2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-17 17:53:56 +08:00
linux-next/crypto/cryptd.c
Eric Biggers c65058b758 crypto: skcipher - remove the "blkcipher" algorithm type
Now that all "blkcipher" algorithms have been converted to "skcipher",
remove the blkcipher algorithm type.

The skcipher (symmetric key cipher) algorithm type was introduced a few
years ago to replace both blkcipher and ablkcipher (synchronous and
asynchronous block cipher).  The advantages of skcipher include:

  - A much less confusing name, since none of these algorithm types have
    ever actually been for raw block ciphers, but rather for all
    length-preserving encryption modes including block cipher modes of
    operation, stream ciphers, and other length-preserving modes.

  - It unified blkcipher and ablkcipher into a single algorithm type
    which supports both synchronous and asynchronous implementations.
    Note, blkcipher already operated only on scatterlists, so the fact
    that skcipher does too isn't a regression in functionality.

  - Better type safety by using struct skcipher_alg, struct
    crypto_skcipher, etc. instead of crypto_alg, crypto_tfm, etc.

  - It sometimes simplifies the implementations of algorithms.

Also, the blkcipher API was no longer being tested.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-11-01 13:38:32 +08:00

1159 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Software async crypto daemon.
*
* Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
*
* Added AEAD support to cryptd.
* Authors: Tadeusz Struk (tadeusz.struk@intel.com)
* Adrian Hoban <adrian.hoban@intel.com>
* Gabriele Paoloni <gabriele.paoloni@intel.com>
* Aidan O'Mahony (aidan.o.mahony@intel.com)
* Copyright (c) 2010, Intel Corporation.
*/
#include <crypto/internal/hash.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/skcipher.h>
#include <crypto/cryptd.h>
#include <linux/refcount.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
static unsigned int cryptd_max_cpu_qlen = 1000;
module_param(cryptd_max_cpu_qlen, uint, 0);
MODULE_PARM_DESC(cryptd_max_cpu_qlen, "Set cryptd Max queue depth");
static struct workqueue_struct *cryptd_wq;
struct cryptd_cpu_queue {
struct crypto_queue queue;
struct work_struct work;
};
struct cryptd_queue {
struct cryptd_cpu_queue __percpu *cpu_queue;
};
struct cryptd_instance_ctx {
struct crypto_spawn spawn;
struct cryptd_queue *queue;
};
struct skcipherd_instance_ctx {
struct crypto_skcipher_spawn spawn;
struct cryptd_queue *queue;
};
struct hashd_instance_ctx {
struct crypto_shash_spawn spawn;
struct cryptd_queue *queue;
};
struct aead_instance_ctx {
struct crypto_aead_spawn aead_spawn;
struct cryptd_queue *queue;
};
struct cryptd_skcipher_ctx {
refcount_t refcnt;
struct crypto_sync_skcipher *child;
};
struct cryptd_skcipher_request_ctx {
crypto_completion_t complete;
};
struct cryptd_hash_ctx {
refcount_t refcnt;
struct crypto_shash *child;
};
struct cryptd_hash_request_ctx {
crypto_completion_t complete;
struct shash_desc desc;
};
struct cryptd_aead_ctx {
refcount_t refcnt;
struct crypto_aead *child;
};
struct cryptd_aead_request_ctx {
crypto_completion_t complete;
};
static void cryptd_queue_worker(struct work_struct *work);
static int cryptd_init_queue(struct cryptd_queue *queue,
unsigned int max_cpu_qlen)
{
int cpu;
struct cryptd_cpu_queue *cpu_queue;
queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue);
if (!queue->cpu_queue)
return -ENOMEM;
for_each_possible_cpu(cpu) {
cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
INIT_WORK(&cpu_queue->work, cryptd_queue_worker);
}
pr_info("cryptd: max_cpu_qlen set to %d\n", max_cpu_qlen);
