @base: DDR memory controller base address.
*
* Get the EDAC device type width appropriate for the current controller
* configuration.
*
* Return: a device type width enumeration.
*/
static enum dev_type zynqmp_get_dtype(const void __iomem *base)
{
enum dev_type dt;
u32 width;
width = readl(base + CTRL_OFST);
width = (width & ECC_CTRL_BUSWIDTH_MASK) >> ECC_CTRL_BUSWIDTH_SHIFT;
switch (width) {
case DDRCTL_EWDTH_16:
dt = DEV_X2;
break;
case DDRCTL_EWDTH_32:
dt = DEV_X4;
break;
case DDRCTL_EWDTH_64:
dt = DEV_X8;
break;
default:
dt = DEV_UNKNOWN;
}
return dt;
}
/**
* zynq_get_ecc_state - Return the controller ECC enable/disable status.
* @base: DDR memory controller base address.
*
* Get the ECC enable/disable status of the controller.
*
* Return: true if enabled, otherwise false.
*/
static bool zynq_get_ecc_state(void __iomem *base)
{
enum dev_type dt;
u32 ecctype;
dt = zynq_get_dtype(base);
if (dt == DEV_UNKNOWN)
return false;
ecctype = readl(base + SCRUB_OFST) & SCRUB_MODE_MASK;
if ((ecctype == SCRUB_MODE_SECDED) && (dt == DEV_X2))
return true;
return false;
}
/**
* zynqmp_get_ecc_state - Return the controller ECC enable/disable status.
* @base: DDR memory controller base address.
*
* Get the ECC enable/disable status for the controller.
*
* Return: a ECC status boolean i.e true/false - enabled/disabled.
*/
static bool zynqmp_get_ecc_state(void __iomem *base)
{
enum dev_type dt;
u32 ecctype;
dt = zynqmp_get_dtype(base);
if (dt == DEV_UNKNOWN)
return false;
ecctype = readl(base + ECC_CFG0_OFST) & SCRUB_MODE_MASK;
if ((ecctype == SCRUB_MODE_SECDED) &&
((dt == DEV_X2) || (dt == DEV_X4) || (dt == DEV_X8)))
return true;
return false;
}
/**
* get_memsize - Read the size of the attached memory device.
*
* Return: the memory size in bytes.
*/
static u32 get_memsize(void)
{
struct sysinfo inf;
si_meminfo(&inf);
return inf.totalram * inf.mem_unit;
}
/**
* zynq_get_mtype - Return the controller memory type.
* @base: Synopsys ECC status structure.
*
* Get the EDAC memory type appropriate for the current controller
* configuration.
*
* Return: a memory type enumeration.
*/
static enum mem_type zynq_get_mtype(const void __iomem *base)
{
enum mem_type mt;
u32 memtype;
memtype = readl(base + T_ZQ_OFST);
if (memtype & T_ZQ_DDRMODE_MASK)
mt = MEM_DDR3;
else
mt = MEM_DDR2;
return mt;
}
/**
* zynqmp_get_mtype - Returns controller memory type.
* @base: Synopsys ECC status structure.
*
* Get the EDAC memory type appropriate for the current controller
* configuration.
*
* Return: a memory type enumeration.
*/
static enum mem_type zynqmp_get_mtype(const void __iomem *base)
{
enum mem_type mt;
u32 memtype;
memtype = readl(base + CTRL_OFST);
if ((memtype & MEM_TYPE_DDR3) || (memtype & MEM_TYPE_LPDDR3))
mt = MEM_DDR3;
else if (memtype & MEM_TYPE_DDR2)
mt = MEM_RDDR2;
else if ((memtype & MEM_TYPE_LPDDR4) || (memtype & MEM_TYPE_DDR4))
mt = MEM_DDR4;
else
mt = MEM_EMPTY;
return mt;
}
/**
* init_csrows - Initialize the csrow data.
* @mci: EDAC memory controller instance.
*
* Initialize the chip select rows associated with the EDAC memory
* controller instance.
