2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-24 21:24:00 +08:00
linux-next/arch/sparc/kernel/leon_kernel.c
Andreas Larsson 1ffbc51a0d sparc32, leon: Remove separate "ticker" timer for SMP
This reduces the need from two timers to one timer.

Moreover, without this patch, when the "ticker" timer triggers timer_cs_read via
tick_periodic it reads the value of the usual timer it can get an wrapped timer
value without timer_cs_internal_counter having been updated leading to the clock
going backwards. This effectively hangs one cpu that gets stuck in
update_wall_time with an offset slightly smaller than 0xffffffffffffffff.

Signed-off-by: Andreas Larsson <andreas@gaisler.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-19 02:10:29 -07:00

500 lines
13 KiB
C

/*
* Copyright (C) 2009 Daniel Hellstrom (daniel@gaisler.com) Aeroflex Gaisler AB
* Copyright (C) 2009 Konrad Eisele (konrad@gaisler.com) Aeroflex Gaisler AB
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/interrupt.h>
#include <linux/of_device.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <asm/oplib.h>
#include <asm/timer.h>
#include <asm/prom.h>
#include <asm/leon.h>
#include <asm/leon_amba.h>
#include <asm/traps.h>
#include <asm/cacheflush.h>
#include <asm/smp.h>
#include <asm/setup.h>
#include "kernel.h"
#include "prom.h"
#include "irq.h"
struct leon3_irqctrl_regs_map *leon3_irqctrl_regs; /* interrupt controller base address */
struct leon3_gptimer_regs_map *leon3_gptimer_regs; /* timer controller base address */
int leondebug_irq_disable;
int leon_debug_irqout;
static int dummy_master_l10_counter;
unsigned long amba_system_id;
static DEFINE_SPINLOCK(leon_irq_lock);
unsigned long leon3_gptimer_irq; /* interrupt controller irq number */
unsigned long leon3_gptimer_idx; /* Timer Index (0..6) within Timer Core */
unsigned int sparc_leon_eirq;
#define LEON_IMASK(cpu) (&leon3_irqctrl_regs->mask[cpu])
#define LEON_IACK (&leon3_irqctrl_regs->iclear)
#define LEON_DO_ACK_HW 1
/* Return the last ACKed IRQ by the Extended IRQ controller. It has already
* been (automatically) ACKed when the CPU takes the trap.
*/
static inline unsigned int leon_eirq_get(int cpu)
{
return LEON3_BYPASS_LOAD_PA(&leon3_irqctrl_regs->intid[cpu]) & 0x1f;
}
/* Handle one or multiple IRQs from the extended interrupt controller */
static void leon_handle_ext_irq(unsigned int irq, struct irq_desc *desc)
{
unsigned int eirq;
struct irq_bucket *p;
int cpu = sparc_leon3_cpuid();
eirq = leon_eirq_get(cpu);
p = irq_map[eirq];
if ((eirq & 0x10) && p && p->irq) /* bit4 tells if IRQ happened */
generic_handle_irq(p->irq);
}
/* The extended IRQ controller has been found, this function registers it */
void leon_eirq_setup(unsigned int eirq)
{
unsigned long mask, oldmask;
unsigned int veirq;
if (eirq < 1 || eirq > 0xf) {
printk(KERN_ERR "LEON EXT IRQ NUMBER BAD: %d\n", eirq);
return;
}
veirq = leon_build_device_irq(eirq, leon_handle_ext_irq, "extirq", 0);
/*
* Unmask the Extended IRQ, the IRQs routed through the Ext-IRQ
* controller have a mask-bit of their own, so this is safe.