return 0;
}
static void cryptd_fini_queue(struct cryptd_queue *queue)
{
int cpu;
struct cryptd_cpu_queue *cpu_queue;
for_each_possible_cpu(cpu) {
cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
BUG_ON(cpu_queue->queue.qlen);
}
free_percpu(queue->cpu_queue);
}
static int cryptd_enqueue_request(struct cryptd_queue *queue,
struct crypto_async_request *request)
{
int cpu, err;
struct cryptd_cpu_queue *cpu_queue;
refcount_t *refcnt;
cpu = get_cpu();
cpu_queue = this_cpu_ptr(queue->cpu_queue);
err = crypto_enqueue_request(&cpu_queue->queue, request);
refcnt = crypto_tfm_ctx(request->tfm);
if (err == -ENOSPC)
goto out_put_cpu;
queue_work_on(cpu, cryptd_wq, &cpu_queue->work);
if (!refcount_read(refcnt))
goto out_put_cpu;
refcount_inc(refcnt);
out_put_cpu:
put_cpu();
return err;
}
/* Called in workqueue context, do one real cryption work (via
* req->complete) and reschedule itself if there are more work to
* do. */
static void cryptd_queue_worker(struct work_struct *work)
{
struct cryptd_cpu_queue *cpu_queue;
struct crypto_async_request *req, *backlog;
cpu_queue = container_of(work, struct cryptd_cpu_queue, work);
/*
* Only handle one request at a time to avoid hogging crypto workqueue.
* preempt_disable/enable is used to prevent being preempted by
* cryptd_enqueue_request(). local_bh_disable/enable is used to prevent
* cryptd_enqueue_request() being accessed from software interrupts.
*/
local_bh_disable();
preempt_disable();
backlog = crypto_get_backlog(&cpu_queue->queue);
req = crypto_dequeue_request(&cpu_queue->queue);
preempt_enable();
local_bh_enable();
if (!req)
return;
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
req->complete(req, 0);
if (cpu_queue->queue.qlen)
queue_work(cryptd_wq, &cpu_queue->work);
}
static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm)
{
struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
return ictx->queue;
}
static inline void cryptd_check_internal(struct rtattr **tb, u32 *type,
u32 *mask)
{
struct crypto_attr_type *algt;
algt = crypto_get_attr_type(tb);
if (IS_ERR(algt))
return;
*type |= algt->type & CRYPTO_ALG_INTERNAL;
*mask |= algt->mask & CRYPTO_ALG_INTERNAL;
}
static int cryptd_init_instance(struct crypto_instance *inst,
struct crypto_alg *alg)
{
if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
"cryptd(%s)",
alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
return -ENAMETOOLONG;
memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
inst->alg.cra_priority = alg->cra_priority + 50;
inst->alg.cra_blocksize = alg->cra_blocksize;
inst->alg.cra_alignmask = alg->cra_alignmask;
return 0;
}
static void *cryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
unsigned int tail)
{
char *p;
struct crypto_instance *inst;
int err;
p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
if (!p)
return ERR_PTR(-ENOMEM);
inst = (void *)(p + head);
err = cryptd_init_instance(inst, alg);
if (err)
goto out_free_inst;
out:
return p;
out_free_inst:
kfree(p);
p = ERR_PTR(err);
goto out;
}
static int cryptd_skcipher_setkey(struct crypto_skcipher *parent,
const u8 *key, unsigned int keylen)
{
struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(parent);
struct crypto_sync_skcipher *child = ctx->child;
int err;
crypto_sync_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
crypto_sync_skcipher_set_flags(child,
crypto_skcipher_get_flags(parent) &
CRYPTO_TFM_REQ_MASK);
err = crypto_sync_skcipher_setkey(child, key, keylen);
crypto_skcipher_set_flags(parent,
crypto_sync_skcipher_get_flags(child) &
CRYPTO_TFM_RES_MASK);
return err;
}
static void cryptd_skcipher_complete(struct skcipher_request *req, int err)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
