2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 11:43:54 +08:00
linux-next/drivers/ide/ide-dma-sff.c
Paul Gortmaker 38789fda29 ide/ata: Add export.h for EXPORT_SYMBOL/THIS_MODULE where needed
They were getting this implicitly by an include of module.h
from device.h -- but we are going to clean that up and break
that include chain, so include export.h explicitly now.

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2011-10-31 19:31:37 -04:00

336 lines
8.9 KiB
C

#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/ide.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
/**
* config_drive_for_dma - attempt to activate IDE DMA
* @drive: the drive to place in DMA mode
*
* If the drive supports at least mode 2 DMA or UDMA of any kind
* then attempt to place it into DMA mode. Drives that are known to
* support DMA but predate the DMA properties or that are known
* to have DMA handling bugs are also set up appropriately based
* on the good/bad drive lists.
*/
int config_drive_for_dma(ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
u16 *id = drive->id;
if (drive->media != ide_disk) {
if (hwif->host_flags & IDE_HFLAG_NO_ATAPI_DMA)
return 0;
}
/*
* Enable DMA on any drive that has
* UltraDMA (mode 0/1/2/3/4/5/6) enabled
*/
if ((id[ATA_ID_FIELD_VALID] & 4) &&
((id[ATA_ID_UDMA_MODES] >> 8) & 0x7f))
return 1;
/*
* Enable DMA on any drive that has mode2 DMA
* (multi or single) enabled
*/
if ((id[ATA_ID_MWDMA_MODES] & 0x404) == 0x404 ||
(id[ATA_ID_SWDMA_MODES] & 0x404) == 0x404)
return 1;
/* Consult the list of known "good" drives */
if (ide_dma_good_drive(drive))
return 1;
return 0;
}
u8 ide_dma_sff_read_status(ide_hwif_t *hwif)
{
unsigned long addr = hwif->dma_base + ATA_DMA_STATUS;
if (hwif->host_flags & IDE_HFLAG_MMIO)
return readb((void __iomem *)addr);
else
return inb(addr);
}
EXPORT_SYMBOL_GPL(ide_dma_sff_read_status);
static void ide_dma_sff_write_status(ide_hwif_t *hwif, u8 val)
{
unsigned long addr = hwif->dma_base + ATA_DMA_STATUS;
if (hwif->host_flags & IDE_HFLAG_MMIO)
writeb(val, (void __iomem *)addr);
else
outb(val, addr);
}
/**
* ide_dma_host_set - Enable/disable DMA on a host
* @drive: drive to control
*
* Enable/disable DMA on an IDE controller following generic
* bus-mastering IDE controller behaviour.
*/
void ide_dma_host_set(ide_drive_t *drive, int on)
{
ide_hwif_t *hwif = drive->hwif;
u8 unit = drive->dn & 1;
u8 dma_stat = hwif->dma_ops->dma_sff_read_status(hwif);
if (on)
dma_stat |= (1 << (5 + unit));
else
dma_stat &= ~(1 << (5 + unit));
ide_dma_sff_write_status(hwif, dma_stat);
}
EXPORT_SYMBOL_GPL(ide_dma_host_set);
/**
* ide_build_dmatable - build IDE DMA table
*
* ide_build_dmatable() prepares a dma request. We map the command
* to get the pci bus addresses of the buffers and then build up
* the PRD table that the IDE layer wants to be fed.
*
* Most chipsets correctly interpret a length of 0x0000 as 64KB,
* but at least one (e.g. CS5530) misinterprets it as zero (!).
* So we break the 64KB entry into two 32KB entries instead.
*
* Returns the number of built PRD entries if all went okay,
* returns 0 otherwise.
