2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-17 01:34:00 +08:00
linux-next/mm/gup.c
Linus Torvalds 98931dd95f Yang Shi has improved the behaviour of khugepaged collapsing of readonly
file-backed transparent hugepages.
 
 Johannes Weiner has arranged for zswap memory use to be tracked and
 managed on a per-cgroup basis.
 
 Munchun Song adds a /proc knob ("hugetlb_optimize_vmemmap") for runtime
 enablement of the recent huge page vmemmap optimization feature.
 
 Baolin Wang contributes a series to fix some issues around hugetlb
 pagetable invalidation.
 
 Zhenwei Pi has fixed some interactions between hwpoisoned pages and
 virtualization.
 
 Tong Tiangen has enabled the use of the presently x86-only
 page_table_check debugging feature on arm64 and riscv.
 
 David Vernet has done some fixup work on the memcg selftests.
 
 Peter Xu has taught userfaultfd to handle write protection faults against
 shmem- and hugetlbfs-backed files.
 
 More DAMON development from SeongJae Park - adding online tuning of the
 feature and support for monitoring of fixed virtual address ranges.  Also
 easier discovery of which monitoring operations are available.
 
 Nadav Amit has done some optimization of TLB flushing during mprotect().
 
 Neil Brown continues to labor away at improving our swap-over-NFS support.
 
 David Hildenbrand has some fixes to anon page COWing versus
 get_user_pages().
 
 Peng Liu fixed some errors in the core hugetlb code.
 
 Joao Martins has reduced the amount of memory consumed by device-dax's
 compound devmaps.
 
 Some cleanups of the arch-specific pagemap code from Anshuman Khandual.
 
 Muchun Song has found and fixed some errors in the TLB flushing of
 transparent hugepages.
 
 Roman Gushchin has done more work on the memcg selftests.
 
 And, of course, many smaller fixes and cleanups.  Notably, the customary
 million cleanup serieses from Miaohe Lin.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCYo52xQAKCRDdBJ7gKXxA
 jtJFAQD238KoeI9z5SkPMaeBRYSRQmNll85mxs25KapcEgWgGQD9FAb7DJkqsIVk
 PzE+d9hEfirUGdL6cujatwJ6ejYR8Q8=
 =nFe6
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2022-05-25' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:
 "Almost all of MM here. A few things are still getting finished off,
  reviewed, etc.

   - Yang Shi has improved the behaviour of khugepaged collapsing of
     readonly file-backed transparent hugepages.

   - Johannes Weiner has arranged for zswap memory use to be tracked and
     managed on a per-cgroup basis.

   - Munchun Song adds a /proc knob ("hugetlb_optimize_vmemmap") for
     runtime enablement of the recent huge page vmemmap optimization
     feature.

   - Baolin Wang contributes a series to fix some issues around hugetlb
     pagetable invalidation.

   - Zhenwei Pi has fixed some interactions between hwpoisoned pages and
     virtualization.

   - Tong Tiangen has enabled the use of the presently x86-only
     page_table_check debugging feature on arm64 and riscv.

   - David Vernet has done some fixup work on the memcg selftests.

   - Peter Xu has taught userfaultfd to handle write protection faults
     against shmem- and hugetlbfs-backed files.

   - More DAMON development from SeongJae Park - adding online tuning of
     the feature and support for monitoring of fixed virtual address
     ranges. Also easier discovery of which monitoring operations are
     available.

   - Nadav Amit has done some optimization of TLB flushing during
     mprotect().

   - Neil Brown continues to labor away at improving our swap-over-NFS
     support.

   - David Hildenbrand has some fixes to anon page COWing versus
     get_user_pages().

   - Peng Liu fixed some errors in the core hugetlb code.

   - Joao Martins has reduced the amount of memory consumed by
     device-dax's compound devmaps.

   - Some cleanups of the arch-specific pagemap code from Anshuman
     Khandual.

   - Muchun Song has found and fixed some errors in the TLB flushing of
     transparent hugepages.

   - Roman Gushchin has done more work on the memcg selftests.

  ... and, of course, many smaller fixes and cleanups. Notably, the
  customary million cleanup serieses from Miaohe Lin"

* tag 'mm-stable-2022-05-25' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (381 commits)
  mm: kfence: use PAGE_ALIGNED helper
  selftests: vm: add the "settings" file with timeout variable
  selftests: vm: add "test_hmm.sh" to TEST_FILES
  selftests: vm: check numa_available() before operating "merge_across_nodes" in ksm_tests
  selftests: vm: add migration to the .gitignore
  selftests/vm/pkeys: fix typo in comment
  ksm: fix typo in comment
  selftests: vm: add process_mrelease tests
  Revert "mm/vmscan: never demote for memcg reclaim"
  mm/kfence: print disabling or re-enabling message
  include/trace/events/percpu.h: cleanup for "percpu: improve percpu_alloc_percpu event trace"
  include/trace/events/mmflags.h: cleanup for "tracing: incorrect gfp_t conversion"
  mm: fix a potential infinite loop in start_isolate_page_range()
  MAINTAINERS: add Muchun as co-maintainer for HugeTLB
  zram: fix Kconfig dependency warning
  mm/shmem: fix shmem folio swapoff hang
  cgroup: fix an error handling path in alloc_pagecache_max_30M()
  mm: damon: use HPAGE_PMD_SIZE
  tracing: incorrect isolate_mote_t cast in mm_vmscan_lru_isolate
  nodemask.h: fix compilation error with GCC12
  ...
2022-05-26 12:32:41 -07:00