int refcnt = refcount_read(&ctx->refcnt);
local_bh_disable();
rctx->complete(&req->base, err);
local_bh_enable();
if (err != -EINPROGRESS && refcnt && refcount_dec_and_test(&ctx->refcnt))
crypto_free_skcipher(tfm);
}
static void cryptd_skcipher_encrypt(struct crypto_async_request *base,
int err)
{
struct skcipher_request *req = skcipher_request_cast(base);
struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
struct crypto_sync_skcipher *child = ctx->child;
SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, child);
if (unlikely(err == -EINPROGRESS))
goto out;
skcipher_request_set_sync_tfm(subreq, child);
skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
NULL, NULL);
skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
req->iv);
err = crypto_skcipher_encrypt(subreq);
skcipher_request_zero(subreq);
req->base.complete = rctx->complete;
out:
cryptd_skcipher_complete(req, err);
}
static void cryptd_skcipher_decrypt(struct crypto_async_request *base,
int err)
{
struct skcipher_request *req = skcipher_request_cast(base);
struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
struct crypto_sync_skcipher *child = ctx->child;
SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, child);
if (unlikely(err == -EINPROGRESS))
goto out;
skcipher_request_set_sync_tfm(subreq, child);
skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
NULL, NULL);
skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
req->iv);
err = crypto_skcipher_decrypt(subreq);
skcipher_request_zero(subreq);
req->base.complete = rctx->complete;
out:
cryptd_skcipher_complete(req, err);
}
static int cryptd_skcipher_enqueue(struct skcipher_request *req,
crypto_completion_t compl)
{
struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct cryptd_queue *queue;
queue = cryptd_get_queue(crypto_skcipher_tfm(tfm));
rctx->complete = req->base.complete;
req->base.complete = compl;
return cryptd_enqueue_request(queue, &req->base);
}
static int cryptd_skcipher_encrypt_enqueue(struct skcipher_request *req)
{
return cryptd_skcipher_enqueue(req, cryptd_skcipher_encrypt);
}
static int cryptd_skcipher_decrypt_enqueue(struct skcipher_request *req)
{
return cryptd_skcipher_enqueue(req, cryptd_skcipher_decrypt);
}
static int cryptd_skcipher_init_tfm(struct crypto_skcipher *tfm)
{
struct skcipher_instance *inst = skcipher_alg_instance(tfm);
struct skcipherd_instance_ctx *ictx = skcipher_instance_ctx(inst);
struct crypto_skcipher_spawn *spawn = &ictx->spawn;
struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
struct crypto_skcipher *cipher;
cipher = crypto_spawn_skcipher(spawn);
if (IS_ERR(cipher))
return PTR_ERR(cipher);
ctx->child = (struct crypto_sync_skcipher *)cipher;
crypto_skcipher_set_reqsize(
tfm, sizeof(struct cryptd_skcipher_request_ctx));
return 0;
}
static void cryptd_skcipher_exit_tfm(struct crypto_skcipher *tfm)
{
struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
crypto_free_sync_skcipher(ctx->child);
}
static void cryptd_skcipher_free(struct skcipher_instance *inst)
{
struct skcipherd_instance_ctx *ctx = skcipher_instance_ctx(inst);
crypto_drop_skcipher(&ctx->spawn);
kfree(inst);
}
static int cryptd_create_skcipher(struct crypto_template *tmpl,
struct rtattr **tb,
struct cryptd_queue *queue)
{
struct skcipherd_instance_ctx *ctx;
struct skcipher_instance *inst;
struct skcipher_alg *alg;
const char *name;
u32 type;
u32 mask;
int err;
type = 0;
mask = CRYPTO_ALG_ASYNC;
cryptd_check_internal(tb, &type, &mask);
name = crypto_attr_alg_name(tb[1]);
if (IS_ERR(name))
return PTR_ERR(name);
inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