*/
static void init_csrows(struct mem_ctl_info *mci)
{
struct synps_edac_priv *priv = mci->pvt_info;
const struct synps_platform_data *p_data;
struct csrow_info *csi;
struct dimm_info *dimm;
u32 size, row;
int j;
p_data = priv->p_data;
for (row = 0; row < mci->nr_csrows; row++) {
csi = mci->csrows[row];
size = get_memsize();
for (j = 0; j < csi->nr_channels; j++) {
dimm = csi->channels[j]->dimm;
dimm->edac_mode = EDAC_FLAG_SECDED;
dimm->mtype = p_data->get_mtype(priv->baseaddr);
dimm->nr_pages = (size >> PAGE_SHIFT) / csi->nr_channels;
dimm->grain = SYNPS_EDAC_ERR_GRAIN;
dimm->dtype = p_data->get_dtype(priv->baseaddr);
}
}
}
/**
* mc_init - Initialize one driver instance.
* @mci: EDAC memory controller instance.
* @pdev: platform device.
*
* Perform initialization of the EDAC memory controller instance and
* related driver-private data associated with the memory controller the
* instance is bound to.
*/
static void mc_init(struct mem_ctl_info *mci, struct platform_device *pdev)
{
struct synps_edac_priv *priv;
mci->pdev = &pdev->dev;
priv = mci->pvt_info;
platform_set_drvdata(pdev, mci);
/* Initialize controller capabilities and configuration */
mci->mtype_cap = MEM_FLAG_DDR3 | MEM_FLAG_DDR2;
mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
mci->scrub_cap = SCRUB_HW_SRC;
mci->scrub_mode = SCRUB_NONE;
mci->edac_cap = EDAC_FLAG_SECDED;
mci->ctl_name = "synps_ddr_controller";
mci->dev_name = SYNPS_EDAC_MOD_STRING;
mci->mod_name = SYNPS_EDAC_MOD_VER;
if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
edac_op_state = EDAC_OPSTATE_INT;
} else {
edac_op_state = EDAC_OPSTATE_POLL;
mci->edac_check = check_errors;
}
mci->ctl_page_to_phys = NULL;
init_csrows(mci);
}
static void enable_intr(struct synps_edac_priv *priv)
{
/* Enable UE/CE Interrupts */
writel(DDR_QOSUE_MASK | DDR_QOSCE_MASK,
priv->baseaddr + DDR_QOS_IRQ_EN_OFST);
}
static void disable_intr(struct synps_edac_priv *priv)
{
/* Disable UE/CE Interrupts */
writel(DDR_QOSUE_MASK | DDR_QOSCE_MASK,
priv->baseaddr + DDR_QOS_IRQ_DB_OFST);
}
static int setup_irq(struct mem_ctl_info *mci,
struct platform_device *pdev)
{
struct synps_edac_priv *priv = mci->pvt_info;
int ret, irq;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
edac_printk(KERN_ERR, EDAC_MC,
"No IRQ %d in DT\n", irq);
return irq;
}
ret = devm_request_irq(&pdev->dev, irq, intr_handler,
0, dev_name(&pdev->dev), mci);
if (ret < 0) {
edac_printk(KERN_ERR, EDAC_MC, "Failed to request IRQ\n");
return ret;
}
enable_intr(priv);
return 0;
}
static const struct synps_platform_data zynq_edac_def = {
.get_error_info = zynq_get_error_info,
.get_mtype = zynq_get_mtype,
.get_dtype = zynq_get_dtype,
.get_ecc_state = zynq_get_ecc_state,
.quirks = 0,
};
static const struct synps_platform_data zynqmp_edac_def = {
.get_error_info = zynqmp_get_error_info,
.get_mtype = zynqmp_get_mtype,
.get_dtype = zynqmp_get_dtype,
.get_ecc_state = zynqmp_get_ecc_state,
.quirks = (DDR_ECC_INTR_SUPPORT
#ifdef CONFIG_EDAC_DEBUG
| DDR_ECC_DATA_POISON_SUPPORT
#endif
),
};
static const struct of_device_id synps_edac_match[] = {
{
.compatible = "xlnx,zynq-ddrc-a05",
.data = (void *)&zynq_edac_def
},
{
.compatible = "xlnx,zynqmp-ddrc-2.40a",
.data = (void *)&zynqmp_edac_def
},
{
/* end of table */
}
};
MODULE_DEVICE_TABLE(of, synps_edac_match);
#ifdef CONFIG_EDAC_DEBUG
#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
/**
* ddr_poison_setup - Update poison registers.