3141 lines
88 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <linux/memremap.h>
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/secretmem.h>
#include <linux/sched/signal.h>
#include <linux/rwsem.h>
#include <linux/hugetlb.h>
#include <linux/migrate.h>
#include <linux/mm_inline.h>
#include <linux/sched/mm.h>
#include <asm/mmu_context.h>
#include <asm/tlbflush.h>
#include "internal.h"
struct follow_page_context {
struct dev_pagemap *pgmap;
unsigned int page_mask;
};
static inline void sanity_check_pinned_pages(struct page **pages,
unsigned long npages)
{
if (!IS_ENABLED(CONFIG_DEBUG_VM))
return;
/*
* We only pin anonymous pages if they are exclusive. Once pinned, we
* can no longer turn them possibly shared and PageAnonExclusive() will
* stick around until the page is freed.
*
* We'd like to verify that our pinned anonymous pages are still mapped
* exclusively. The issue with anon THP is that we don't know how
* they are/were mapped when pinning them. However, for anon
* THP we can assume that either the given page (PTE-mapped THP) or
* the head page (PMD-mapped THP) should be PageAnonExclusive(). If
* neither is the case, there is certainly something wrong.
*/
for (; npages; npages--, pages++) {
struct page *page = *pages;
struct folio *folio = page_folio(page);
if (!folio_test_anon(folio))
continue;
if (!folio_test_large(folio) || folio_test_hugetlb(folio))
VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
else
/* Either a PTE-mapped or a PMD-mapped THP. */
VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
!PageAnonExclusive(page), page);
}
}
/*
* Return the folio with ref appropriately incremented,
* or NULL if that failed.
*/
static inline struct folio *try_get_folio(struct page *page, int refs)
{
struct folio *folio;
retry:
folio = page_folio(page);
if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
return NULL;
if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
return NULL;
/*
* At this point we have a stable reference to the folio; but it
* could be that between calling page_folio() and the refcount
* increment, the folio was split, in which case we'd end up
* holding a reference on a folio that has nothing to do with the page
* we were given anymore.
* So now that the folio is stable, recheck that the page still
* belongs to this folio.
*/
if (unlikely(page_folio(page) != folio)) {
folio_put_refs(folio, refs);
goto retry;
}
return folio;
}
/**
* try_grab_folio() - Attempt to get or pin a folio.
* @page: pointer to page to be grabbed
* @refs: the value to (effectively) add to the folio's refcount
* @flags: gup flags: these are the FOLL_* flag values.
*
* "grab" names in this file mean, "look at flags to decide whether to use
* FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
*
* Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
* same time. (That's true throughout the get_user_pages*() and
* pin_user_pages*() APIs.) Cases:
*
* FOLL_GET: folio's refcount will be incremented by @refs.
*
* FOLL_PIN on large folios: folio's refcount will be incremented by
* @refs, and its compound_pincount will be incremented by @refs.
*
* FOLL_PIN on single-page folios: folio's refcount will be incremented by
* @refs * GUP_PIN_COUNTING_BIAS.
*
* Return: The folio containing @page (with refcount appropriately
* incremented) for success, or NULL upon failure. If neither FOLL_GET
* nor FOLL_PIN was set, that's considered failure, and furthermore,
* a likely bug in the caller, so a warning is also emitted.
*/
struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
{
if (flags & FOLL_GET)
return try_get_folio(page, refs);
else if (flags & FOLL_PIN) {
struct folio *folio;
/*
* Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
* right zone, so fail and let the caller fall back to the slow
* path.
*/
if (unlikely((flags & FOLL_LONGTERM) &&
!is_pinnable_page(page)))
return NULL;
/*
* CAUTION: Don't use compound_head() on the page before this
* point, the result won't be stable.
*/
folio = try_get_folio(page, refs);
if (!folio)
return NULL;
/*
* When pinning a large folio, use an exact count to track it.
*
* However, be sure to *also* increment the normal folio
* refcount field at least once, so that the folio really
* is pinned. That's why the refcount from the earlier
* try_get_folio() is left intact.
*/
if (folio_test_large(folio))
atomic_add(refs, folio_pincount_ptr(folio));
else
folio_ref_add(folio,
refs * (GUP_PIN_COUNTING_BIAS - 1));
node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
return folio;
}
WARN_ON_ONCE(1);
return NULL;
}
static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
{
if (flags & FOLL_PIN) {
node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
if (folio_test_large(folio))
atomic_sub(refs, folio_pincount_ptr(folio));
else
refs *= GUP_PIN_COUNTING_BIAS;
}
folio_put_refs(folio, refs);
}
/**
* try_grab_page() - elevate a page's refcount by a flag-dependent amount
* @page: pointer to page to be grabbed
* @flags: gup flags: these are the FOLL_* flag values.
*
* This might not do anything at all, depending on the flags argument.
*
* "grab" names in this file mean, "look at flags to decide whether to use
* FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
*
* Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
* time. Cases: please see the try_grab_folio() documentation, with
* "refs=1".
*
* Return: true for success, or if no action was required (if neither FOLL_PIN
* nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
* FOLL_PIN was set, but the page could not be grabbed.
*/
bool __must_check try_grab_page(struct page *page, unsigned int flags)
{
struct folio *folio = page_folio(page);
WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
return false;
if (flags & FOLL_GET)
folio_ref_inc(folio);
else if (flags & FOLL_PIN) {
/*
* Similar to try_grab_folio(): be sure to *also*
* increment the normal page refcount field at least once,
* so that the page really is pinned.
*/
if (folio_test_large(folio)) {
folio_ref_add(folio, 1);
atomic_add(1, folio_pincount_ptr(folio));
} else {
folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
}
node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
}
return true;
}
/**
* unpin_user_page() - release a dma-pinned page
* @page: pointer to page to be released
*
* Pages that were pinned via pin_user_pages*() must be released via either
* unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
* that such pages can be separately tracked and uniquely handled. In
* particular, interactions with RDMA and filesystems need special handling.
*/
void unpin_user_page(struct page *page)
{
sanity_check_pinned_pages(&page, 1);
gup_put_folio(page_folio(page), 1, FOLL_PIN);
}
EXPORT_SYMBOL(unpin_user_page);
static inline struct folio *gup_folio_range_next(struct page *start,
unsigned long npages, unsigned long i, unsigned int *ntails)
{
struct page *next = nth_page(start, i);
struct folio *folio = page_folio(next);
unsigned int nr = 1;
if (folio_test_large(folio))
nr = min_t(unsigned int, npages - i,
folio_nr_pages(folio) - folio_page_idx(folio, next));
*ntails = nr;
return folio;
}
static inline struct folio *gup_folio_next(struct page **list,
unsigned long npages, unsigned long i, unsigned int *ntails)
{
struct folio *folio = page_folio(list[i]);
unsigned int nr;
for (nr = i + 1; nr < npages; nr++) {
if (page_folio(list[nr]) != folio)
break;
}
*ntails = nr - i;
return folio;
}
/**
* unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
* @pages: array of pages to be maybe marked dirty, and definitely released.
* @npages: number of pages in the @pages array.
* @make_dirty: whether to mark the pages dirty
*
* "gup-pinned page" refers to a page that has had one of the get_user_pages()
* variants called on that page.
*
* For each page in the @pages array, make that page (or its head page, if a
* compound page) dirty, if @make_dirty is true, and if the page was previously
* listed as clean. In any case, releases all pages using unpin_user_page(),
* possibly via unpin_user_pages(), for the non-dirty case.
*
* Please see the unpin_user_page() documentation for details.
*
* set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
* required, then the caller should a) verify that this is really correct,
* because _lock() is usually required, and b) hand code it:
* set_page_dirty_lock(), unpin_user_page().
*
*/
void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
bool make_dirty)
{
unsigned long i;
struct folio *folio;
unsigned int nr;
if (!make_dirty) {
unpin_user_pages(pages, npages);
return;
}
sanity_check_pinned_pages(pages, npages);
for (i = 0; i < npages; i += nr) {
folio = gup_folio_next(pages, npages, i, &nr);
/*
* Checking PageDirty at this point may race with
* clear_page_dirty_for_io(), but that's OK. Two key
* cases:
*
* 1) This code sees the page as already dirty, so it
* skips the call to set_page_dirty(). That could happen
* because clear_page_dirty_for_io() called
* page_mkclean(), followed by set_page_dirty().
* However, now the page is going to get written back,
* which meets the original intention of setting it
* dirty, so all is well: clear_page_dirty_for_io() goes
* on to call TestClearPageDirty(), and write the page
* back.
*
* 2) This code sees the page as clean, so it calls
* set_page_dirty(). The page stays dirty, despite being
* written back, so it gets written back again in the
* next writeback cycle. This is harmless.
*/
if (!folio_test_dirty(folio)) {
folio_lock(folio);
folio_mark_dirty(folio);
folio_unlock(folio);
}
gup_put_folio(folio, nr, FOLL_PIN);
}
}
EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
/**
* unpin_user_page_range_dirty_lock() - release and optionally dirty
* gup-pinned page range
*
* @page: the starting page of a range maybe marked dirty, and definitely released.
* @npages: number of consecutive pages to release.
* @make_dirty: whether to mark the pages dirty
*
* "gup-pinned page range" refers to a range of pages that has had one of the
* pin_user_pages() variants called on that page.
*
* For the page ranges defined by [page .. page+npages], make that range (or
* its head pages, if a compound page) dirty, if @make_dirty is true, and if the
* page range was previously listed as clean.
*
* set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
* required, then the caller should a) verify that this is really correct,
* because _lock() is usually required, and b) hand code it:
* set_page_dirty_lock(), unpin_user_page().
*
*/
void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
bool make_dirty)
{
unsigned long i;
struct folio *folio;
unsigned int nr;
for (i = 0; i < npages; i += nr) {
folio = gup_folio_range_next(page, npages, i, &nr);
if (make_dirty && !folio_test_dirty(folio)) {
folio_lock(folio);
folio_mark_dirty(folio);
folio_unlock(folio);
}
gup_put_folio(folio, nr, FOLL_PIN);
}
}
EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
{
unsigned long i;
struct folio *folio;
unsigned int nr;
/*
* Don't perform any sanity checks because we might have raced with
* fork() and some anonymous pages might now actually be shared --
* which is why we're unpinning after all.
*/
for (i = 0; i < npages; i += nr) {
folio = gup_folio_next(pages, npages, i, &nr);
gup_put_folio(folio, nr, FOLL_PIN);
}
}
/**
* unpin_user_pages() - release an array of gup-pinned pages.
* @pages: array of pages to be marked dirty and released.
* @npages: number of pages in the @pages array.
*
* For each page in the @pages array, release the page using unpin_user_page().
*
* Please see the unpin_user_page() documentation for details.
*/
void unpin_user_pages(struct page **pages, unsigned long npages)
{
unsigned long i;
struct folio *folio;
unsigned int nr;
/*
* If this WARN_ON() fires, then the system *might* be leaking pages (by