if (!inst)
return -ENOMEM;
ctx = skcipher_instance_ctx(inst);
ctx->queue = queue;
crypto_set_skcipher_spawn(&ctx->spawn, skcipher_crypto_instance(inst));
err = crypto_grab_skcipher(&ctx->spawn, name, type, mask);
if (err)
goto out_free_inst;
alg = crypto_spawn_skcipher_alg(&ctx->spawn);
err = cryptd_init_instance(skcipher_crypto_instance(inst), &alg->base);
if (err)
goto out_drop_skcipher;
inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC |
(alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
inst->alg.ivsize = crypto_skcipher_alg_ivsize(alg);
inst->alg.chunksize = crypto_skcipher_alg_chunksize(alg);
inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg);
inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg);
inst->alg.base.cra_ctxsize = sizeof(struct cryptd_skcipher_ctx);
inst->alg.init = cryptd_skcipher_init_tfm;
inst->alg.exit = cryptd_skcipher_exit_tfm;
inst->alg.setkey = cryptd_skcipher_setkey;
inst->alg.encrypt = cryptd_skcipher_encrypt_enqueue;
inst->alg.decrypt = cryptd_skcipher_decrypt_enqueue;
inst->free = cryptd_skcipher_free;
err = skcipher_register_instance(tmpl, inst);
if (err) {
out_drop_skcipher:
crypto_drop_skcipher(&ctx->spawn);
out_free_inst:
kfree(inst);
}
return err;
}
static int cryptd_hash_init_tfm(struct crypto_tfm *tfm)
{
struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
struct crypto_shash_spawn *spawn = &ictx->spawn;
struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
struct crypto_shash *hash;
hash = crypto_spawn_shash(spawn);
if (IS_ERR(hash))
return PTR_ERR(hash);
ctx->child = hash;
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct cryptd_hash_request_ctx) +
crypto_shash_descsize(hash));
return 0;
}
static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm)
{
struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
crypto_free_shash(ctx->child);
}
static int cryptd_hash_setkey(struct crypto_ahash *parent,
const u8 *key, unsigned int keylen)
{
struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(parent);
struct crypto_shash *child = ctx->child;
int err;
crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
CRYPTO_TFM_REQ_MASK);
err = crypto_shash_setkey(child, key, keylen);
crypto_ahash_set_flags(parent, crypto_shash_get_flags(child) &
CRYPTO_TFM_RES_MASK);
return err;
}
static int cryptd_hash_enqueue(struct ahash_request *req,
crypto_completion_t compl)
{
struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct cryptd_queue *queue =
cryptd_get_queue(crypto_ahash_tfm(tfm));
rctx->complete = req->base.complete;
req->base.complete = compl;
return cryptd_enqueue_request(queue, &req->base);
}
static void cryptd_hash_complete(struct ahash_request *req, int err)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
int refcnt = refcount_read(&ctx->refcnt);
local_bh_disable();
rctx->complete(&req->base, err);
local_bh_enable();
if (err != -EINPROGRESS && refcnt && refcount_dec_and_test(&ctx->refcnt))
crypto_free_ahash(tfm);
}
static void cryptd_hash_init(struct crypto_async_request *req_async, int err)
{
struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
struct crypto_shash *child = ctx->child;
struct ahash_request *req = ahash_request_cast(req_async);
struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
struct shash_desc *desc = &rctx->desc;
if (unlikely(err == -EINPROGRESS))
goto out;
desc->tfm = child;
err = crypto_shash_init(desc);
req->base.complete = rctx->complete;
out:
cryptd_hash_complete(req, err);
}
static int cryptd_hash_init_enqueue(struct ahash_request *req)
{
return cryptd_hash_enqueue(req, cryptd_hash_init);
}