* @priv: DDR memory controller private instance data.
*
* Update poison registers as per DDR mapping.
* Return: none.
*/
static void ddr_poison_setup(struct synps_edac_priv *priv)
{
int col = 0, row = 0, bank = 0, bankgrp = 0, rank = 0, regval;
int index;
ulong hif_addr = 0;
hif_addr = priv->poison_addr >> 3;
for (index = 0; index < DDR_MAX_ROW_SHIFT; index++) {
if (priv->row_shift[index])
row |= (((hif_addr >> priv->row_shift[index]) &
BIT(0)) << index);
else
break;
}
for (index = 0; index < DDR_MAX_COL_SHIFT; index++) {
if (priv->col_shift[index] || index < 3)
col |= (((hif_addr >> priv->col_shift[index]) &
BIT(0)) << index);
else
break;
}
for (index = 0; index < DDR_MAX_BANK_SHIFT; index++) {
if (priv->bank_shift[index])
bank |= (((hif_addr >> priv->bank_shift[index]) &
BIT(0)) << index);
else
break;
}
for (index = 0; index < DDR_MAX_BANKGRP_SHIFT; index++) {
if (priv->bankgrp_shift[index])
bankgrp |= (((hif_addr >> priv->bankgrp_shift[index])
& BIT(0)) << index);
else
break;
}
if (priv->rank_shift[0])
rank = (hif_addr >> priv->rank_shift[0]) & BIT(0);
regval = (rank << ECC_POISON0_RANK_SHIFT) & ECC_POISON0_RANK_MASK;
regval |= (col << ECC_POISON0_COLUMN_SHIFT) & ECC_POISON0_COLUMN_MASK;
writel(regval, priv->baseaddr + ECC_POISON0_OFST);
regval = (bankgrp << ECC_POISON1_BG_SHIFT) & ECC_POISON1_BG_MASK;
regval |= (bank << ECC_POISON1_BANKNR_SHIFT) & ECC_POISON1_BANKNR_MASK;
regval |= (row << ECC_POISON1_ROW_SHIFT) & ECC_POISON1_ROW_MASK;
writel(regval, priv->baseaddr + ECC_POISON1_OFST);
}
static ssize_t inject_data_error_show(struct device *dev,
struct device_attribute *mattr,
char *data)
{
struct mem_ctl_info *mci = to_mci(dev);
struct synps_edac_priv *priv = mci->pvt_info;
return sprintf(data, "Poison0 Addr: 0x%08x\n\rPoison1 Addr: 0x%08x\n\r"
"Error injection Address: 0x%lx\n\r",
readl(priv->baseaddr + ECC_POISON0_OFST),
readl(priv->baseaddr + ECC_POISON1_OFST),
priv->poison_addr);
}
static ssize_t inject_data_error_store(struct device *dev,
struct device_attribute *mattr,
const char *data, size_t count)
{
struct mem_ctl_info *mci = to_mci(dev);
struct synps_edac_priv *priv = mci->pvt_info;
if (kstrtoul(data, 0, &priv->poison_addr))
return -EINVAL;
ddr_poison_setup(priv);
return count;
}
static ssize_t inject_data_poison_show(struct device *dev,
struct device_attribute *mattr,
char *data)
{
struct mem_ctl_info *mci = to_mci(dev);
struct synps_edac_priv *priv = mci->pvt_info;
return sprintf(data, "Data Poisoning: %s\n\r",
(((readl(priv->baseaddr + ECC_CFG1_OFST)) & 0x3) == 0x3)
? ("Correctable Error") : ("UnCorrectable Error"));
}
static ssize_t inject_data_poison_store(struct device *dev,
struct device_attribute *mattr,
const char *data, size_t count)
{
struct mem_ctl_info *mci = to_mci(dev);
struct synps_edac_priv *priv = mci->pvt_info;