*
* May also be invoked from trm290.c
*/
int ide_build_dmatable(ide_drive_t *drive, struct ide_cmd *cmd)
{
ide_hwif_t *hwif = drive->hwif;
__le32 *table = (__le32 *)hwif->dmatable_cpu;
unsigned int count = 0;
int i;
struct scatterlist *sg;
u8 is_trm290 = !!(hwif->host_flags & IDE_HFLAG_TRM290);
for_each_sg(hwif->sg_table, sg, cmd->sg_nents, i) {
u32 cur_addr, cur_len, xcount, bcount;
cur_addr = sg_dma_address(sg);
cur_len = sg_dma_len(sg);
/*
* Fill in the dma table, without crossing any 64kB boundaries.
* Most hardware requires 16-bit alignment of all blocks,
* but the trm290 requires 32-bit alignment.
*/
while (cur_len) {
if (count++ >= PRD_ENTRIES)
goto use_pio_instead;
bcount = 0x10000 - (cur_addr & 0xffff);
if (bcount > cur_len)
bcount = cur_len;
*table++ = cpu_to_le32(cur_addr);
xcount = bcount & 0xffff;
if (is_trm290)
xcount = ((xcount >> 2) - 1) << 16;
else if (xcount == 0x0000) {
if (count++ >= PRD_ENTRIES)
goto use_pio_instead;
*table++ = cpu_to_le32(0x8000);
*table++ = cpu_to_le32(cur_addr + 0x8000);
xcount = 0x8000;
}
*table++ = cpu_to_le32(xcount);
cur_addr += bcount;
cur_len -= bcount;
}
}
if (count) {
if (!is_trm290)
*--table |= cpu_to_le32(0x80000000);
return count;
}
use_pio_instead:
printk(KERN_ERR "%s: %s\n", drive->name,
count ? "DMA table too small" : "empty DMA table?");
return 0; /* revert to PIO for this request */
}
EXPORT_SYMBOL_GPL(ide_build_dmatable);
/**
* ide_dma_setup - begin a DMA phase
* @drive: target device
* @cmd: command
*
* Build an IDE DMA PRD (IDE speak for scatter gather table)
* and then set up the DMA transfer registers for a device
* that follows generic IDE PCI DMA behaviour. Controllers can
* override this function if they need to
*
* Returns 0 on success. If a PIO fallback is required then 1
* is returned.
*/
int ide_dma_setup(ide_drive_t *drive, struct ide_cmd *cmd)
{
ide_hwif_t *hwif = drive->hwif;
u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
u8 rw = (cmd->tf_flags & IDE_TFLAG_WRITE) ? 0 : ATA_DMA_WR;
u8 dma_stat;
/* fall back to pio! */
if (ide_build_dmatable(drive, cmd) == 0) {
ide_map_sg(drive, cmd);
return 1;
}
/* PRD table */
if (mmio)
writel(hwif->dmatable_dma,
(void __iomem *)(hwif->dma_base + ATA_DMA_TABLE_OFS));
else
outl(hwif->dmatable_dma, hwif->dma_base + ATA_DMA_TABLE_OFS);
/* specify r/w */
if (mmio)
writeb(rw, (void __iomem *)(hwif->dma_base + ATA_DMA_CMD));
else
outb(rw, hwif->dma_base + ATA_DMA_CMD);
/* read DMA status for INTR & ERROR flags */
dma_stat = hwif->dma_ops->dma_sff_read_status(hwif);
/* clear INTR & ERROR flags */
ide_dma_sff_write_status(hwif, dma_stat | ATA_DMA_ERR | ATA_DMA_INTR);
return 0;
}
EXPORT_SYMBOL_GPL(ide_dma_setup);
/**
* ide_dma_sff_timer_expiry - handle a DMA timeout
* @drive: Drive that timed out
*
* An IDE DMA transfer timed out. In the event of an error we ask
* the driver to resolve the problem, if a DMA transfer is still
* in progress we continue to wait (arguably we need to add a
* secondary 'I don't care what the drive thinks' timeout here)
* Finally if we have an interrupt we let it complete the I/O.
* But only one time - we clear expiry and if it's still not
* completed after WAIT_CMD, we error and retry in PIO.