static void cryptd_hash_update(struct crypto_async_request *req_async, int err)
{
struct ahash_request *req = ahash_request_cast(req_async);
struct cryptd_hash_request_ctx *rctx;
rctx = ahash_request_ctx(req);
if (unlikely(err == -EINPROGRESS))
goto out;
err = shash_ahash_update(req, &rctx->desc);
req->base.complete = rctx->complete;
out:
cryptd_hash_complete(req, err);
}
static int cryptd_hash_update_enqueue(struct ahash_request *req)
{
return cryptd_hash_enqueue(req, cryptd_hash_update);
}
static void cryptd_hash_final(struct crypto_async_request *req_async, int err)
{
struct ahash_request *req = ahash_request_cast(req_async);
struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
if (unlikely(err == -EINPROGRESS))
goto out;
err = crypto_shash_final(&rctx->desc, req->result);
req->base.complete = rctx->complete;
out:
cryptd_hash_complete(req, err);
}
static int cryptd_hash_final_enqueue(struct ahash_request *req)
{
return cryptd_hash_enqueue(req, cryptd_hash_final);
}
static void cryptd_hash_finup(struct crypto_async_request *req_async, int err)
{
struct ahash_request *req = ahash_request_cast(req_async);
struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
if (unlikely(err == -EINPROGRESS))
goto out;
err = shash_ahash_finup(req, &rctx->desc);
req->base.complete = rctx->complete;
out:
cryptd_hash_complete(req, err);
}
static int cryptd_hash_finup_enqueue(struct ahash_request *req)
{
return cryptd_hash_enqueue(req, cryptd_hash_finup);
}
static void cryptd_hash_digest(struct crypto_async_request *req_async, int err)
{
struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
struct crypto_shash *child = ctx->child;
struct ahash_request *req = ahash_request_cast(req_async);
struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
struct shash_desc *desc = &rctx->desc;
if (unlikely(err == -EINPROGRESS))
goto out;
desc->tfm = child;
err = shash_ahash_digest(req, desc);
req->base.complete = rctx->complete;
out:
cryptd_hash_complete(req, err);
}
static int cryptd_hash_digest_enqueue(struct ahash_request *req)
{
return cryptd_hash_enqueue(req, cryptd_hash_digest);
}
static int cryptd_hash_export(struct ahash_request *req, void *out)
{
struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
return crypto_shash_export(&rctx->desc, out);
}
static int cryptd_hash_import(struct ahash_request *req, const void *in)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
struct shash_desc *desc = cryptd_shash_desc(req);
desc->tfm = ctx->child;
return crypto_shash_import(desc, in);
}
static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
struct cryptd_queue *queue)
{
struct hashd_instance_ctx *ctx;
struct ahash_instance *inst;
struct shash_alg *salg;
struct crypto_alg *alg;
u32 type = 0;
u32 mask = 0;
int err;
cryptd_check_internal(tb, &type, &mask);
salg = shash_attr_alg(tb[1], type, mask);
if (IS_ERR(salg))
return PTR_ERR(salg);
alg = &salg->base;
inst = cryptd_alloc_instance(alg, ahash_instance_headroom(),
sizeof(*ctx));
err = PTR_ERR(inst);
if (IS_ERR(inst))
goto out_put_alg;
ctx = ahash_instance_ctx(inst);
ctx->queue = queue;
err = crypto_init_shash_spawn(&ctx->spawn, salg,
ahash_crypto_instance(inst));
if (err)
goto out_free_inst;
inst->alg.halg.base.cra_flags = CRYPTO_ALG_ASYNC |
(alg->cra_flags & (CRYPTO_ALG_INTERNAL |
CRYPTO_ALG_OPTIONAL_KEY));
inst->alg.halg.digestsize = salg->digestsize;
inst->alg.halg.statesize = salg->statesize;
inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx);
inst->alg.halg.base.cra_init = cryptd_hash_init_tfm;
inst->alg.halg.base.cra_exit = cryptd_hash_exit_tfm;
inst->alg.init = cryptd_hash_init_enqueue;
inst->alg.update = cryptd_hash_update_enqueue;