* leaving them pinned), but probably not. More likely, gup/pup returned
* a hard -ERRNO error to the caller, who erroneously passed it here.
*/
if (WARN_ON(IS_ERR_VALUE(npages)))
return;
sanity_check_pinned_pages(pages, npages);
for (i = 0; i < npages; i += nr) {
folio = gup_folio_next(pages, npages, i, &nr);
gup_put_folio(folio, nr, FOLL_PIN);
}
}
EXPORT_SYMBOL(unpin_user_pages);
/*
* Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
* lifecycle. Avoid setting the bit unless necessary, or it might cause write
* cache bouncing on large SMP machines for concurrent pinned gups.
*/
static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
{
if (!test_bit(MMF_HAS_PINNED, mm_flags))
set_bit(MMF_HAS_PINNED, mm_flags);
}
#ifdef CONFIG_MMU
static struct page *no_page_table(struct vm_area_struct *vma,
unsigned int flags)
{
/*
* When core dumping an enormous anonymous area that nobody
* has touched so far, we don't want to allocate unnecessary pages or
* page tables. Return error instead of NULL to skip handle_mm_fault,
* then get_dump_page() will return NULL to leave a hole in the dump.
* But we can only make this optimization where a hole would surely
* be zero-filled if handle_mm_fault() actually did handle it.
*/
if ((flags & FOLL_DUMP) &&
(vma_is_anonymous(vma) || !vma->vm_ops->fault))
return ERR_PTR(-EFAULT);
return NULL;
}
static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
pte_t *pte, unsigned int flags)
{
if (flags & FOLL_TOUCH) {
pte_t entry = *pte;
if (flags & FOLL_WRITE)
entry = pte_mkdirty(entry);
entry = pte_mkyoung(entry);
if (!pte_same(*pte, entry)) {
set_pte_at(vma->vm_mm, address, pte, entry);
update_mmu_cache(vma, address, pte);
}
}
/* Proper page table entry exists, but no corresponding struct page */
return -EEXIST;
}
/*
* FOLL_FORCE can write to even unwritable pte's, but only
* after we've gone through a COW cycle and they are dirty.
*/
static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
{
return pte_write(pte) ||
((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
}
static struct page *follow_page_pte(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmd, unsigned int flags,
struct dev_pagemap **pgmap)
{
struct mm_struct *mm = vma->vm_mm;
struct page *page;
spinlock_t *ptl;
pte_t *ptep, pte;
int ret;
/* FOLL_GET and FOLL_PIN are mutually exclusive. */
if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
(FOLL_PIN | FOLL_GET)))
return ERR_PTR(-EINVAL);
retry:
if (unlikely(pmd_bad(*pmd)))
return no_page_table(vma, flags);
ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
pte = *ptep;
if (!pte_present(pte)) {
swp_entry_t entry;
/*
* KSM's break_ksm() relies upon recognizing a ksm page
* even while it is being migrated, so for that case we
* need migration_entry_wait().
*/
if (likely(!(flags & FOLL_MIGRATION)))
goto no_page;
if (pte_none(pte))
goto no_page;
entry = pte_to_swp_entry(pte);
if (!is_migration_entry(entry))
goto no_page;
pte_unmap_unlock(ptep, ptl);
migration_entry_wait(mm, pmd, address);
goto retry;
}
if ((flags & FOLL_NUMA) && pte_protnone(pte))
goto no_page;
if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
pte_unmap_unlock(ptep, ptl);
return NULL;
}
page = vm_normal_page(vma, address, pte);
if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
/*
* Only return device mapping pages in the FOLL_GET or FOLL_PIN
* case since they are only valid while holding the pgmap
* reference.
*/
*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
if (*pgmap)
page = pte_page(pte);
else
goto no_page;
} else if (unlikely(!page)) {
if (flags & FOLL_DUMP) {
/* Avoid special (like zero) pages in core dumps */
page = ERR_PTR(-EFAULT);
goto out;
}
if (is_zero_pfn(pte_pfn(pte))) {
page = pte_page(pte);
} else {
ret = follow_pfn_pte(vma, address, ptep, flags);
page = ERR_PTR(ret);
goto out;
}
}
if (!pte_write(pte) && gup_must_unshare(flags, page)) {
page = ERR_PTR(-EMLINK);
goto out;
}
VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
!PageAnonExclusive(page), page);
/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
if (unlikely(!try_grab_page(page, flags))) {
page = ERR_PTR(-ENOMEM);
goto out;
}
/*
* We need to make the page accessible if and only if we are going
* to access its content (the FOLL_PIN case). Please see
* Documentation/core-api/pin_user_pages.rst for details.
*/
if (flags & FOLL_PIN) {
ret = arch_make_page_accessible(page);
if (ret) {
unpin_user_page(page);
page = ERR_PTR(ret);
goto out;
}
}
if (flags & FOLL_TOUCH) {
if ((flags & FOLL_WRITE) &&
!pte_dirty(pte) && !PageDirty(page))
set_page_dirty(page);
/*
* pte_mkyoung() would be more correct here, but atomic care
* is needed to avoid losing the dirty bit: it is easier to use
* mark_page_accessed().
*/
mark_page_accessed(page);
}
out:
pte_unmap_unlock(ptep, ptl);
return page;
no_page:
pte_unmap_unlock(ptep, ptl);
if (!pte_none(pte))
return NULL;
return no_page_table(vma, flags);
}
static struct page *follow_pmd_mask(struct vm_area_struct *vma,
unsigned long address, pud_t *pudp,
unsigned int flags,
struct follow_page_context *ctx)
{
pmd_t *pmd, pmdval;
spinlock_t *ptl;
struct page *page;
struct mm_struct *mm = vma->vm_mm;
pmd = pmd_offset(pudp, address);
/*
* The READ_ONCE() will stabilize the pmdval in a register or
* on the stack so that it will stop changing under the code.
*/
pmdval = READ_ONCE(*pmd);
if (pmd_none(pmdval))
return no_page_table(vma, flags);
if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
page = follow_huge_pmd(mm, address, pmd, flags);
if (page)
return page;
return no_page_table(vma, flags);
}
if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
page = follow_huge_pd(vma, address,
__hugepd(pmd_val(pmdval)), flags,
PMD_SHIFT);
if (page)
return page;
return no_page_table(vma, flags);
}
retry:
if (!pmd_present(pmdval)) {
/*
* Should never reach here, if thp migration is not supported;
* Otherwise, it must be a thp migration entry.
*/
VM_BUG_ON(!thp_migration_supported() ||
!is_pmd_migration_entry(pmdval));
if (likely(!(flags & FOLL_MIGRATION)))
return no_page_table(vma, flags);
pmd_migration_entry_wait(mm, pmd);
pmdval = READ_ONCE(*pmd);
/*
* MADV_DONTNEED may convert the pmd to null because
* mmap_lock is held in read mode
*/
if (pmd_none(pmdval))
return no_page_table(vma, flags);
goto retry;
}
if (pmd_devmap(pmdval)) {
ptl = pmd_lock(mm, pmd);
page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
spin_unlock(ptl);
if (page)
return page;
}
if (likely(!pmd_trans_huge(pmdval)))
return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
return no_page_table(vma, flags);
retry_locked:
ptl = pmd_lock(mm, pmd);
if (unlikely(pmd_none(*pmd))) {
spin_unlock(ptl);
return no_page_table(vma, flags);
}
if (unlikely(!pmd_present(*pmd))) {
spin_unlock(ptl);
if (likely(!(flags & FOLL_MIGRATION)))
return no_page_table(vma, flags);
pmd_migration_entry_wait(mm, pmd);
goto retry_locked;
}
if (unlikely(!pmd_trans_huge(*pmd))) {
spin_unlock(ptl);
return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
}
if (flags & FOLL_SPLIT_PMD) {
int ret;
page = pmd_page(*pmd);
if (is_huge_zero_page(page)) {
spin_unlock(ptl);
ret = 0;
split_huge_pmd(vma, pmd, address);
if (pmd_trans_unstable(pmd))
ret = -EBUSY;
} else {
spin_unlock(ptl);
split_huge_pmd(vma, pmd, address);
ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
}
return ret ? ERR_PTR(ret) :
follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
}
page = follow_trans_huge_pmd(vma, address, pmd, flags);
spin_unlock(ptl);
ctx->page_mask = HPAGE_PMD_NR - 1;
return page;
}
static struct page *follow_pud_mask(struct vm_area_struct *vma,
unsigned long address, p4d_t *p4dp,
unsigned int flags,
struct follow_page_context *ctx)
{
pud_t *pud;
spinlock_t *ptl;
struct page *page;
struct mm_struct *mm = vma->vm_mm;
pud = pud_offset(p4dp, address);
if (pud_none(*pud))
return no_page_table(vma, flags);
if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
page = follow_huge_pud(mm, address, pud, flags);
if (page)
return page;
return no_page_table(vma, flags);
}
if (is_hugepd(__hugepd(pud_val(*pud)))) {
page = follow_huge_pd(vma, address,
__hugepd(pud_val(*pud)), flags,
PUD_SHIFT);
if (page)
return page;
return no_page_table(vma, flags);
}
if (pud_devmap(*pud)) {
ptl = pud_lock(mm, pud);
page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
spin_unlock(ptl);
if (page)
return page;
}
if (unlikely(pud_bad(*pud)))
return no_page_table(vma, flags);
return follow_pmd_mask(vma, address, pud, flags, ctx);
}
static struct page *follow_p4d_mask(struct vm_area_struct *vma,
unsigned long address, pgd_t *pgdp,
unsigned int flags,
struct follow_page_context *ctx)
{
p4d_t *p4d;
struct page *page;
p4d = p4d_offset(pgdp, address);
if (p4d_none(*p4d))
return no_page_table(vma, flags);
BUILD_BUG_ON(p4d_huge(*p4d));
if (unlikely(p4d_bad(*p4d)))
return no_page_table(vma, flags);
if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
page = follow_huge_pd(vma, address,
__hugepd(p4d_val(*p4d)), flags,
P4D_SHIFT);
if (page)
return page;
return no_page_table(vma, flags);
}
return follow_pud_mask(vma, address, p4d, flags, ctx);
}
/**
* follow_page_mask - look up a page descriptor from a user-virtual address
* @vma: vm_area_struct mapping @address
* @address: virtual address to look up
* @flags: flags modifying lookup behaviour
* @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
* pointer to output page_mask
*
* @flags can have FOLL_ flags set, defined in <linux/mm.h>
*
* When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
* the device's dev_pagemap metadata to avoid repeating expensive lookups.
*
* When getting an anonymous page and the caller has to trigger unsharing
* of a shared anonymous page first, -EMLINK is returned. The caller should
* trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
* relevant with FOLL_PIN and !FOLL_WRITE.
*
* On output, the @ctx->page_mask is set according to the size of the page.
*
* Return: the mapped (struct page *), %NULL if no mapping exists, or
* an error pointer if there is a mapping to something not represented
* by a page descriptor (see also vm_normal_page()).
*/
static struct page *follow_page_mask(struct vm_area_struct *vma,
unsigned long address, unsigned int flags,
struct follow_page_context *ctx)
{
pgd_t *pgd;
struct page *page;
struct mm_struct *mm = vma->vm_mm;
ctx->page_mask = 0;
/* make this handle hugepd */
page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
if (!IS_ERR(page)) {
WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
return page;
}
pgd = pgd_offset(mm, address);
if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
return no_page_table(vma, flags);
if (pgd_huge(*pgd)) {
page = follow_huge_pgd(mm, address, pgd, flags);
if (page)
return page;
return no_page_table(vma, flags);
}
if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
page = follow_huge_pd(vma, address,
__hugepd(pgd_val(*pgd)), flags,
PGDIR_SHIFT);
if (page)
return page;
return no_page_table(vma, flags);
}
return follow_p4d_mask(vma, address, pgd, flags, ctx);
}
struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
unsigned int foll_flags)
{
struct follow_page_context ctx = { NULL };
struct page *page;
if (vma_is_secretmem(vma))
return NULL;
if (foll_flags & FOLL_PIN)
return NULL;
page = follow_page_mask(vma, address, foll_flags, &ctx);
if (ctx.pgmap)
put_dev_pagemap(ctx.pgmap);
return page;
}
static int get_gate_page(struct mm_struct *mm, unsigned long address,
unsigned int gup_flags, struct vm_area_struct **vma,
struct page **page)
{
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
int ret = -EFAULT;
/* user gate pages are read-only */
if (gup_flags & FOLL_WRITE)
return -EFAULT;
if (address > TASK_SIZE)
pgd = pgd_offset_k(address);
else
pgd = pgd_offset_gate(mm, address);
if (pgd_none(*pgd))
return -EFAULT;