writel(0, priv->baseaddr + DDRC_SWCTL);
if (strncmp(data, "CE", 2) == 0)
writel(ECC_CEPOISON_MASK, priv->baseaddr + ECC_CFG1_OFST);
else
writel(ECC_UEPOISON_MASK, priv->baseaddr + ECC_CFG1_OFST);
writel(1, priv->baseaddr + DDRC_SWCTL);
return count;
}
static DEVICE_ATTR_RW(inject_data_error);
static DEVICE_ATTR_RW(inject_data_poison);
static int edac_create_sysfs_attributes(struct mem_ctl_info *mci)
{
int rc;
rc = device_create_file(&mci->dev, &dev_attr_inject_data_error);
if (rc < 0)
return rc;
rc = device_create_file(&mci->dev, &dev_attr_inject_data_poison);
if (rc < 0)
return rc;
return 0;
}
static void edac_remove_sysfs_attributes(struct mem_ctl_info *mci)
{
device_remove_file(&mci->dev, &dev_attr_inject_data_error);
device_remove_file(&mci->dev, &dev_attr_inject_data_poison);
}
static void setup_row_address_map(struct synps_edac_priv *priv, u32 *addrmap)
{
u32 addrmap_row_b2_10;
int index;
priv->row_shift[0] = (addrmap[5] & ROW_MAX_VAL_MASK) + ROW_B0_BASE;
priv->row_shift[1] = ((addrmap[5] >> 8) &
ROW_MAX_VAL_MASK) + ROW_B1_BASE;
addrmap_row_b2_10 = (addrmap[5] >> 16) & ROW_MAX_VAL_MASK;
if (addrmap_row_b2_10 != ROW_MAX_VAL_MASK) {
for (index = 2; index < 11; index++)
priv->row_shift[index] = addrmap_row_b2_10 +
index + ROW_B0_BASE;
} else {
priv->row_shift[2] = (addrmap[9] &
ROW_MAX_VAL_MASK) + ROW_B2_BASE;
priv->row_shift[3] = ((addrmap[9] >> 8) &
ROW_MAX_VAL_MASK) + ROW_B3_BASE;
priv->row_shift[4] = ((addrmap[9] >> 16) &
ROW_MAX_VAL_MASK) + ROW_B4_BASE;
priv->row_shift[5] = ((addrmap[9] >> 24) &
ROW_MAX_VAL_MASK) + ROW_B5_BASE;
priv->row_shift[6] = (addrmap[10] &
ROW_MAX_VAL_MASK) + ROW_B6_BASE;
priv->row_shift[7] = ((addrmap[10] >> 8) &
ROW_MAX_VAL_MASK) + ROW_B7_BASE;
priv->row_shift[8] = ((addrmap[10] >> 16) &
ROW_MAX_VAL_MASK) + ROW_B8_BASE;
priv->row_shift[9] = ((addrmap[10] >> 24) &
ROW_MAX_VAL_MASK) + ROW_B9_BASE;
priv->row_shift[10] = (addrmap[11] &
ROW_MAX_VAL_MASK) + ROW_B10_BASE;
}
priv->row_shift[11] = (((addrmap[5] >> 24) & ROW_MAX_VAL_MASK) ==
ROW_MAX_VAL_MASK) ? 0 : (((addrmap[5] >> 24) &
ROW_MAX_VAL_MASK) + ROW_B11_BASE);
priv->row_shift[12] = ((addrmap[6] & ROW_MAX_VAL_MASK) ==
ROW_MAX_VAL_MASK) ? 0 : ((addrmap[6] &
ROW_MAX_VAL_MASK) + ROW_B12_BASE);
priv->row_shift[13] = (((addrmap[6] >> 8) & ROW_MAX_VAL_MASK) ==
ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 8) &
ROW_MAX_VAL_MASK) + ROW_B13_BASE);
priv->row_shift[14] = (((addrmap[6] >> 16) & ROW_MAX_VAL_MASK) ==
ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 16) &
ROW_MAX_VAL_MASK) + ROW_B14_BASE);
priv->row_shift[15] = (((addrmap[6] >> 24) & ROW_MAX_VAL_MASK) ==
ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 24) &
ROW_MAX_VAL_MASK) + ROW_B15_BASE);
priv->row_shift[16] = ((addrmap[7] & ROW_MAX_VAL_MASK) ==