inst->alg.final = cryptd_hash_final_enqueue;
inst->alg.finup = cryptd_hash_finup_enqueue;
inst->alg.export = cryptd_hash_export;
inst->alg.import = cryptd_hash_import;
if (crypto_shash_alg_has_setkey(salg))
inst->alg.setkey = cryptd_hash_setkey;
inst->alg.digest = cryptd_hash_digest_enqueue;
err = ahash_register_instance(tmpl, inst);
if (err) {
crypto_drop_shash(&ctx->spawn);
out_free_inst:
kfree(inst);
}
out_put_alg:
crypto_mod_put(alg);
return err;
}
static int cryptd_aead_setkey(struct crypto_aead *parent,
const u8 *key, unsigned int keylen)
{
struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
struct crypto_aead *child = ctx->child;
return crypto_aead_setkey(child, key, keylen);
}
static int cryptd_aead_setauthsize(struct crypto_aead *parent,
unsigned int authsize)
{
struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
struct crypto_aead *child = ctx->child;
return crypto_aead_setauthsize(child, authsize);
}
static void cryptd_aead_crypt(struct aead_request *req,
struct crypto_aead *child,
int err,
int (*crypt)(struct aead_request *req))
{
struct cryptd_aead_request_ctx *rctx;
struct cryptd_aead_ctx *ctx;
crypto_completion_t compl;
struct crypto_aead *tfm;
int refcnt;
rctx = aead_request_ctx(req);
compl = rctx->complete;
tfm = crypto_aead_reqtfm(req);
if (unlikely(err == -EINPROGRESS))
goto out;
aead_request_set_tfm(req, child);
err = crypt( req );
out:
ctx = crypto_aead_ctx(tfm);
refcnt = refcount_read(&ctx->refcnt);
local_bh_disable();
compl(&req->base, err);
local_bh_enable();
if (err != -EINPROGRESS && refcnt && refcount_dec_and_test(&ctx->refcnt))
crypto_free_aead(tfm);
}
static void cryptd_aead_encrypt(struct crypto_async_request *areq, int err)
{
struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
struct crypto_aead *child = ctx->child;
struct aead_request *req;
req = container_of(areq, struct aead_request, base);
cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->encrypt);
}
static void cryptd_aead_decrypt(struct crypto_async_request *areq, int err)
{
struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
struct crypto_aead *child = ctx->child;
struct aead_request *req;
req = container_of(areq, struct aead_request, base);
cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->decrypt);
}
static int cryptd_aead_enqueue(struct aead_request *req,
crypto_completion_t compl)
{
struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm));
rctx->complete = req->base.complete;
req->base.complete = compl;
return cryptd_enqueue_request(queue, &req->base);
}
static int cryptd_aead_encrypt_enqueue(struct aead_request *req)
{
return cryptd_aead_enqueue(req, cryptd_aead_encrypt );
}
static int cryptd_aead_decrypt_enqueue(struct aead_request *req)
{
return cryptd_aead_enqueue(req, cryptd_aead_decrypt );
}
static int cryptd_aead_init_tfm(struct crypto_aead *tfm)
{
struct aead_instance *inst = aead_alg_instance(tfm);
struct aead_instance_ctx *ictx = aead_instance_ctx(inst);
struct crypto_aead_spawn *spawn = &ictx->aead_spawn;
struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct crypto_aead *cipher;
cipher = crypto_spawn_aead(spawn);
if (IS_ERR(cipher))
return PTR_ERR(cipher);
ctx->child = cipher;
crypto_aead_set_reqsize(
tfm, max((unsigned)sizeof(struct cryptd_aead_request_ctx),
crypto_aead_reqsize(cipher)));
return 0;
}
static void cryptd_aead_exit_tfm(struct crypto_aead *tfm)
{
struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
crypto_free_aead(ctx->child);
}
static int cryptd_create_aead(struct crypto_template *tmpl,
struct rtattr **tb,
struct cryptd_queue *queue)
{
struct aead_instance_ctx *ctx;
struct aead_instance *inst;
struct aead_alg *alg;