p4d = p4d_offset(pgd, address);
if (p4d_none(*p4d))
return -EFAULT;
pud = pud_offset(p4d, address);
if (pud_none(*pud))
return -EFAULT;
pmd = pmd_offset(pud, address);
if (!pmd_present(*pmd))
return -EFAULT;
VM_BUG_ON(pmd_trans_huge(*pmd));
pte = pte_offset_map(pmd, address);
if (pte_none(*pte))
goto unmap;
*vma = get_gate_vma(mm);
if (!page)
goto out;
*page = vm_normal_page(*vma, address, *pte);
if (!*page) {
if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
goto unmap;
*page = pte_page(*pte);
}
if (unlikely(!try_grab_page(*page, gup_flags))) {
ret = -ENOMEM;
goto unmap;
}
out:
ret = 0;
unmap:
pte_unmap(pte);
return ret;
}
/*
* mmap_lock must be held on entry. If @locked != NULL and *@flags
* does not include FOLL_NOWAIT, the mmap_lock may be released. If it
* is, *@locked will be set to 0 and -EBUSY returned.
*/
static int faultin_page(struct vm_area_struct *vma,
unsigned long address, unsigned int *flags, bool unshare,
int *locked)
{
unsigned int fault_flags = 0;
vm_fault_t ret;
if (*flags & FOLL_NOFAULT)
return -EFAULT;
if (*flags & FOLL_WRITE)
fault_flags |= FAULT_FLAG_WRITE;
if (*flags & FOLL_REMOTE)
fault_flags |= FAULT_FLAG_REMOTE;
if (locked)
fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
if (*flags & FOLL_NOWAIT)
fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
if (*flags & FOLL_TRIED) {
/*
* Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
* can co-exist
*/
fault_flags |= FAULT_FLAG_TRIED;
}
if (unshare) {
fault_flags |= FAULT_FLAG_UNSHARE;
/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
}
ret = handle_mm_fault(vma, address, fault_flags, NULL);
if (ret & VM_FAULT_ERROR) {
int err = vm_fault_to_errno(ret, *flags);
if (err)
return err;
BUG();
}
if (ret & VM_FAULT_RETRY) {
if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
*locked = 0;
return -EBUSY;
}
/*
* The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
* necessary, even if maybe_mkwrite decided not to set pte_write. We
* can thus safely do subsequent page lookups as if they were reads.
* But only do so when looping for pte_write is futile: in some cases
* userspace may also be wanting to write to the gotten user page,
* which a read fault here might prevent (a readonly page might get
* reCOWed by userspace write).
*/
if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
*flags |= FOLL_COW;
return 0;
}
static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
{
vm_flags_t vm_flags = vma->vm_flags;
int write = (gup_flags & FOLL_WRITE);
int foreign = (gup_flags & FOLL_REMOTE);
if (vm_flags & (VM_IO | VM_PFNMAP))
return -EFAULT;
if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
return -EFAULT;
if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
return -EOPNOTSUPP;
if (vma_is_secretmem(vma))
return -EFAULT;
if (write) {
if (!(vm_flags & VM_WRITE)) {
if (!(gup_flags & FOLL_FORCE))
return -EFAULT;
/*
* We used to let the write,force case do COW in a
* VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
* set a breakpoint in a read-only mapping of an
* executable, without corrupting the file (yet only
* when that file had been opened for writing!).
* Anon pages in shared mappings are surprising: now
* just reject it.
*/
if (!is_cow_mapping(vm_flags))
return -EFAULT;
}
} else if (!(vm_flags & VM_READ)) {
if (!(gup_flags & FOLL_FORCE))
return -EFAULT;
/*
* Is there actually any vma we can reach here which does not
* have VM_MAYREAD set?
*/
if (!(vm_flags & VM_MAYREAD))
return -EFAULT;
}
/*
* gups are always data accesses, not instruction
* fetches, so execute=false here
*/
if (!arch_vma_access_permitted(vma, write, false, foreign))
return -EFAULT;
return 0;
}
/**
* __get_user_pages() - pin user pages in memory
* @mm: mm_struct of target mm
* @start: starting user address
* @nr_pages: number of pages from start to pin
* @gup_flags: flags modifying pin behaviour
* @pages: array that receives pointers to the pages pinned.
* Should be at least nr_pages long. Or NULL, if caller
* only intends to ensure the pages are faulted in.
* @vmas: array of pointers to vmas corresponding to each page.
* Or NULL if the caller does not require them.
* @locked: whether we're still with the mmap_lock held
*
* Returns either number of pages pinned (which may be less than the
* number requested), or an error. Details about the return value:
*
* -- If nr_pages is 0, returns 0.
* -- If nr_pages is >0, but no pages were pinned, returns -errno.
* -- If nr_pages is >0, and some pages were pinned, returns the number of
* pages pinned. Again, this may be less than nr_pages.
* -- 0 return value is possible when the fault would need to be retried.
*
* The caller is responsible for releasing returned @pages, via put_page().
*
* @vmas are valid only as long as mmap_lock is held.
*
* Must be called with mmap_lock held. It may be released. See below.
*
* __get_user_pages walks a process's page tables and takes a reference to
* each struct page that each user address corresponds to at a given
* instant. That is, it takes the page that would be accessed if a user
* thread accesses the given user virtual address at that instant.
*
* This does not guarantee that the page exists in the user mappings when
* __get_user_pages returns, and there may even be a completely different
* page there in some cases (eg. if mmapped pagecache has been invalidated
* and subsequently re faulted). However it does guarantee that the page
* won't be freed completely. And mostly callers simply care that the page
* contains data that was valid *at some point in time*. Typically, an IO
* or similar operation cannot guarantee anything stronger anyway because
* locks can't be held over the syscall boundary.
*
* If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
* the page is written to, set_page_dirty (or set_page_dirty_lock, as
* appropriate) must be called after the page is finished with, and
* before put_page is called.
*
* If @locked != NULL, *@locked will be set to 0 when mmap_lock is
* released by an up_read(). That can happen if @gup_flags does not
* have FOLL_NOWAIT.
*
* A caller using such a combination of @locked and @gup_flags
* must therefore hold the mmap_lock for reading only, and recognize
* when it's been released. Otherwise, it must be held for either
* reading or writing and will not be released.
*
* In most cases, get_user_pages or get_user_pages_fast should be used
* instead of __get_user_pages. __get_user_pages should be used only if
* you need some special @gup_flags.
*/
static long __get_user_pages(struct mm_struct *mm,
unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages,
struct vm_area_struct **vmas, int *locked)
{
long ret = 0, i = 0;
struct vm_area_struct *vma = NULL;
struct follow_page_context ctx = { NULL };
if (!nr_pages)
return 0;
start = untagged_addr(start);
VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
/*
* If FOLL_FORCE is set then do not force a full fault as the hinting
* fault information is unrelated to the reference behaviour of a task
* using the address space
*/
if (!(gup_flags & FOLL_FORCE))
gup_flags |= FOLL_NUMA;
do {
struct page *page;
unsigned int foll_flags = gup_flags;
unsigned int page_increm;
/* first iteration or cross vma bound */
if (!vma || start >= vma->vm_end) {
vma = find_extend_vma(mm, start);
if (!vma && in_gate_area(mm, start)) {
ret = get_gate_page(mm, start & PAGE_MASK,
gup_flags, &vma,
pages ? &pages[i] : NULL);
if (ret)
goto out;
ctx.page_mask = 0;
goto next_page;
}
if (!vma) {
ret = -EFAULT;
goto out;
}
ret = check_vma_flags(vma, gup_flags);
if (ret)
goto out;
if (is_vm_hugetlb_page(vma)) {
i = follow_hugetlb_page(mm, vma, pages, vmas,
&start, &nr_pages, i,
gup_flags, locked);
if (locked && *locked == 0) {
/*
* We've got a VM_FAULT_RETRY
* and we've lost mmap_lock.
* We must stop here.
*/
BUG_ON(gup_flags & FOLL_NOWAIT);
goto out;
}
continue;
}
}
retry:
/*
* If we have a pending SIGKILL, don't keep faulting pages and
* potentially allocating memory.
*/
if (fatal_signal_pending(current)) {
ret = -EINTR;
goto out;
}
cond_resched();
page = follow_page_mask(vma, start, foll_flags, &ctx);
if (!page || PTR_ERR(page) == -EMLINK) {
ret = faultin_page(vma, start, &foll_flags,
PTR_ERR(page) == -EMLINK, locked);
switch (ret) {
case 0:
goto retry;
case -EBUSY:
ret = 0;
fallthrough;
case -EFAULT:
case -ENOMEM:
case -EHWPOISON:
goto out;
}
BUG();
} else if (PTR_ERR(page) == -EEXIST) {
/*
* Proper page table entry exists, but no corresponding
* struct page. If the caller expects **pages to be
* filled in, bail out now, because that can't be done
* for this page.
*/
if (pages) {
ret = PTR_ERR(page);
goto out;
}
goto next_page;
} else if (IS_ERR(page)) {
ret = PTR_ERR(page);
goto out;
}
if (pages) {
pages[i] = page;
flush_anon_page(vma, page, start);
flush_dcache_page(page);
ctx.page_mask = 0;
}
next_page:
if (vmas) {
vmas[i] = vma;
ctx.page_mask = 0;
}
page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
if (page_increm > nr_pages)
page_increm = nr_pages;
i += page_increm;
start += page_increm * PAGE_SIZE;
nr_pages -= page_increm;
} while (nr_pages);
out:
if (ctx.pgmap)
put_dev_pagemap(ctx.pgmap);
return i ? i : ret;
}
static bool vma_permits_fault(struct vm_area_struct *vma,
unsigned int fault_flags)
{
bool write = !!(fault_flags & FAULT_FLAG_WRITE);
bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
if (!(vm_flags & vma->vm_flags))
return false;
/*
* The architecture might have a hardware protection
* mechanism other than read/write that can deny access.
*
* gup always represents data access, not instruction
* fetches, so execute=false here:
*/
if (!arch_vma_access_permitted(vma, write, false, foreign))
return false;
return true;
}
/**
* fixup_user_fault() - manually resolve a user page fault
* @mm: mm_struct of target mm
* @address: user address
* @fault_flags:flags to pass down to handle_mm_fault()
* @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
* does not allow retry. If NULL, the caller must guarantee
* that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
*
* This is meant to be called in the specific scenario where for locking reasons
* we try to access user memory in atomic context (within a pagefault_disable()
* section), this returns -EFAULT, and we want to resolve the user fault before
* trying again.
*
* Typically this is meant to be used by the futex code.
*
* The main difference with get_user_pages() is that this function will
* unconditionally call handle_mm_fault() which will in turn perform all the
* necessary SW fixup of the dirty and young bits in the PTE, while
* get_user_pages() only guarantees to update these in the struct page.
*
* This is important for some architectures where those bits also gate the
* access permission to the page because they are maintained in software. On
* such architectures, gup() will not be enough to make a subsequent access
* succeed.
*
* This function will not return with an unlocked mmap_lock. So it has not the
* same semantics wrt the @mm->mmap_lock as does filemap_fault().
*/
int fixup_user_fault(struct mm_struct *mm,
unsigned long address, unsigned int fault_flags,
bool *unlocked)
{
struct vm_area_struct *vma;
vm_fault_t ret;
address = untagged_addr(address);
if (unlocked)
fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
retry:
vma = find_extend_vma(mm, address);
if (!vma || address < vma->vm_start)
return -EFAULT;
if (!vma_permits_fault(vma, fault_flags))
return -EFAULT;
if ((fault_flags & FAULT_FLAG_KILLABLE) &&
fatal_signal_pending(current))
return -EINTR;
ret = handle_mm_fault(vma, address, fault_flags, NULL);
if (ret & VM_FAULT_ERROR) {
int err = vm_fault_to_errno(ret, 0);
if (err)
return err;
BUG();
}
if (ret & VM_FAULT_RETRY) {
mmap_read_lock(mm);
*unlocked = true;
fault_flags |= FAULT_FLAG_TRIED;
goto retry;
}
return 0;