ROW_MAX_VAL_MASK) ? 0 : ((addrmap[7] &
ROW_MAX_VAL_MASK) + ROW_B16_BASE);
priv->row_shift[17] = (((addrmap[7] >> 8) & ROW_MAX_VAL_MASK) ==
ROW_MAX_VAL_MASK) ? 0 : (((addrmap[7] >> 8) &
ROW_MAX_VAL_MASK) + ROW_B17_BASE);
}
static void setup_column_address_map(struct synps_edac_priv *priv, u32 *addrmap)
{
u32 width, memtype;
int index;
memtype = readl(priv->baseaddr + CTRL_OFST);
width = (memtype & ECC_CTRL_BUSWIDTH_MASK) >> ECC_CTRL_BUSWIDTH_SHIFT;
priv->col_shift[0] = 0;
priv->col_shift[1] = 1;
priv->col_shift[2] = (addrmap[2] & COL_MAX_VAL_MASK) + COL_B2_BASE;
priv->col_shift[3] = ((addrmap[2] >> 8) &
COL_MAX_VAL_MASK) + COL_B3_BASE;
priv->col_shift[4] = (((addrmap[2] >> 16) & COL_MAX_VAL_MASK) ==
COL_MAX_VAL_MASK) ? 0 : (((addrmap[2] >> 16) &
COL_MAX_VAL_MASK) + COL_B4_BASE);
priv->col_shift[5] = (((addrmap[2] >> 24) & COL_MAX_VAL_MASK) ==
COL_MAX_VAL_MASK) ? 0 : (((addrmap[2] >> 24) &
COL_MAX_VAL_MASK) + COL_B5_BASE);
priv->col_shift[6] = ((addrmap[3] & COL_MAX_VAL_MASK) ==
COL_MAX_VAL_MASK) ? 0 : ((addrmap[3] &
COL_MAX_VAL_MASK) + COL_B6_BASE);
priv->col_shift[7] = (((addrmap[3] >> 8) & COL_MAX_VAL_MASK) ==
COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 8) &
COL_MAX_VAL_MASK) + COL_B7_BASE);
priv->col_shift[8] = (((addrmap[3] >> 16) & COL_MAX_VAL_MASK) ==
COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 16) &
COL_MAX_VAL_MASK) + COL_B8_BASE);
priv->col_shift[9] = (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) ==
COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 24) &
COL_MAX_VAL_MASK) + COL_B9_BASE);
if (width == DDRCTL_EWDTH_64) {
if (memtype & MEM_TYPE_LPDDR3) {
priv->col_shift[10] = ((addrmap[4] &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
((addrmap[4] & COL_MAX_VAL_MASK) +
COL_B10_BASE);
priv->col_shift[11] = (((addrmap[4] >> 8) &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
(((addrmap[4] >> 8) & COL_MAX_VAL_MASK) +
COL_B11_BASE);
} else {
priv->col_shift[11] = ((addrmap[4] &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
((addrmap[4] & COL_MAX_VAL_MASK) +
COL_B10_BASE);
priv->col_shift[13] = (((addrmap[4] >> 8) &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
(((addrmap[4] >> 8) & COL_MAX_VAL_MASK) +
COL_B11_BASE);
}
} else if (width == DDRCTL_EWDTH_32) {
if (memtype & MEM_TYPE_LPDDR3) {
priv->col_shift[10] = (((addrmap[3] >> 24) &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
(((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
COL_B9_BASE);
priv->col_shift[11] = ((addrmap[4] &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
((addrmap[4] & COL_MAX_VAL_MASK) +
COL_B10_BASE);
} else {
priv->col_shift[11] = (((addrmap[3] >> 24) &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
(((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
COL_B9_BASE);