* This can occur if an interrupt is lost or due to hang or bugs.
*/
int ide_dma_sff_timer_expiry(ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
u8 dma_stat = hwif->dma_ops->dma_sff_read_status(hwif);
printk(KERN_WARNING "%s: %s: DMA status (0x%02x)\n",
drive->name, __func__, dma_stat);
if ((dma_stat & 0x18) == 0x18) /* BUSY Stupid Early Timer !! */
return WAIT_CMD;
hwif->expiry = NULL; /* one free ride for now */
if (dma_stat & ATA_DMA_ERR) /* ERROR */
return -1;
if (dma_stat & ATA_DMA_ACTIVE) /* DMAing */
return WAIT_CMD;
if (dma_stat & ATA_DMA_INTR) /* Got an Interrupt */
return WAIT_CMD;
return 0; /* Status is unknown -- reset the bus */
}
EXPORT_SYMBOL_GPL(ide_dma_sff_timer_expiry);
void ide_dma_start(ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
u8 dma_cmd;
/* Note that this is done *after* the cmd has
* been issued to the drive, as per the BM-IDE spec.
* The Promise Ultra33 doesn't work correctly when
* we do this part before issuing the drive cmd.
*/
if (hwif->host_flags & IDE_HFLAG_MMIO) {
dma_cmd = readb((void __iomem *)(hwif->dma_base + ATA_DMA_CMD));
writeb(dma_cmd | ATA_DMA_START,
(void __iomem *)(hwif->dma_base + ATA_DMA_CMD));
} else {
dma_cmd = inb(hwif->dma_base + ATA_DMA_CMD);
outb(dma_cmd | ATA_DMA_START, hwif->dma_base + ATA_DMA_CMD);
}
}
EXPORT_SYMBOL_GPL(ide_dma_start);
/* returns 1 on error, 0 otherwise */
int ide_dma_end(ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
u8 dma_stat = 0, dma_cmd = 0;
/* stop DMA */
if (hwif->host_flags & IDE_HFLAG_MMIO) {
dma_cmd = readb((void __iomem *)(hwif->dma_base + ATA_DMA_CMD));
writeb(dma_cmd & ~ATA_DMA_START,
(void __iomem *)(hwif->dma_base + ATA_DMA_CMD));
} else {
dma_cmd = inb(hwif->dma_base + ATA_DMA_CMD);
outb(dma_cmd & ~ATA_DMA_START, hwif->dma_base + ATA_DMA_CMD);
}
/* get DMA status */
dma_stat = hwif->dma_ops->dma_sff_read_status(hwif);
/* clear INTR & ERROR bits */
ide_dma_sff_write_status(hwif, dma_stat | ATA_DMA_ERR | ATA_DMA_INTR);
#define CHECK_DMA_MASK (ATA_DMA_ACTIVE | ATA_DMA_ERR | ATA_DMA_INTR)
/* verify good DMA status */
if ((dma_stat & CHECK_DMA_MASK) != ATA_DMA_INTR)
return 0x10 | dma_stat;
return 0;
}
EXPORT_SYMBOL_GPL(ide_dma_end);
/* returns 1 if dma irq issued, 0 otherwise */
int ide_dma_test_irq(ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
u8 dma_stat = hwif->dma_ops->dma_sff_read_status(hwif);
return (dma_stat & ATA_DMA_INTR) ? 1 : 0;
}
EXPORT_SYMBOL_GPL(ide_dma_test_irq);
const struct ide_dma_ops sff_dma_ops = {
.dma_host_set = ide_dma_host_set,
.dma_setup = ide_dma_setup,
.dma_start = ide_dma_start,
.dma_end = ide_dma_end,
.dma_test_irq = ide_dma_test_irq,
.dma_lost_irq = ide_dma_lost_irq,
.dma_timer_expiry = ide_dma_sff_timer_expiry,
.dma_sff_read_status = ide_dma_sff_read_status,
};
EXPORT_SYMBOL_GPL(sff_dma_ops);