}
EXPORT_SYMBOL_GPL(fixup_user_fault);
/*
* Please note that this function, unlike __get_user_pages will not
* return 0 for nr_pages > 0 without FOLL_NOWAIT
*/
static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
unsigned long start,
unsigned long nr_pages,
struct page **pages,
struct vm_area_struct **vmas,
int *locked,
unsigned int flags)
{
long ret, pages_done;
bool lock_dropped;
if (locked) {
/* if VM_FAULT_RETRY can be returned, vmas become invalid */
BUG_ON(vmas);
/* check caller initialized locked */
BUG_ON(*locked != 1);
}
if (flags & FOLL_PIN)
mm_set_has_pinned_flag(&mm->flags);
/*
* FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
* is to set FOLL_GET if the caller wants pages[] filled in (but has
* carelessly failed to specify FOLL_GET), so keep doing that, but only
* for FOLL_GET, not for the newer FOLL_PIN.
*
* FOLL_PIN always expects pages to be non-null, but no need to assert
* that here, as any failures will be obvious enough.
*/
if (pages && !(flags & FOLL_PIN))
flags |= FOLL_GET;
pages_done = 0;
lock_dropped = false;
for (;;) {
ret = __get_user_pages(mm, start, nr_pages, flags, pages,
vmas, locked);
if (!locked)
/* VM_FAULT_RETRY couldn't trigger, bypass */
return ret;
/* VM_FAULT_RETRY cannot return errors */
if (!*locked) {
BUG_ON(ret < 0);
BUG_ON(ret >= nr_pages);
}
if (ret > 0) {
nr_pages -= ret;
pages_done += ret;
if (!nr_pages)
break;
}
if (*locked) {
/*
* VM_FAULT_RETRY didn't trigger or it was a
* FOLL_NOWAIT.
*/
if (!pages_done)
pages_done = ret;
break;
}
/*
* VM_FAULT_RETRY triggered, so seek to the faulting offset.
* For the prefault case (!pages) we only update counts.
*/
if (likely(pages))
pages += ret;
start += ret << PAGE_SHIFT;
lock_dropped = true;
retry:
/*
* Repeat on the address that fired VM_FAULT_RETRY
* with both FAULT_FLAG_ALLOW_RETRY and
* FAULT_FLAG_TRIED. Note that GUP can be interrupted
* by fatal signals, so we need to check it before we
* start trying again otherwise it can loop forever.
*/
if (fatal_signal_pending(current)) {
if (!pages_done)
pages_done = -EINTR;
break;
}
ret = mmap_read_lock_killable(mm);
if (ret) {
BUG_ON(ret > 0);
if (!pages_done)
pages_done = ret;
break;
}
*locked = 1;
ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
pages, NULL, locked);
if (!*locked) {
/* Continue to retry until we succeeded */
BUG_ON(ret != 0);
goto retry;
}
if (ret != 1) {
BUG_ON(ret > 1);
if (!pages_done)
pages_done = ret;
break;
}
nr_pages--;
pages_done++;
if (!nr_pages)
break;
if (likely(pages))
pages++;
start += PAGE_SIZE;
}
if (lock_dropped && *locked) {
/*
* We must let the caller know we temporarily dropped the lock
* and so the critical section protected by it was lost.
*/
mmap_read_unlock(mm);
*locked = 0;
}
return pages_done;
}
/**
* populate_vma_page_range() - populate a range of pages in the vma.
* @vma: target vma
* @start: start address
* @end: end address
* @locked: whether the mmap_lock is still held
*
* This takes care of mlocking the pages too if VM_LOCKED is set.
*
* Return either number of pages pinned in the vma, or a negative error
* code on error.
*
* vma->vm_mm->mmap_lock must be held.
*
* If @locked is NULL, it may be held for read or write and will
* be unperturbed.
*
* If @locked is non-NULL, it must held for read only and may be
* released. If it's released, *@locked will be set to 0.
*/
long populate_vma_page_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end, int *locked)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long nr_pages = (end - start) / PAGE_SIZE;
int gup_flags;
long ret;
VM_BUG_ON(!PAGE_ALIGNED(start));
VM_BUG_ON(!PAGE_ALIGNED(end));
VM_BUG_ON_VMA(start < vma->vm_start, vma);
VM_BUG_ON_VMA(end > vma->vm_end, vma);
mmap_assert_locked(mm);
/*
* Rightly or wrongly, the VM_LOCKONFAULT case has never used
* faultin_page() to break COW, so it has no work to do here.
*/
if (vma->vm_flags & VM_LOCKONFAULT)
return nr_pages;
gup_flags = FOLL_TOUCH;
/*
* We want to touch writable mappings with a write fault in order
* to break COW, except for shared mappings because these don't COW
* and we would not want to dirty them for nothing.
*/
if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
gup_flags |= FOLL_WRITE;
/*
* We want mlock to succeed for regions that have any permissions
* other than PROT_NONE.
*/
if (vma_is_accessible(vma))
gup_flags |= FOLL_FORCE;
/*
* We made sure addr is within a VMA, so the following will
* not result in a stack expansion that recurses back here.
*/
ret = __get_user_pages(mm, start, nr_pages, gup_flags,
NULL, NULL, locked);
lru_add_drain();
return ret;
}
/*
* faultin_vma_page_range() - populate (prefault) page tables inside the
* given VMA range readable/writable
*
* This takes care of mlocking the pages, too, if VM_LOCKED is set.
*
* @vma: target vma
* @start: start address
* @end: end address
* @write: whether to prefault readable or writable
* @locked: whether the mmap_lock is still held
*
* Returns either number of processed pages in the vma, or a negative error
* code on error (see __get_user_pages()).
*
* vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
* covered by the VMA.
*
* If @locked is NULL, it may be held for read or write and will be unperturbed.
*
* If @locked is non-NULL, it must held for read only and may be released. If
* it's released, *@locked will be set to 0.
*/
long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
unsigned long end, bool write, int *locked)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long nr_pages = (end - start) / PAGE_SIZE;
int gup_flags;
long ret;
VM_BUG_ON(!PAGE_ALIGNED(start));
VM_BUG_ON(!PAGE_ALIGNED(end));
VM_BUG_ON_VMA(start < vma->vm_start, vma);
VM_BUG_ON_VMA(end > vma->vm_end, vma);
mmap_assert_locked(mm);
/*
* FOLL_TOUCH: Mark page accessed and thereby young; will also mark
* the page dirty with FOLL_WRITE -- which doesn't make a
* difference with !FOLL_FORCE, because the page is writable
* in the page table.
* FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
* a poisoned page.
* !FOLL_FORCE: Require proper access permissions.
*/
gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
if (write)
gup_flags |= FOLL_WRITE;
/*
* We want to report -EINVAL instead of -EFAULT for any permission
* problems or incompatible mappings.
*/
if (check_vma_flags(vma, gup_flags))
return -EINVAL;
ret = __get_user_pages(mm, start, nr_pages, gup_flags,
NULL, NULL, locked);
lru_add_drain();
return ret;
}
/*
* __mm_populate - populate and/or mlock pages within a range of address space.
*
* This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
* flags. VMAs must be already marked with the desired vm_flags, and
* mmap_lock must not be held.
*/
int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
{
struct mm_struct *mm = current->mm;
unsigned long end, nstart, nend;
struct vm_area_struct *vma = NULL;
int locked = 0;
long ret = 0;
end = start + len;
for (nstart = start; nstart < end; nstart = nend) {
/*
* We want to fault in pages for [nstart; end) address range.
* Find first corresponding VMA.
*/
if (!locked) {
locked = 1;
mmap_read_lock(mm);
vma = find_vma(mm, nstart);
} else if (nstart >= vma->vm_end)
vma = vma->vm_next;
if (!vma || vma->vm_start >= end)
break;
/*
* Set [nstart; nend) to intersection of desired address
* range with the first VMA. Also, skip undesirable VMA types.
*/
nend = min(end, vma->vm_end);
if (vma->vm_flags & (VM_IO | VM_PFNMAP))
continue;
if (nstart < vma->vm_start)
nstart = vma->vm_start;
/*
* Now fault in a range of pages. populate_vma_page_range()
* double checks the vma flags, so that it won't mlock pages
* if the vma was already munlocked.
*/
ret = populate_vma_page_range(vma, nstart, nend, &locked);
if (ret < 0) {
if (ignore_errors) {
ret = 0;
continue; /* continue at next VMA */
}
break;
}
nend = nstart + ret * PAGE_SIZE;
ret = 0;
}
if (locked)
mmap_read_unlock(mm);
return ret; /* 0 or negative error code */
}
#else /* CONFIG_MMU */
static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
unsigned long nr_pages, struct page **pages,
struct vm_area_struct **vmas, int *locked,
unsigned int foll_flags)
{
struct vm_area_struct *vma;
unsigned long vm_flags;
long i;
/* calculate required read or write permissions.
* If FOLL_FORCE is set, we only require the "MAY" flags.
*/
vm_flags = (foll_flags & FOLL_WRITE) ?
(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
vm_flags &= (foll_flags & FOLL_FORCE) ?
(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
for (i = 0; i < nr_pages; i++) {
vma = find_vma(mm, start);
if (!vma)
goto finish_or_fault;
/* protect what we can, including chardevs */
if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
!(vm_flags & vma->vm_flags))
goto finish_or_fault;
if (pages) {
pages[i] = virt_to_page(start);
if (pages[i])
get_page(pages[i]);
}
if (vmas)
vmas[i] = vma;
start = (start + PAGE_SIZE) & PAGE_MASK;
}
return i;
finish_or_fault:
return i ? : -EFAULT;
}
#endif /* !CONFIG_MMU */
/**
* fault_in_writeable - fault in userspace address range for writing
* @uaddr: start of address range
* @size: size of address range
*
* Returns the number of bytes not faulted in (like copy_to_user() and
* copy_from_user()).
*/
size_t fault_in_writeable(char __user *uaddr, size_t size)
{
char __user *start = uaddr, *end;
if (unlikely(size == 0))
return 0;
if (!user_write_access_begin(uaddr, size))
return size;
if (!PAGE_ALIGNED(uaddr)) {
unsafe_put_user(0, uaddr, out);
uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
}
end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
if (unlikely(end < start))
end = NULL;
while (uaddr != end) {
unsafe_put_user(0, uaddr, out);
uaddr += PAGE_SIZE;
}
out:
user_write_access_end();
if (size > uaddr - start)
return size - (uaddr - start);
return 0;
}
EXPORT_SYMBOL(fault_in_writeable);
/**
* fault_in_subpage_writeable - fault in an address range for writing
* @uaddr: start of address range
* @size: size of address range
*
* Fault in a user address range for writing while checking for permissions at
* sub-page granularity (e.g. arm64 MTE). This function should be used when
* the caller cannot guarantee forward progress of a copy_to_user() loop.
*
* Returns the number of bytes not faulted in (like copy_to_user() and
* copy_from_user()).
*/
size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
{
size_t faulted_in;
/*
* Attempt faulting in at page granularity first for page table
* permission checking. The arch-specific probe_subpage_writeable()
* functions may not check for this.
*/
faulted_in = size - fault_in_writeable(uaddr, size);
if (faulted_in)
faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
return size - faulted_in;
}
EXPORT_SYMBOL(fault_in_subpage_writeable);
/*
* fault_in_safe_writeable - fault in an address range for writing
* @uaddr: start of address range
* @size: length of address range
*
* Faults in an address range for writing. This is primarily useful when we
* already know that some or all of the pages in the address range aren't in
* memory.
*
* Unlike fault_in_writeable(), this function is non-destructive.
*
* Note that we don't pin or otherwise hold the pages referenced that we fault
* in. There's no guarantee that they'll stay in memory for any duration of
* time.
*
* Returns the number of bytes not faulted in, like copy_to_user() and
* copy_from_user().
*/
size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
{
unsigned long start = (unsigned long)uaddr, end;
struct mm_struct *mm = current->mm;
bool unlocked = false;
if (unlikely(size == 0))
return 0;
end = PAGE_ALIGN(start + size);
if (end < start)
end = 0;
mmap_read_lock(mm);
do {
if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
break;
start = (start + PAGE_SIZE) & PAGE_MASK;
} while (start != end);
mmap_read_unlock(mm);
if (size > (unsigned long)uaddr - start)