priv->col_shift[13] = ((addrmap[4] &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
((addrmap[4] & COL_MAX_VAL_MASK) +
COL_B10_BASE);
}
} else {
if (memtype & MEM_TYPE_LPDDR3) {
priv->col_shift[10] = (((addrmap[3] >> 16) &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
(((addrmap[3] >> 16) & COL_MAX_VAL_MASK) +
COL_B8_BASE);
priv->col_shift[11] = (((addrmap[3] >> 24) &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
(((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
COL_B9_BASE);
priv->col_shift[13] = ((addrmap[4] &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
((addrmap[4] & COL_MAX_VAL_MASK) +
COL_B10_BASE);
} else {
priv->col_shift[11] = (((addrmap[3] >> 16) &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
(((addrmap[3] >> 16) & COL_MAX_VAL_MASK) +
COL_B8_BASE);
priv->col_shift[13] = (((addrmap[3] >> 24) &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
(((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
COL_B9_BASE);
}
}
if (width) {
for (index = 9; index > width; index--) {
priv->col_shift[index] = priv->col_shift[index - width];
priv->col_shift[index - width] = 0;
}
}
}
static void setup_bank_address_map(struct synps_edac_priv *priv, u32 *addrmap)
{
priv->bank_shift[0] = (addrmap[1] & BANK_MAX_VAL_MASK) + BANK_B0_BASE;
priv->bank_shift[1] = ((addrmap[1] >> 8) &
BANK_MAX_VAL_MASK) + BANK_B1_BASE;
priv->bank_shift[2] = (((addrmap[1] >> 16) &
BANK_MAX_VAL_MASK) == BANK_MAX_VAL_MASK) ? 0 :
(((addrmap[1] >> 16) & BANK_MAX_VAL_MASK) +
BANK_B2_BASE);
}
static void setup_bg_address_map(struct synps_edac_priv *priv, u32 *addrmap)
{
priv->bankgrp_shift[0] = (addrmap[8] &
BANKGRP_MAX_VAL_MASK) + BANKGRP_B0_BASE;
priv->bankgrp_shift[1] = (((addrmap[8] >> 8) & BANKGRP_MAX_VAL_MASK) ==
BANKGRP_MAX_VAL_MASK) ? 0 : (((addrmap[8] >> 8)
& BANKGRP_MAX_VAL_MASK) + BANKGRP_B1_BASE);
}
static void setup_rank_address_map(struct synps_edac_priv *priv, u32 *addrmap)
{
priv->rank_shift[0] = ((addrmap[0] & RANK_MAX_VAL_MASK) ==
RANK_MAX_VAL_MASK) ? 0 : ((addrmap[0] &
RANK_MAX_VAL_MASK) + RANK_B0_BASE);
}
/**
* setup_address_map - Set Address Map by querying ADDRMAP registers.
* @priv: DDR memory controller private instance data.
*
* Set Address Map by querying ADDRMAP registers.
*
* Return: none.
*/
static void setup_address_map(struct synps_edac_priv *priv)
{
u32 addrmap[12];
int index;
for (index = 0; index < 12; index++) {
u32 addrmap_offset;
addrmap_offset = ECC_ADDRMAP0_OFFSET + (index * 4);
addrmap[index] = readl(priv->baseaddr + addrmap_offset);
}
setup_row_address_map(priv, addrmap);
setup_column_address_map(priv, addrmap);
setup_bank_address_map(priv, addrmap);
setup_bg_address_map(priv, addrmap);
setup_rank_address_map(priv, addrmap);
}
#endif /* CONFIG_EDAC_DEBUG */
/**
* mc_probe - Check controller and bind driver.