*/
irq_link(veirq);
mask = 1 << eirq;
oldmask = LEON3_BYPASS_LOAD_PA(LEON_IMASK(boot_cpu_id));
LEON3_BYPASS_STORE_PA(LEON_IMASK(boot_cpu_id), (oldmask | mask));
sparc_leon_eirq = eirq;
}
unsigned long leon_get_irqmask(unsigned int irq)
{
unsigned long mask;
if (!irq || ((irq > 0xf) && !sparc_leon_eirq)
|| ((irq > 0x1f) && sparc_leon_eirq)) {
printk(KERN_ERR
"leon_get_irqmask: false irq number: %d\n", irq);
mask = 0;
} else {
mask = LEON_HARD_INT(irq);
}
return mask;
}
#ifdef CONFIG_SMP
static int irq_choose_cpu(const struct cpumask *affinity)
{
cpumask_t mask;
cpumask_and(&mask, cpu_online_mask, affinity);
if (cpumask_equal(&mask, cpu_online_mask) || cpumask_empty(&mask))
return boot_cpu_id;
else
return cpumask_first(&mask);
}
#else
#define irq_choose_cpu(affinity) boot_cpu_id
#endif
static int leon_set_affinity(struct irq_data *data, const struct cpumask *dest,
bool force)
{
unsigned long mask, oldmask, flags;
int oldcpu, newcpu;
mask = (unsigned long)data->chip_data;
oldcpu = irq_choose_cpu(data->affinity);
newcpu = irq_choose_cpu(dest);
if (oldcpu == newcpu)
goto out;
/* unmask on old CPU first before enabling on the selected CPU */
spin_lock_irqsave(&leon_irq_lock, flags);
oldmask = LEON3_BYPASS_LOAD_PA(LEON_IMASK(oldcpu));
LEON3_BYPASS_STORE_PA(LEON_IMASK(oldcpu), (oldmask & ~mask));
oldmask = LEON3_BYPASS_LOAD_PA(LEON_IMASK(newcpu));
LEON3_BYPASS_STORE_PA(LEON_IMASK(newcpu), (oldmask | mask));
spin_unlock_irqrestore(&leon_irq_lock, flags);
out:
return IRQ_SET_MASK_OK;
}
static void leon_unmask_irq(struct irq_data *data)
{
unsigned long mask, oldmask, flags;
int cpu;
mask = (unsigned long)data->chip_data;
cpu = irq_choose_cpu(data->affinity);
spin_lock_irqsave(&leon_irq_lock, flags);
oldmask = LEON3_BYPASS_LOAD_PA(LEON_IMASK(cpu));
LEON3_BYPASS_STORE_PA(LEON_IMASK(cpu), (oldmask | mask));
spin_unlock_irqrestore(&leon_irq_lock, flags);
}
static void leon_mask_irq(struct irq_data *data)
{
unsigned long mask, oldmask, flags;
int cpu;
mask = (unsigned long)data->chip_data;
cpu = irq_choose_cpu(data->affinity);
spin_lock_irqsave(&leon_irq_lock, flags);
oldmask = LEON3_BYPASS_LOAD_PA(LEON_IMASK(cpu));
LEON3_BYPASS_STORE_PA(LEON_IMASK(cpu), (oldmask & ~mask));
spin_unlock_irqrestore(&leon_irq_lock, flags);
}
static unsigned int leon_startup_irq(struct irq_data *data)
{
irq_link(data->irq);
leon_unmask_irq(data);
return 0;
}
static void leon_shutdown_irq(struct irq_data *data)
{
leon_mask_irq(data);
irq_unlink(data->irq);
}
/* Used by external level sensitive IRQ handlers on the LEON: ACK IRQ ctrl */
static void leon_eoi_irq(struct irq_data *data)
{
unsigned long mask = (unsigned long)data->chip_data;
if (mask & LEON_DO_ACK_HW)
LEON3_BYPASS_STORE_PA(LEON_IACK, mask & ~LEON_DO_ACK_HW);
}
static struct irq_chip leon_irq = {
.name = "leon",
.irq_startup = leon_startup_irq,
.irq_shutdown = leon_shutdown_irq,
.irq_mask = leon_mask_irq,
.irq_unmask = leon_unmask_irq,
.irq_eoi = leon_eoi_irq,
.irq_set_affinity = leon_set_affinity,
};
/*
* Build a LEON IRQ for the edge triggered LEON IRQ controller:
* Edge (normal) IRQ - handle_simple_irq, ack=DONT-CARE, never ack
* Level IRQ (PCI|Level-GPIO) - handle_fasteoi_irq, ack=1, ack after ISR
* Per-CPU Edge - handle_percpu_irq, ack=0
*/
unsigned int leon_build_device_irq(unsigned int real_irq,
irq_flow_handler_t flow_handler,
const char *name, int do_ack)
{
unsigned int irq;
unsigned long mask;
struct irq_desc *desc;
irq = 0;
mask = leon_get_irqmask(real_irq);
if (mask == 0)
goto out;
irq = irq_alloc(real_irq, real_irq);
if (irq == 0)
goto out;
if (do_ack)
mask |= LEON_DO_ACK_HW;
desc = irq_to_desc(irq);