return size - ((unsigned long)uaddr - start);
return 0;
}
EXPORT_SYMBOL(fault_in_safe_writeable);
/**
* fault_in_readable - fault in userspace address range for reading
* @uaddr: start of user address range
* @size: size of user address range
*
* Returns the number of bytes not faulted in (like copy_to_user() and
* copy_from_user()).
*/
size_t fault_in_readable(const char __user *uaddr, size_t size)
{
const char __user *start = uaddr, *end;
volatile char c;
if (unlikely(size == 0))
return 0;
if (!user_read_access_begin(uaddr, size))
return size;
if (!PAGE_ALIGNED(uaddr)) {
unsafe_get_user(c, uaddr, out);
uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
}
end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
if (unlikely(end < start))
end = NULL;
while (uaddr != end) {
unsafe_get_user(c, uaddr, out);
uaddr += PAGE_SIZE;
}
out:
user_read_access_end();
(void)c;
if (size > uaddr - start)
return size - (uaddr - start);
return 0;
}
EXPORT_SYMBOL(fault_in_readable);
/**
* get_dump_page() - pin user page in memory while writing it to core dump
* @addr: user address
*
* Returns struct page pointer of user page pinned for dump,
* to be freed afterwards by put_page().
*
* Returns NULL on any kind of failure - a hole must then be inserted into
* the corefile, to preserve alignment with its headers; and also returns
* NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
* allowing a hole to be left in the corefile to save disk space.
*
* Called without mmap_lock (takes and releases the mmap_lock by itself).
*/
#ifdef CONFIG_ELF_CORE
struct page *get_dump_page(unsigned long addr)
{
struct mm_struct *mm = current->mm;
struct page *page;
int locked = 1;
int ret;
if (mmap_read_lock_killable(mm))
return NULL;
ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
FOLL_FORCE | FOLL_DUMP | FOLL_GET);
if (locked)
mmap_read_unlock(mm);
return (ret == 1) ? page : NULL;
}
#endif /* CONFIG_ELF_CORE */
#ifdef CONFIG_MIGRATION
/*
* Check whether all pages are pinnable, if so return number of pages. If some
* pages are not pinnable, migrate them, and unpin all pages. Return zero if
* pages were migrated, or if some pages were not successfully isolated.
* Return negative error if migration fails.
*/
static long check_and_migrate_movable_pages(unsigned long nr_pages,
struct page **pages,
unsigned int gup_flags)
{
unsigned long isolation_error_count = 0, i;
struct folio *prev_folio = NULL;
LIST_HEAD(movable_page_list);
bool drain_allow = true;
int ret = 0;
for (i = 0; i < nr_pages; i++) {
struct folio *folio = page_folio(pages[i]);
if (folio == prev_folio)
continue;
prev_folio = folio;
if (folio_is_pinnable(folio))
continue;
/*
* Try to move out any movable page before pinning the range.
*/
if (folio_test_hugetlb(folio)) {
if (!isolate_huge_page(&folio->page,
&movable_page_list))
isolation_error_count++;
continue;
}
if (!folio_test_lru(folio) && drain_allow) {
lru_add_drain_all();
drain_allow = false;
}
if (folio_isolate_lru(folio)) {
isolation_error_count++;
continue;
}
list_add_tail(&folio->lru, &movable_page_list);
node_stat_mod_folio(folio,
NR_ISOLATED_ANON + folio_is_file_lru(folio),
folio_nr_pages(folio));
}
if (!list_empty(&movable_page_list) || isolation_error_count)
goto unpin_pages;
/*
* If list is empty, and no isolation errors, means that all pages are
* in the correct zone.
*/
return nr_pages;
unpin_pages:
if (gup_flags & FOLL_PIN) {
unpin_user_pages(pages, nr_pages);
} else {
for (i = 0; i < nr_pages; i++)
put_page(pages[i]);
}
if (!list_empty(&movable_page_list)) {
struct migration_target_control mtc = {
.nid = NUMA_NO_NODE,
.gfp_mask = GFP_USER | __GFP_NOWARN,
};
ret = migrate_pages(&movable_page_list, alloc_migration_target,
NULL, (unsigned long)&mtc, MIGRATE_SYNC,
MR_LONGTERM_PIN, NULL);
if (ret > 0) /* number of pages not migrated */
ret = -ENOMEM;
}
if (ret && !list_empty(&movable_page_list))
putback_movable_pages(&movable_page_list);
return ret;
}
#else
static long check_and_migrate_movable_pages(unsigned long nr_pages,
struct page **pages,
unsigned int gup_flags)
{
return nr_pages;
}
#endif /* CONFIG_MIGRATION */
/*
* __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
* allows us to process the FOLL_LONGTERM flag.
*/
static long __gup_longterm_locked(struct mm_struct *mm,
unsigned long start,
unsigned long nr_pages,
struct page **pages,
struct vm_area_struct **vmas,
unsigned int gup_flags)
{
unsigned int flags;
long rc;
if (!(gup_flags & FOLL_LONGTERM))
return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
NULL, gup_flags);
flags = memalloc_pin_save();
do {
rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
NULL, gup_flags);
if (rc <= 0)
break;
rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
} while (!rc);
memalloc_pin_restore(flags);
return rc;
}
static bool is_valid_gup_flags(unsigned int gup_flags)
{
/*
* FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
* never directly by the caller, so enforce that with an assertion:
*/
if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
return false;
/*
* FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
* that is, FOLL_LONGTERM is a specific case, more restrictive case of
* FOLL_PIN.
*/
if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
return false;
return true;
}
#ifdef CONFIG_MMU
static long __get_user_pages_remote(struct mm_struct *mm,
unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages,
struct vm_area_struct **vmas, int *locked)
{
/*
* Parts of FOLL_LONGTERM behavior are incompatible with
* FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
* vmas. However, this only comes up if locked is set, and there are
* callers that do request FOLL_LONGTERM, but do not set locked. So,
* allow what we can.
*/
if (gup_flags & FOLL_LONGTERM) {
if (WARN_ON_ONCE(locked))
return -EINVAL;
/*
* This will check the vmas (even if our vmas arg is NULL)
* and return -ENOTSUPP if DAX isn't allowed in this case:
*/
return __gup_longterm_locked(mm, start, nr_pages, pages,
vmas, gup_flags | FOLL_TOUCH |
FOLL_REMOTE);
}
return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
locked,
gup_flags | FOLL_TOUCH | FOLL_REMOTE);
}
/**
* get_user_pages_remote() - pin user pages in memory
* @mm: mm_struct of target mm
* @start: starting user address
* @nr_pages: number of pages from start to pin
* @gup_flags: flags modifying lookup behaviour
* @pages: array that receives pointers to the pages pinned.
* Should be at least nr_pages long. Or NULL, if caller
* only intends to ensure the pages are faulted in.
* @vmas: array of pointers to vmas corresponding to each page.
* Or NULL if the caller does not require them.
* @locked: pointer to lock flag indicating whether lock is held and
* subsequently whether VM_FAULT_RETRY functionality can be
* utilised. Lock must initially be held.
*
* Returns either number of pages pinned (which may be less than the
* number requested), or an error. Details about the return value:
*
* -- If nr_pages is 0, returns 0.
* -- If nr_pages is >0, but no pages were pinned, returns -errno.
* -- If nr_pages is >0, and some pages were pinned, returns the number of
* pages pinned. Again, this may be less than nr_pages.
*
* The caller is responsible for releasing returned @pages, via put_page().
*
* @vmas are valid only as long as mmap_lock is held.
*
* Must be called with mmap_lock held for read or write.
*
* get_user_pages_remote walks a process's page tables and takes a reference
* to each struct page that each user address corresponds to at a given
* instant. That is, it takes the page that would be accessed if a user
* thread accesses the given user virtual address at that instant.
*
* This does not guarantee that the page exists in the user mappings when
* get_user_pages_remote returns, and there may even be a completely different
* page there in some cases (eg. if mmapped pagecache has been invalidated
* and subsequently re faulted). However it does guarantee that the page
* won't be freed completely. And mostly callers simply care that the page
* contains data that was valid *at some point in time*. Typically, an IO
* or similar operation cannot guarantee anything stronger anyway because
* locks can't be held over the syscall boundary.
*
* If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
* is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
* be called after the page is finished with, and before put_page is called.
*
* get_user_pages_remote is typically used for fewer-copy IO operations,
* to get a handle on the memory by some means other than accesses
* via the user virtual addresses. The pages may be submitted for
* DMA to devices or accessed via their kernel linear mapping (via the
* kmap APIs). Care should be taken to use the correct cache flushing APIs.
*
* See also get_user_pages_fast, for performance critical applications.
*
* get_user_pages_remote should be phased out in favor of
* get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
* should use get_user_pages_remote because it cannot pass
* FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
*/
long get_user_pages_remote(struct mm_struct *mm,
unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages,
struct vm_area_struct **vmas, int *locked)
{
if (!is_valid_gup_flags(gup_flags))
return -EINVAL;
return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
pages, vmas, locked);
}
EXPORT_SYMBOL(get_user_pages_remote);
#else /* CONFIG_MMU */
long get_user_pages_remote(struct mm_struct *mm,
unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages,
struct vm_area_struct **vmas, int *locked)
{
return 0;
}
static long __get_user_pages_remote(struct mm_struct *mm,
unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages,
struct vm_area_struct **vmas, int *locked)
{
return 0;
}
#endif /* !CONFIG_MMU */
/**
* get_user_pages() - pin user pages in memory
* @start: starting user address
* @nr_pages: number of pages from start to pin
* @gup_flags: flags modifying lookup behaviour
* @pages: array that receives pointers to the pages pinned.
* Should be at least nr_pages long. Or NULL, if caller
* only intends to ensure the pages are faulted in.
* @vmas: array of pointers to vmas corresponding to each page.
* Or NULL if the caller does not require them.
*
* This is the same as get_user_pages_remote(), just with a less-flexible
* calling convention where we assume that the mm being operated on belongs to
* the current task, and doesn't allow passing of a locked parameter. We also
* obviously don't pass FOLL_REMOTE in here.
*/
long get_user_pages(unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages,
struct vm_area_struct **vmas)
{
if (!is_valid_gup_flags(gup_flags))
return -EINVAL;
return __gup_longterm_locked(current->mm, start, nr_pages,
pages, vmas, gup_flags | FOLL_TOUCH);
}
EXPORT_SYMBOL(get_user_pages);
/*
* get_user_pages_unlocked() is suitable to replace the form:
*
* mmap_read_lock(mm);
* get_user_pages(mm, ..., pages, NULL);
* mmap_read_unlock(mm);
*
* with:
*
* get_user_pages_unlocked(mm, ..., pages);
*
* It is functionally equivalent to get_user_pages_fast so
* get_user_pages_fast should be used instead if specific gup_flags
* (e.g. FOLL_FORCE) are not required.
*/
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
struct page **pages, unsigned int gup_flags)
{
struct mm_struct *mm = current->mm;
int locked = 1;
long ret;
/*
* FIXME: Current FOLL_LONGTERM behavior is incompatible with
* FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
* vmas. As there are no users of this flag in this call we simply
* disallow this option for now.
*/
if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
return -EINVAL;
mmap_read_lock(mm);
ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
&locked, gup_flags | FOLL_TOUCH);
if (locked)
mmap_read_unlock(mm);