const char *name;
u32 type = 0;
u32 mask = CRYPTO_ALG_ASYNC;
int err;
cryptd_check_internal(tb, &type, &mask);
name = crypto_attr_alg_name(tb[1]);
if (IS_ERR(name))
return PTR_ERR(name);
inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
if (!inst)
return -ENOMEM;
ctx = aead_instance_ctx(inst);
ctx->queue = queue;
crypto_set_aead_spawn(&ctx->aead_spawn, aead_crypto_instance(inst));
err = crypto_grab_aead(&ctx->aead_spawn, name, type, mask);
if (err)
goto out_free_inst;
alg = crypto_spawn_aead_alg(&ctx->aead_spawn);
err = cryptd_init_instance(aead_crypto_instance(inst), &alg->base);
if (err)
goto out_drop_aead;
inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC |
(alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
inst->alg.base.cra_ctxsize = sizeof(struct cryptd_aead_ctx);
inst->alg.ivsize = crypto_aead_alg_ivsize(alg);
inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg);
inst->alg.init = cryptd_aead_init_tfm;
inst->alg.exit = cryptd_aead_exit_tfm;
inst->alg.setkey = cryptd_aead_setkey;
inst->alg.setauthsize = cryptd_aead_setauthsize;
inst->alg.encrypt = cryptd_aead_encrypt_enqueue;
inst->alg.decrypt = cryptd_aead_decrypt_enqueue;
err = aead_register_instance(tmpl, inst);
if (err) {
out_drop_aead:
crypto_drop_aead(&ctx->aead_spawn);
out_free_inst:
kfree(inst);
}
return err;
}
static struct cryptd_queue queue;
static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
{
struct crypto_attr_type *algt;
algt = crypto_get_attr_type(tb);
if (IS_ERR(algt))
return PTR_ERR(algt);
switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
case CRYPTO_ALG_TYPE_SKCIPHER:
return cryptd_create_skcipher(tmpl, tb, &queue);
case CRYPTO_ALG_TYPE_HASH:
return cryptd_create_hash(tmpl, tb, &queue);
case CRYPTO_ALG_TYPE_AEAD:
return cryptd_create_aead(tmpl, tb, &queue);
}
return -EINVAL;
}
static void cryptd_free(struct crypto_instance *inst)
{
struct cryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
struct aead_instance_ctx *aead_ctx = crypto_instance_ctx(inst);
switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
case CRYPTO_ALG_TYPE_AHASH:
crypto_drop_shash(&hctx->spawn);
kfree(ahash_instance(inst));
return;
case CRYPTO_ALG_TYPE_AEAD:
crypto_drop_aead(&aead_ctx->aead_spawn);
kfree(aead_instance(inst));
return;
default:
crypto_drop_spawn(&ctx->spawn);
kfree(inst);
}
}
static struct crypto_template cryptd_tmpl = {
.name = "cryptd",
.create = cryptd_create,
.free = cryptd_free,
.module = THIS_MODULE,
};
struct cryptd_skcipher *cryptd_alloc_skcipher(const char *alg_name,
u32 type, u32 mask)
{
char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
struct cryptd_skcipher_ctx *ctx;
struct crypto_skcipher *tfm;
if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
"cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
return ERR_PTR(-EINVAL);
tfm = crypto_alloc_skcipher(cryptd_alg_name, type, mask);
if (IS_ERR(tfm))
return ERR_CAST(tfm);
if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
crypto_free_skcipher(tfm);
return ERR_PTR(-EINVAL);
}
ctx = crypto_skcipher_ctx(tfm);
refcount_set(&ctx->refcnt, 1);
return container_of(tfm, struct cryptd_skcipher, base);
}
EXPORT_SYMBOL_GPL(cryptd_alloc_skcipher);
struct crypto_skcipher *cryptd_skcipher_child(struct cryptd_skcipher *tfm)
{
struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
return &ctx->child->base;
}
EXPORT_SYMBOL_GPL(cryptd_skcipher_child);
bool cryptd_skcipher_queued(struct cryptd_skcipher *tfm)
{
struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
return refcount_read(&ctx->refcnt) - 1;
}
EXPORT_SYMBOL_GPL(cryptd_skcipher_queued);
void cryptd_free_skcipher(struct cryptd_skcipher *tfm)