if (!desc || !desc->handle_irq || desc->handle_irq == handle_bad_irq) {
irq_set_chip_and_handler_name(irq, &leon_irq,
flow_handler, name);
irq_set_chip_data(irq, (void *)mask);
}
out:
return irq;
}
static unsigned int _leon_build_device_irq(struct platform_device *op,
unsigned int real_irq)
{
return leon_build_device_irq(real_irq, handle_simple_irq, "edge", 0);
}
void leon_update_virq_handling(unsigned int virq,
irq_flow_handler_t flow_handler,
const char *name, int do_ack)
{
unsigned long mask = (unsigned long)irq_get_chip_data(virq);
mask &= ~LEON_DO_ACK_HW;
if (do_ack)
mask |= LEON_DO_ACK_HW;
irq_set_chip_and_handler_name(virq, &leon_irq,
flow_handler, name);
irq_set_chip_data(virq, (void *)mask);
}
static u32 leon_cycles_offset(void)
{
u32 rld, val, off;
rld = LEON3_BYPASS_LOAD_PA(&leon3_gptimer_regs->e[leon3_gptimer_idx].rld);
val = LEON3_BYPASS_LOAD_PA(&leon3_gptimer_regs->e[leon3_gptimer_idx].val);
off = rld - val;
return rld - val;
}
#ifdef CONFIG_SMP
/* smp clockevent irq */
irqreturn_t leon_percpu_timer_ce_interrupt(int irq, void *unused)
{
struct clock_event_device *ce;
int cpu = smp_processor_id();
leon_clear_profile_irq(cpu);
if (cpu == boot_cpu_id)
timer_interrupt(irq, NULL);
ce = &per_cpu(sparc32_clockevent, cpu);
irq_enter();
if (ce->event_handler)
ce->event_handler(ce);
irq_exit();
return IRQ_HANDLED;
}
#endif /* CONFIG_SMP */
void __init leon_init_timers(void)
{
int irq, eirq;
struct device_node *rootnp, *np, *nnp;
struct property *pp;
int len;
int icsel;
int ampopts;
int err;
u32 config;
sparc_config.get_cycles_offset = leon_cycles_offset;
sparc_config.cs_period = 1000000 / HZ;
sparc_config.features |= FEAT_L10_CLOCKSOURCE;
#ifndef CONFIG_SMP
sparc_config.features |= FEAT_L10_CLOCKEVENT;
#endif
leondebug_irq_disable = 0;
leon_debug_irqout = 0;
master_l10_counter = (unsigned int *)&dummy_master_l10_counter;
dummy_master_l10_counter = 0;
rootnp = of_find_node_by_path("/ambapp0");
if (!rootnp)
goto bad;
/* Find System ID: GRLIB build ID and optional CHIP ID */
pp = of_find_property(rootnp, "systemid", &len);
if (pp)
amba_system_id = *(unsigned long *)pp->value;
/* Find IRQMP IRQ Controller Registers base adr otherwise bail out */
np = of_find_node_by_name(rootnp, "GAISLER_IRQMP");
if (!np) {
np = of_find_node_by_name(rootnp, "01_00d");
if (!np)
goto bad;
}
pp = of_find_property(np, "reg", &len);
if (!pp)
goto bad;
leon3_irqctrl_regs = *(struct leon3_irqctrl_regs_map **)pp->value;
/* Find GPTIMER Timer Registers base address otherwise bail out. */
nnp = rootnp;
do {
np = of_find_node_by_name(nnp, "GAISLER_GPTIMER");
if (!np) {
np = of_find_node_by_name(nnp, "01_011");
if (!np)
goto bad;
}
ampopts = 0;
pp = of_find_property(np, "ampopts", &len);
if (pp) {
ampopts = *(int *)pp->value;
if (ampopts == 0) {
/* Skip this instance, resource already
* allocated by other OS */
nnp = np;
continue;
}
}
/* Select Timer-Instance on Timer Core. Default is zero */
leon3_gptimer_idx = ampopts & 0x7;
pp = of_find_property(np, "reg", &len);
if (pp)
leon3_gptimer_regs = *(struct leon3_gptimer_regs_map **)
pp->value;
pp = of_find_property(np, "interrupts", &len);
if (pp)
leon3_gptimer_irq = *(unsigned int *)pp->value;
} while (0);
if (!(leon3_gptimer_regs && leon3_irqctrl_regs && leon3_gptimer_irq))
goto bad;
LEON3_BYPASS_STORE_PA(&leon3_gptimer_regs->e[leon3_gptimer_idx].val, 0);
LEON3_BYPASS_STORE_PA(&leon3_gptimer_regs->e[leon3_gptimer_idx].rld,
(((1000000 / HZ) - 1)));
LEON3_BYPASS_STORE_PA(
&leon3_gptimer_regs->e[leon3_gptimer_idx].ctrl, 0);
/*
* The IRQ controller may (if implemented) consist of multiple
* IRQ controllers, each mapped on a 4Kb boundary.
