2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-16 09:13:55 +08:00
linux-next/drivers/spi/spi-bitbang-txrx.h
Robin Murphy 46f7ac3d78
spi: bitbang: Fix lsb-first Rx
Shifting the recieved bit by "bits" inserts it at the top of the
*currently remaining* Tx data, so we end up accumulating the whole
transfer into bit 0 of the output word. Oops.

For the algorithm to work as intended, we need to remember where the
top of the *original* word was, and shift Rx to there.

Fixes: 1847e3046c ("spi: gpio: Implement LSB First bitbang support")
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Link: https://lore.kernel.org/r/28324d8622da80461cce35a82859b003d6f6c4b0.1659538737.git.robin.murphy@arm.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2022-08-15 01:26:20 +01:00

177 lines
4.9 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Mix this utility code with some glue code to get one of several types of
* simple SPI master driver. Two do polled word-at-a-time I/O:
*
* - GPIO/parport bitbangers. Provide chipselect() and txrx_word[](),
* expanding the per-word routines from the inline templates below.
*
* - Drivers for controllers resembling bare shift registers. Provide
* chipselect() and txrx_word[](), with custom setup()/cleanup() methods
* that use your controller's clock and chipselect registers.
*
* Some hardware works well with requests at spi_transfer scope:
*
* - Drivers leveraging smarter hardware, with fifos or DMA; or for half
* duplex (MicroWire) controllers. Provide chipselect() and txrx_bufs(),
* and custom setup()/cleanup() methods.
*/
/*
* The code that knows what GPIO pins do what should have declared four
* functions, ideally as inlines, before including this header:
*
* void setsck(struct spi_device *, int is_on);
* void setmosi(struct spi_device *, int is_on);
* int getmiso(struct spi_device *);
* void spidelay(unsigned);
*
* setsck()'s is_on parameter is a zero/nonzero boolean.
*
* setmosi()'s is_on parameter is a zero/nonzero boolean.
*
* getmiso() is required to return 0 or 1 only. Any other value is invalid
* and will result in improper operation.
*
* A non-inlined routine would call bitbang_txrx_*() routines. The
* main loop could easily compile down to a handful of instructions,
* especially if the delay is a NOP (to run at peak speed).
*
* Since this is software, the timings may not be exactly what your board's
* chips need ... there may be several reasons you'd need to tweak timings
* in these routines, not just to make it faster or slower to match a
* particular CPU clock rate.
*
* ToDo: Maybe the bitrev macros can be used to improve the code?
*/
static inline u32
bitbang_txrx_be_cpha0(struct spi_device *spi,
unsigned nsecs, unsigned cpol, unsigned flags,
u32 word, u8 bits)
{
/* if (cpol == 0) this is SPI_MODE_0; else this is SPI_MODE_2 */
u32 oldbit = (!(word & (1<<(bits-1)))) << 31;
/* clock starts at inactive polarity */
for (word <<= (32 - bits); likely(bits); bits--) {
/* setup MSB (to slave) on trailing edge */
if ((flags & SPI_MASTER_NO_TX) == 0) {
if ((word & (1 << 31)) != oldbit) {
setmosi(spi, word & (1 << 31));
oldbit = word & (1 << 31);
}
}
spidelay(nsecs); /* T(setup) */
setsck(spi, !cpol);
spidelay(nsecs);
/* sample MSB (from slave) on leading edge */
word <<= 1;
if ((flags & SPI_MASTER_NO_RX) == 0)
word |= getmiso(spi);
setsck(spi, cpol);
}
return word;
}
static inline u32
bitbang_txrx_be_cpha1(struct spi_device *spi,
unsigned nsecs, unsigned cpol, unsigned flags,
u32 word, u8 bits)
{
/* if (cpol == 0) this is SPI_MODE_1; else this is SPI_MODE_3 */
u32 oldbit = (!(word & (1<<(bits-1)))) << 31;
/* clock starts at inactive polarity */
for (word <<= (32 - bits); likely(bits); bits--) {
/* setup MSB (to slave) on leading edge */
setsck(spi, !cpol);
if ((flags & SPI_MASTER_NO_TX) == 0) {
if ((word & (1 << 31)) != oldbit) {
setmosi(spi, word & (1 << 31));
oldbit = word & (1 << 31);
}
}
spidelay(nsecs); /* T(setup) */
setsck(spi, cpol);
spidelay(nsecs);
/* sample MSB (from slave) on trailing edge */
word <<= 1;
if ((flags & SPI_MASTER_NO_RX) == 0)
word |= getmiso(spi);
}
return word;
}
static inline u32
bitbang_txrx_le_cpha0(struct spi_device *spi,
unsigned int nsecs, unsigned int cpol, unsigned int flags,
u32 word, u8 bits)
{
/* if (cpol == 0) this is SPI_MODE_0; else this is SPI_MODE_2 */
u8 rxbit = bits - 1;
u32 oldbit = !(word & 1);
/* clock starts at inactive polarity */
for (; likely(bits); bits--) {
/* setup LSB (to slave) on trailing edge */
if ((flags & SPI_MASTER_NO_TX) == 0) {
if ((word & 1) != oldbit) {
setmosi(spi, word & 1);
oldbit = word & 1;
}
}
spidelay(nsecs); /* T(setup) */
setsck(spi, !cpol);
spidelay(nsecs);
/* sample LSB (from slave) on leading edge */
word >>= 1;
if ((flags & SPI_MASTER_NO_RX) == 0)
word |= getmiso(spi) << rxbit;
setsck(spi, cpol);
}
return word;
}
static inline u32
bitbang_txrx_le_cpha1(struct spi_device *spi,
unsigned int nsecs, unsigned int cpol, unsigned int flags,
u32 word, u8 bits)
{
/* if (cpol == 0) this is SPI_MODE_1; else this is SPI_MODE_3 */
u8 rxbit = bits - 1;
u32 oldbit = !(word & 1);
/* clock starts at inactive polarity */
for (; likely(bits); bits--) {
/* setup LSB (to slave) on leading edge */
setsck(spi, !cpol);
if ((flags & SPI_MASTER_NO_TX) == 0) {
if ((word & 1) != oldbit) {
setmosi(spi, word & 1);
oldbit = word & 1;
}
}
spidelay(nsecs); /* T(setup) */
setsck(spi, cpol);
spidelay(nsecs);
/* sample LSB (from slave) on trailing edge */
word >>= 1;
if ((flags & SPI_MASTER_NO_RX) == 0)
word |= getmiso(spi) << rxbit;
}
return word;
}