{
struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
if (refcount_dec_and_test(&ctx->refcnt))
crypto_free_skcipher(&tfm->base);
}
EXPORT_SYMBOL_GPL(cryptd_free_skcipher);
struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name,
u32 type, u32 mask)
{
char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
struct cryptd_hash_ctx *ctx;
struct crypto_ahash *tfm;
if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
"cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
return ERR_PTR(-EINVAL);
tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask);
if (IS_ERR(tfm))
return ERR_CAST(tfm);
if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
crypto_free_ahash(tfm);
return ERR_PTR(-EINVAL);
}
ctx = crypto_ahash_ctx(tfm);
refcount_set(&ctx->refcnt, 1);
return __cryptd_ahash_cast(tfm);
}
EXPORT_SYMBOL_GPL(cryptd_alloc_ahash);
struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm)
{
struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
return ctx->child;
}
EXPORT_SYMBOL_GPL(cryptd_ahash_child);
struct shash_desc *cryptd_shash_desc(struct ahash_request *req)
{
struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
return &rctx->desc;
}
EXPORT_SYMBOL_GPL(cryptd_shash_desc);
bool cryptd_ahash_queued(struct cryptd_ahash *tfm)
{
struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
return refcount_read(&ctx->refcnt) - 1;
}
EXPORT_SYMBOL_GPL(cryptd_ahash_queued);
void cryptd_free_ahash(struct cryptd_ahash *tfm)
{
struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
if (refcount_dec_and_test(&ctx->refcnt))
crypto_free_ahash(&tfm->base);
}
EXPORT_SYMBOL_GPL(cryptd_free_ahash);
struct cryptd_aead *cryptd_alloc_aead(const char *alg_name,
u32 type, u32 mask)
{
char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
struct cryptd_aead_ctx *ctx;
struct crypto_aead *tfm;
if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
"cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
return ERR_PTR(-EINVAL);
tfm = crypto_alloc_aead(cryptd_alg_name, type, mask);
if (IS_ERR(tfm))
return ERR_CAST(tfm);
if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
crypto_free_aead(tfm);
return ERR_PTR(-EINVAL);
}
ctx = crypto_aead_ctx(tfm);
refcount_set(&ctx->refcnt, 1);
return __cryptd_aead_cast(tfm);
}
EXPORT_SYMBOL_GPL(cryptd_alloc_aead);
struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm)
{
struct cryptd_aead_ctx *ctx;
ctx = crypto_aead_ctx(&tfm->base);
return ctx->child;
}
EXPORT_SYMBOL_GPL(cryptd_aead_child);
bool cryptd_aead_queued(struct cryptd_aead *tfm)
{
struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
return refcount_read(&ctx->refcnt) - 1;
}
EXPORT_SYMBOL_GPL(cryptd_aead_queued);
void cryptd_free_aead(struct cryptd_aead *tfm)
{
struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
if (refcount_dec_and_test(&ctx->refcnt))
crypto_free_aead(&tfm->base);
}
EXPORT_SYMBOL_GPL(cryptd_free_aead);
static int __init cryptd_init(void)
{
int err;
cryptd_wq = alloc_workqueue("cryptd", WQ_MEM_RECLAIM | WQ_CPU_INTENSIVE,
1);
if (!cryptd_wq)
return -ENOMEM;
err = cryptd_init_queue(&queue, cryptd_max_cpu_qlen);
if (err)
goto err_destroy_wq;
err = crypto_register_template(&cryptd_tmpl);
if (err)
goto err_fini_queue;
return 0;
err_fini_queue:
cryptd_fini_queue(&queue);
err_destroy_wq:
destroy_workqueue(cryptd_wq);
return err;
}
static void __exit cryptd_exit(void)
{
destroy_workqueue(cryptd_wq);
cryptd_fini_queue(&queue);
crypto_unregister_template(&cryptd_tmpl);
}
subsys_initcall(cryptd_init);
module_exit(cryptd_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Software async crypto daemon");
MODULE_ALIAS_CRYPTO("cryptd");