return ret;
}
EXPORT_SYMBOL(get_user_pages_unlocked);
/*
* Fast GUP
*
* get_user_pages_fast attempts to pin user pages by walking the page
* tables directly and avoids taking locks. Thus the walker needs to be
* protected from page table pages being freed from under it, and should
* block any THP splits.
*
* One way to achieve this is to have the walker disable interrupts, and
* rely on IPIs from the TLB flushing code blocking before the page table
* pages are freed. This is unsuitable for architectures that do not need
* to broadcast an IPI when invalidating TLBs.
*
* Another way to achieve this is to batch up page table containing pages
* belonging to more than one mm_user, then rcu_sched a callback to free those
* pages. Disabling interrupts will allow the fast_gup walker to both block
* the rcu_sched callback, and an IPI that we broadcast for splitting THPs
* (which is a relatively rare event). The code below adopts this strategy.
*
* Before activating this code, please be aware that the following assumptions
* are currently made:
*
* *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
* free pages containing page tables or TLB flushing requires IPI broadcast.
*
* *) ptes can be read atomically by the architecture.
*
* *) access_ok is sufficient to validate userspace address ranges.
*
* The last two assumptions can be relaxed by the addition of helper functions.
*
* This code is based heavily on the PowerPC implementation by Nick Piggin.
*/
#ifdef CONFIG_HAVE_FAST_GUP
static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
unsigned int flags,
struct page **pages)
{
while ((*nr) - nr_start) {
struct page *page = pages[--(*nr)];
ClearPageReferenced(page);
if (flags & FOLL_PIN)
unpin_user_page(page);
else
put_page(page);
}
}
#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
unsigned int flags, struct page **pages, int *nr)
{
struct dev_pagemap *pgmap = NULL;
int nr_start = *nr, ret = 0;
pte_t *ptep, *ptem;
ptem = ptep = pte_offset_map(&pmd, addr);
do {
pte_t pte = ptep_get_lockless(ptep);
struct page *page;
struct folio *folio;
/*
* Similar to the PMD case below, NUMA hinting must take slow
* path using the pte_protnone check.
*/
if (pte_protnone(pte))
goto pte_unmap;
if (!pte_access_permitted(pte, flags & FOLL_WRITE))
goto pte_unmap;
if (pte_devmap(pte)) {
if (unlikely(flags & FOLL_LONGTERM))
goto pte_unmap;
pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
if (unlikely(!pgmap)) {
undo_dev_pagemap(nr, nr_start, flags, pages);
goto pte_unmap;
}
} else if (pte_special(pte))
goto pte_unmap;
VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
page = pte_page(pte);
folio = try_grab_folio(page, 1, flags);
if (!folio)
goto pte_unmap;
if (unlikely(page_is_secretmem(page))) {
gup_put_folio(folio, 1, flags);
goto pte_unmap;
}
if (unlikely(pte_val(pte) != pte_val(*ptep))) {
gup_put_folio(folio, 1, flags);
goto pte_unmap;
}
if (!pte_write(pte) && gup_must_unshare(flags, page)) {
gup_put_folio(folio, 1, flags);
goto pte_unmap;
}
/*
* We need to make the page accessible if and only if we are
* going to access its content (the FOLL_PIN case). Please
* see Documentation/core-api/pin_user_pages.rst for
* details.
*/
if (flags & FOLL_PIN) {
ret = arch_make_page_accessible(page);
if (ret) {
gup_put_folio(folio, 1, flags);
goto pte_unmap;
}
}
folio_set_referenced(folio);
pages[*nr] = page;
(*nr)++;
} while (ptep++, addr += PAGE_SIZE, addr != end);
ret = 1;
pte_unmap:
if (pgmap)
put_dev_pagemap(pgmap);
pte_unmap(ptem);
return ret;
}
#else
/*
* If we can't determine whether or not a pte is special, then fail immediately
* for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
* to be special.
*
* For a futex to be placed on a THP tail page, get_futex_key requires a
* get_user_pages_fast_only implementation that can pin pages. Thus it's still
* useful to have gup_huge_pmd even if we can't operate on ptes.
*/
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
unsigned int flags, struct page **pages, int *nr)
{
return 0;
}
#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
static int __gup_device_huge(unsigned long pfn, unsigned long addr,
unsigned long end, unsigned int flags,
struct page **pages, int *nr)
{
int nr_start = *nr;
struct dev_pagemap *pgmap = NULL;
do {
struct page *page = pfn_to_page(pfn);
pgmap = get_dev_pagemap(pfn, pgmap);
if (unlikely(!pgmap)) {
undo_dev_pagemap(nr, nr_start, flags, pages);
break;
}
SetPageReferenced(page);
pages[*nr] = page;
if (unlikely(!try_grab_page(page, flags))) {
undo_dev_pagemap(nr, nr_start, flags, pages);
break;
}
(*nr)++;
pfn++;
} while (addr += PAGE_SIZE, addr != end);
put_dev_pagemap(pgmap);
return addr == end;
}
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
unsigned long end, unsigned int flags,
struct page **pages, int *nr)
{
unsigned long fault_pfn;
int nr_start = *nr;
fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
return 0;
if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
undo_dev_pagemap(nr, nr_start, flags, pages);
return 0;
}
return 1;
}
static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
unsigned long end, unsigned int flags,
struct page **pages, int *nr)
{
unsigned long fault_pfn;
int nr_start = *nr;
fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
return 0;
if (unlikely(pud_val(orig) != pud_val(*pudp))) {
undo_dev_pagemap(nr, nr_start, flags, pages);
return 0;
}
return 1;
}
#else
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
unsigned long end, unsigned int flags,
struct page **pages, int *nr)
{
BUILD_BUG();
return 0;
}
static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
unsigned long end, unsigned int flags,
struct page **pages, int *nr)
{
BUILD_BUG();
return 0;
}
#endif
static int record_subpages(struct page *page, unsigned long addr,
unsigned long end, struct page **pages)
{
int nr;
for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
pages[nr] = nth_page(page, nr);
return nr;
}
#ifdef CONFIG_ARCH_HAS_HUGEPD
static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
unsigned long sz)
{
unsigned long __boundary = (addr + sz) & ~(sz-1);
return (__boundary - 1 < end - 1) ? __boundary : end;
}
static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
unsigned long end, unsigned int flags,
struct page **pages, int *nr)
{
unsigned long pte_end;
struct page *page;
struct folio *folio;
pte_t pte;
int refs;
pte_end = (addr + sz) & ~(sz-1);
if (pte_end < end)
end = pte_end;
pte = huge_ptep_get(ptep);
if (!pte_access_permitted(pte, flags & FOLL_WRITE))
return 0;
/* hugepages are never "special" */
VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
refs = record_subpages(page, addr, end, pages + *nr);
folio = try_grab_folio(page, refs, flags);
if (!folio)
return 0;
if (unlikely(pte_val(pte) != pte_val(*ptep))) {
gup_put_folio(folio, refs, flags);
return 0;
}
if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) {
gup_put_folio(folio, refs, flags);
return 0;
}
*nr += refs;
folio_set_referenced(folio);
return 1;
}
static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
unsigned int pdshift, unsigned long end, unsigned int flags,
struct page **pages, int *nr)
{
pte_t *ptep;
unsigned long sz = 1UL << hugepd_shift(hugepd);
unsigned long next;
ptep = hugepte_offset(hugepd, addr, pdshift);
do {
next = hugepte_addr_end(addr, end, sz);
if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
return 0;
} while (ptep++, addr = next, addr != end);
return 1;
}
#else
static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
unsigned int pdshift, unsigned long end, unsigned int flags,
struct page **pages, int *nr)
{
return 0;
}
#endif /* CONFIG_ARCH_HAS_HUGEPD */
static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
unsigned long end, unsigned int flags,
struct page **pages, int *nr)
{
struct page *page;
struct folio *folio;
int refs;
if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
return 0;
if (pmd_devmap(orig)) {
if (unlikely(flags & FOLL_LONGTERM))
return 0;
return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
pages, nr);
}
page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
refs = record_subpages(page, addr, end, pages + *nr);
folio = try_grab_folio(page, refs, flags);
if (!folio)
return 0;
if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
gup_put_folio(folio, refs, flags);
return 0;
}
if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) {
gup_put_folio(folio, refs, flags);
return 0;
}
*nr += refs;
folio_set_referenced(folio);
return 1;
}
static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
unsigned long end, unsigned int flags,
struct page **pages, int *nr)
{
struct page *page;
struct folio *folio;
int refs;
if (!pud_access_permitted(orig, flags & FOLL_WRITE))
return 0;
if (pud_devmap(orig)) {
if (unlikely(flags & FOLL_LONGTERM))
return 0;
return __gup_device_huge_pud(orig, pudp, addr, end, flags,
pages, nr);
}
page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
refs = record_subpages(page, addr, end, pages + *nr);
folio = try_grab_folio(page, refs, flags);
if (!folio)
return 0;
if (unlikely(pud_val(orig) != pud_val(*pudp))) {
gup_put_folio(folio, refs, flags);
return 0;
}
if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) {
gup_put_folio(folio, refs, flags);
return 0;
}
*nr += refs;
folio_set_referenced(folio);
return 1;
}
static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
unsigned long end, unsigned int flags,
struct page **pages, int *nr)
{
int refs;
struct page *page;
struct folio *folio;
if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
return 0;
BUILD_BUG_ON(pgd_devmap(orig));
page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
refs = record_subpages(page, addr, end, pages + *nr);
folio = try_grab_folio(page, refs, flags);
if (!folio)
return 0;
if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
gup_put_folio(folio, refs, flags);
return 0;
}
*nr += refs;
folio_set_referenced(folio);
return 1;
}
static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
unsigned int flags, struct page **pages, int *nr)
{
unsigned long next;
pmd_t *pmdp;
pmdp = pmd_offset_lockless(pudp, pud, addr);
do {
pmd_t pmd = READ_ONCE(*pmdp);
next = pmd_addr_end(addr, end);
if (!pmd_present(pmd))
return 0;
if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
pmd_devmap(pmd))) {
/*
* NUMA hinting faults need to be handled in the GUP
* slowpath for accounting purposes and so that they
* can be serialised against THP migration.
*/
if (pmd_protnone(pmd))
return 0;
if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
pages, nr))
return 0;
} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
/*
* architecture have different format for hugetlbfs
* pmd format and THP pmd format
*/
if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
PMD_SHIFT, next, flags, pages, nr))
return 0;
} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
return 0;
} while (pmdp++, addr = next, addr != end);
return 1;
}
static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
unsigned int flags, struct page **pages, int *nr)
{
unsigned long next;
pud_t *pudp;
pudp = pud_offset_lockless(p4dp, p4d, addr);
do {
pud_t pud = READ_ONCE(*pudp);
next = pud_addr_end(addr, end);
if (unlikely(!pud_present(pud)))
return 0;
if (unlikely(pud_huge(pud))) {
if (!gup_huge_pud(pud, pudp, addr, next, flags,
pages, nr))
return 0;
} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
PUD_SHIFT, next, flags, pages, nr))
return 0;
} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
return 0;
} while (pudp++, addr = next, addr != end);
return 1;
}
static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
unsigned int flags, struct page **pages, int *nr)
{
unsigned long next;
p4d_t *p4dp;
p4dp = p4d_offset_lockless(pgdp, pgd, addr);
do {
p4d_t p4d = READ_ONCE(*p4dp);
next = p4d_addr_end(addr, end);
