2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-07 05:04:04 +08:00
linux-next/arch/mn10300/kernel/profile.c
David Howells b920de1b77 mn10300: add the MN10300/AM33 architecture to the kernel
Add architecture support for the MN10300/AM33 CPUs produced by MEI to the
kernel.

This patch also adds board support for the ASB2303 with the ASB2308 daughter
board, and the ASB2305.  The only processor supported is the MN103E010, which
is an AM33v2 core plus on-chip devices.

[akpm@linux-foundation.org: nuke cvs control strings]
Signed-off-by: Masakazu Urade <urade.masakazu@jp.panasonic.com>
Signed-off-by: Koichi Yasutake <yasutake.koichi@jp.panasonic.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 09:22:30 -08:00

52 lines
1.4 KiB
C

/* MN10300 Profiling setup
*
* Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public Licence
* as published by the Free Software Foundation; either version
* 2 of the Licence, or (at your option) any later version.
*/
/*
* initialise the profiling if enabled
* - using with gdbstub will give anomalous results
* - can't be used with gdbstub if running at IRQ priority 0
*/
static __init int profile_init(void)
{
u16 tmp;
if (!prof_buffer)
return 0;
/* use timer 11 to drive the profiling interrupts */
set_intr_stub(EXCEP_IRQ_LEVEL0, profile_handler);
/* set IRQ priority at which to run */
set_intr_level(TM11IRQ, GxICR_LEVEL_0);
/* set up timer 11
* - source: (IOCLK 33MHz)*2 = 66MHz
* - frequency: (33330000*2) / 8 / 20625 = 202Hz
*/
TM11BR = 20625 - 1;
TM11MD = TM8MD_SRC_IOCLK_8;
TM11MD |= TM8MD_INIT_COUNTER;
TM11MD &= ~TM8MD_INIT_COUNTER;
TM11MD |= TM8MD_COUNT_ENABLE;
TM11ICR |= GxICR_ENABLE;
tmp = TM11ICR;
printk(KERN_INFO "Profiling initiated on timer 11, priority 0, %uHz\n",
mn10300_ioclk / 8 / (TM11BR + 1));
printk(KERN_INFO "Profile histogram stored %p-%p\n",
prof_buffer, (u8 *)(prof_buffer + prof_len) - 1);
return 0;
}
__initcall(profile_init);