* @pdev: platform device.
*
* Probe a specific controller instance for binding with the driver.
*
* Return: 0 if the controller instance was successfully bound to the
* driver; otherwise, < 0 on error.
*/
static int mc_probe(struct platform_device *pdev)
{
const struct synps_platform_data *p_data;
struct edac_mc_layer layers[2];
struct synps_edac_priv *priv;
struct mem_ctl_info *mci;
void __iomem *baseaddr;
struct resource *res;
int rc;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
baseaddr = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(baseaddr))
return PTR_ERR(baseaddr);
p_data = of_device_get_match_data(&pdev->dev);
if (!p_data)
return -ENODEV;
if (!p_data->get_ecc_state(baseaddr)) {
edac_printk(KERN_INFO, EDAC_MC, "ECC not enabled\n");
return -ENXIO;
}
layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
layers[0].size = SYNPS_EDAC_NR_CSROWS;
layers[0].is_virt_csrow = true;
layers[1].type = EDAC_MC_LAYER_CHANNEL;
layers[1].size = SYNPS_EDAC_NR_CHANS;
layers[1].is_virt_csrow = false;
mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
sizeof(struct synps_edac_priv));
if (!mci) {
edac_printk(KERN_ERR, EDAC_MC,
"Failed memory allocation for mc instance\n");
return -ENOMEM;
}
priv = mci->pvt_info;
priv->baseaddr = baseaddr;
priv->p_data = p_data;
mc_init(mci, pdev);
if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
rc = setup_irq(mci, pdev);
if (rc)
goto free_edac_mc;
}
rc = edac_mc_add_mc(mci);
if (rc) {
edac_printk(KERN_ERR, EDAC_MC,
"Failed to register with EDAC core\n");
goto free_edac_mc;
}
#ifdef CONFIG_EDAC_DEBUG
if (priv->p_data->quirks & DDR_ECC_DATA_POISON_SUPPORT) {
if (edac_create_sysfs_attributes(mci)) {
edac_printk(KERN_ERR, EDAC_MC,
"Failed to create sysfs entries\n");
goto free_edac_mc;
}
}
if (of_device_is_compatible(pdev->dev.of_node,
"xlnx,zynqmp-ddrc-2.40a"))
setup_address_map(priv);
#endif
/*
* Start capturing the correctable and uncorrectable errors. A write of
* 0 starts the counters.
*/
if (!(priv->p_data->quirks & DDR_ECC_INTR_SUPPORT))
writel(0x0, baseaddr + ECC_CTRL_OFST);
return rc;
free_edac_mc:
edac_mc_free(mci);
return rc;
}
/**
* mc_remove - Unbind driver from controller.
* @pdev: Platform device.
*
* Return: Unconditionally 0
*/
static int mc_remove(struct platform_device *pdev)
{
struct mem_ctl_info *mci = platform_get_drvdata(pdev);
struct synps_edac_priv *priv = mci->pvt_info;
if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT)
disable_intr(priv);
#ifdef CONFIG_EDAC_DEBUG
if (priv->p_data->quirks & DDR_ECC_DATA_POISON_SUPPORT)
edac_remove_sysfs_attributes(mci);
#endif
edac_mc_del_mc(&pdev->dev);
edac_mc_free(mci);
return 0;
}
static struct platform_driver synps_edac_mc_driver = {
.driver = {
.name = "synopsys-edac",
.of_match_table = synps_edac_match,
},
.probe = mc_probe,
.remove = mc_remove,
};
module_platform_driver(synps_edac_mc_driver);
MODULE_AUTHOR("Xilinx Inc");
MODULE_DESCRIPTION("Synopsys DDR ECC driver");
MODULE_LICENSE("GPL v2");