if (p4d_none(p4d))
return 0;
BUILD_BUG_ON(p4d_huge(p4d));
if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
P4D_SHIFT, next, flags, pages, nr))
return 0;
} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
return 0;
} while (p4dp++, addr = next, addr != end);
return 1;
}
static void gup_pgd_range(unsigned long addr, unsigned long end,
unsigned int flags, struct page **pages, int *nr)
{
unsigned long next;
pgd_t *pgdp;
pgdp = pgd_offset(current->mm, addr);
do {
pgd_t pgd = READ_ONCE(*pgdp);
next = pgd_addr_end(addr, end);
if (pgd_none(pgd))
return;
if (unlikely(pgd_huge(pgd))) {
if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
pages, nr))
return;
} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
PGDIR_SHIFT, next, flags, pages, nr))
return;
} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
return;
} while (pgdp++, addr = next, addr != end);
}
#else
static inline void gup_pgd_range(unsigned long addr, unsigned long end,
unsigned int flags, struct page **pages, int *nr)
{
}
#endif /* CONFIG_HAVE_FAST_GUP */
#ifndef gup_fast_permitted
/*
* Check if it's allowed to use get_user_pages_fast_only() for the range, or
* we need to fall back to the slow version:
*/
static bool gup_fast_permitted(unsigned long start, unsigned long end)
{
return true;
}
#endif
static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
unsigned int gup_flags, struct page **pages)
{
int ret;
/*
* FIXME: FOLL_LONGTERM does not work with
* get_user_pages_unlocked() (see comments in that function)
*/
if (gup_flags & FOLL_LONGTERM) {
mmap_read_lock(current->mm);
ret = __gup_longterm_locked(current->mm,
start, nr_pages,
pages, NULL, gup_flags);
mmap_read_unlock(current->mm);
} else {
ret = get_user_pages_unlocked(start, nr_pages,
pages, gup_flags);
}
return ret;
}
static unsigned long lockless_pages_from_mm(unsigned long start,
unsigned long end,
unsigned int gup_flags,
struct page **pages)
{
unsigned long flags;
int nr_pinned = 0;
unsigned seq;
if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
!gup_fast_permitted(start, end))
return 0;
if (gup_flags & FOLL_PIN) {
seq = raw_read_seqcount(&current->mm->write_protect_seq);
if (seq & 1)
return 0;
}
/*
* Disable interrupts. The nested form is used, in order to allow full,
* general purpose use of this routine.
*
* With interrupts disabled, we block page table pages from being freed
* from under us. See struct mmu_table_batch comments in
* include/asm-generic/tlb.h for more details.
*
* We do not adopt an rcu_read_lock() here as we also want to block IPIs
* that come from THPs splitting.
*/
local_irq_save(flags);
gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
local_irq_restore(flags);
/*
* When pinning pages for DMA there could be a concurrent write protect
* from fork() via copy_page_range(), in this case always fail fast GUP.
*/
if (gup_flags & FOLL_PIN) {
if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
unpin_user_pages_lockless(pages, nr_pinned);
return 0;
} else {
sanity_check_pinned_pages(pages, nr_pinned);
}
}
return nr_pinned;
}
static int internal_get_user_pages_fast(unsigned long start,
unsigned long nr_pages,
unsigned int gup_flags,
struct page **pages)
{
unsigned long len, end;
unsigned long nr_pinned;
int ret;
if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
FOLL_FORCE | FOLL_PIN | FOLL_GET |
FOLL_FAST_ONLY | FOLL_NOFAULT)))
return -EINVAL;
if (gup_flags & FOLL_PIN)
mm_set_has_pinned_flag(&current->mm->flags);
if (!(gup_flags & FOLL_FAST_ONLY))
might_lock_read(&current->mm->mmap_lock);
start = untagged_addr(start) & PAGE_MASK;
len = nr_pages << PAGE_SHIFT;
if (check_add_overflow(start, len, &end))
return 0;
if (unlikely(!access_ok((void __user *)start, len)))
return -EFAULT;
nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
return nr_pinned;
/* Slow path: try to get the remaining pages with get_user_pages */
start += nr_pinned << PAGE_SHIFT;
pages += nr_pinned;
ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
pages);
if (ret < 0) {
/*
* The caller has to unpin the pages we already pinned so
* returning -errno is not an option
*/
if (nr_pinned)
return nr_pinned;
return ret;
}
return ret + nr_pinned;
}
/**
* get_user_pages_fast_only() - pin user pages in memory
* @start: starting user address
* @nr_pages: number of pages from start to pin
* @gup_flags: flags modifying pin behaviour
* @pages: array that receives pointers to the pages pinned.
* Should be at least nr_pages long.
*
* Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
* the regular GUP.
* Note a difference with get_user_pages_fast: this always returns the
* number of pages pinned, 0 if no pages were pinned.
*
* If the architecture does not support this function, simply return with no
* pages pinned.
*
* Careful, careful! COW breaking can go either way, so a non-write
* access can get ambiguous page results. If you call this function without
* 'write' set, you'd better be sure that you're ok with that ambiguity.
*/
int get_user_pages_fast_only(unsigned long start, int nr_pages,
unsigned int gup_flags, struct page **pages)
{
int nr_pinned;
/*
* Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
* because gup fast is always a "pin with a +1 page refcount" request.
*
* FOLL_FAST_ONLY is required in order to match the API description of
* this routine: no fall back to regular ("slow") GUP.
*/
gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
pages);
/*
* As specified in the API description above, this routine is not
* allowed to return negative values. However, the common core
* routine internal_get_user_pages_fast() *can* return -errno.
* Therefore, correct for that here:
*/
if (nr_pinned < 0)
nr_pinned = 0;
return nr_pinned;
}
EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
/**
* get_user_pages_fast() - pin user pages in memory
* @start: starting user address
* @nr_pages: number of pages from start to pin
* @gup_flags: flags modifying pin behaviour
* @pages: array that receives pointers to the pages pinned.
* Should be at least nr_pages long.
*
* Attempt to pin user pages in memory without taking mm->mmap_lock.
* If not successful, it will fall back to taking the lock and
* calling get_user_pages().
*
* Returns number of pages pinned. This may be fewer than the number requested.
* If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
* -errno.
*/
int get_user_pages_fast(unsigned long start, int nr_pages,
unsigned int gup_flags, struct page **pages)
{
if (!is_valid_gup_flags(gup_flags))
return -EINVAL;
/*
* The caller may or may not have explicitly set FOLL_GET; either way is
* OK. However, internally (within mm/gup.c), gup fast variants must set
* FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
* request.
*/
gup_flags |= FOLL_GET;
return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
}
EXPORT_SYMBOL_GPL(get_user_pages_fast);
/**
* pin_user_pages_fast() - pin user pages in memory without taking locks
*
* @start: starting user address
* @nr_pages: number of pages from start to pin
* @gup_flags: flags modifying pin behaviour
* @pages: array that receives pointers to the pages pinned.
* Should be at least nr_pages long.
*
* Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
* get_user_pages_fast() for documentation on the function arguments, because
* the arguments here are identical.
*
* FOLL_PIN means that the pages must be released via unpin_user_page(). Please
* see Documentation/core-api/pin_user_pages.rst for further details.
*/
int pin_user_pages_fast(unsigned long start, int nr_pages,
unsigned int gup_flags, struct page **pages)
{
/* FOLL_GET and FOLL_PIN are mutually exclusive. */
if (WARN_ON_ONCE(gup_flags & FOLL_GET))
return -EINVAL;
if (WARN_ON_ONCE(!pages))
return -EINVAL;
gup_flags |= FOLL_PIN;
return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
}
EXPORT_SYMBOL_GPL(pin_user_pages_fast);
/*
* This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
* is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
*
* The API rules are the same, too: no negative values may be returned.
*/
int pin_user_pages_fast_only(unsigned long start, int nr_pages,
unsigned int gup_flags, struct page **pages)
{
int nr_pinned;
/*
* FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
* rules require returning 0, rather than -errno:
*/
if (WARN_ON_ONCE(gup_flags & FOLL_GET))
return 0;
if (WARN_ON_ONCE(!pages))
return 0;
/*
* FOLL_FAST_ONLY is required in order to match the API description of
* this routine: no fall back to regular ("slow") GUP.
*/
gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
pages);
/*
* This routine is not allowed to return negative values. However,
* internal_get_user_pages_fast() *can* return -errno. Therefore,
* correct for that here:
*/
if (nr_pinned < 0)
nr_pinned = 0;
return nr_pinned;
}
EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
/**
* pin_user_pages_remote() - pin pages of a remote process
*
* @mm: mm_struct of target mm
* @start: starting user address
* @nr_pages: number of pages from start to pin
* @gup_flags: flags modifying lookup behaviour
* @pages: array that receives pointers to the pages pinned.
* Should be at least nr_pages long.
* @vmas: array of pointers to vmas corresponding to each page.
* Or NULL if the caller does not require them.
* @locked: pointer to lock flag indicating whether lock is held and
* subsequently whether VM_FAULT_RETRY functionality can be
* utilised. Lock must initially be held.
*
* Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
* get_user_pages_remote() for documentation on the function arguments, because
* the arguments here are identical.
*
* FOLL_PIN means that the pages must be released via unpin_user_page(). Please
* see Documentation/core-api/pin_user_pages.rst for details.
*/
long pin_user_pages_remote(struct mm_struct *mm,
unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages,
struct vm_area_struct **vmas, int *locked)
{
/* FOLL_GET and FOLL_PIN are mutually exclusive. */
if (WARN_ON_ONCE(gup_flags & FOLL_GET))
return -EINVAL;
if (WARN_ON_ONCE(!pages))
return -EINVAL;
gup_flags |= FOLL_PIN;
return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
pages, vmas, locked);
}
EXPORT_SYMBOL(pin_user_pages_remote);
/**
* pin_user_pages() - pin user pages in memory for use by other devices
*
* @start: starting user address
* @nr_pages: number of pages from start to pin
* @gup_flags: flags modifying lookup behaviour
* @pages: array that receives pointers to the pages pinned.
* Should be at least nr_pages long.
* @vmas: array of pointers to vmas corresponding to each page.
* Or NULL if the caller does not require them.
*
* Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
* FOLL_PIN is set.
*
* FOLL_PIN means that the pages must be released via unpin_user_page(). Please
* see Documentation/core-api/pin_user_pages.rst for details.
*/
long pin_user_pages(unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages,
struct vm_area_struct **vmas)
{
/* FOLL_GET and FOLL_PIN are mutually exclusive. */
if (WARN_ON_ONCE(gup_flags & FOLL_GET))
return -EINVAL;
if (WARN_ON_ONCE(!pages))
return -EINVAL;
gup_flags |= FOLL_PIN;
return __gup_longterm_locked(current->mm, start, nr_pages,
pages, vmas, gup_flags);
}
EXPORT_SYMBOL(pin_user_pages);
/*
* pin_user_pages_unlocked() is the FOLL_PIN variant of
* get_user_pages_unlocked(). Behavior is the same, except that this one sets
* FOLL_PIN and rejects FOLL_GET.
*/
long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
struct page **pages, unsigned int gup_flags)
{
/* FOLL_GET and FOLL_PIN are mutually exclusive. */
if (WARN_ON_ONCE(gup_flags & FOLL_GET))
return -EINVAL;
if (WARN_ON_ONCE(!pages))
return -EINVAL;
gup_flags |= FOLL_PIN;
return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
}
EXPORT_SYMBOL(pin_user_pages_unlocked);