* Each CPU may be routed to different IRQCTRLs, however
* we assume that all CPUs (in SMP system) is routed to the
* same IRQ Controller, and for non-SMP only one IRQCTRL is
* accessed anyway.
* In AMP systems, Linux must run on CPU0 for the time being.
*/
icsel = LEON3_BYPASS_LOAD_PA(&leon3_irqctrl_regs->icsel[boot_cpu_id/8]);
icsel = (icsel >> ((7 - (boot_cpu_id&0x7)) * 4)) & 0xf;
leon3_irqctrl_regs += icsel;
/* Mask all IRQs on boot-cpu IRQ controller */
LEON3_BYPASS_STORE_PA(&leon3_irqctrl_regs->mask[boot_cpu_id], 0);
/* Probe extended IRQ controller */
eirq = (LEON3_BYPASS_LOAD_PA(&leon3_irqctrl_regs->mpstatus)
>> 16) & 0xf;
if (eirq != 0)
leon_eirq_setup(eirq);
#ifdef CONFIG_SMP
{
unsigned long flags;
/*
* In SMP, sun4m adds a IPI handler to IRQ trap handler that
* LEON never must take, sun4d and LEON overwrites the branch
* with a NOP.
*/
local_irq_save(flags);
patchme_maybe_smp_msg[0] = 0x01000000; /* NOP out the branch */
local_ops->cache_all();
local_irq_restore(flags);
}
#endif
config = LEON3_BYPASS_LOAD_PA(&leon3_gptimer_regs->config);
if (config & (1 << LEON3_GPTIMER_SEPIRQ))
leon3_gptimer_irq += leon3_gptimer_idx;
else if ((config & LEON3_GPTIMER_TIMERS) > 1)
pr_warn("GPTIMER uses shared irqs, using other timers of the same core will fail.\n");
#ifdef CONFIG_SMP
/* Install per-cpu IRQ handler for broadcasted ticker */
irq = leon_build_device_irq(leon3_gptimer_irq, handle_percpu_irq,
"per-cpu", 0);
err = request_irq(irq, leon_percpu_timer_ce_interrupt,
IRQF_PERCPU | IRQF_TIMER, "timer", NULL);
#else
irq = _leon_build_device_irq(NULL, leon3_gptimer_irq);
err = request_irq(irq, timer_interrupt, IRQF_TIMER, "timer", NULL);
#endif
if (err) {
pr_err("Unable to attach timer IRQ%d\n", irq);
prom_halt();
}
LEON3_BYPASS_STORE_PA(&leon3_gptimer_regs->e[leon3_gptimer_idx].ctrl,
LEON3_GPTIMER_EN |
LEON3_GPTIMER_RL |
LEON3_GPTIMER_LD |
LEON3_GPTIMER_IRQEN);
return;
bad:
printk(KERN_ERR "No Timer/irqctrl found\n");
BUG();
return;
}
static void leon_clear_clock_irq(void)
{
}
static void leon_load_profile_irq(int cpu, unsigned int limit)
{
}
void __init leon_trans_init(struct device_node *dp)
{
if (strcmp(dp->type, "cpu") == 0 && strcmp(dp->name, "<NULL>") == 0) {
struct property *p;
p = of_find_property(dp, "mid", (void *)0);
if (p) {
int mid;
dp->name = prom_early_alloc(5 + 1);
memcpy(&mid, p->value, p->length);
sprintf((char *)dp->name, "cpu%.2d", mid);
}
}
}
#ifdef CONFIG_SMP
void leon_clear_profile_irq(int cpu)
{
}
void leon_enable_irq_cpu(unsigned int irq_nr, unsigned int cpu)
{
unsigned long mask, flags, *addr;
mask = leon_get_irqmask(irq_nr);
spin_lock_irqsave(&leon_irq_lock, flags);
addr = (unsigned long *)LEON_IMASK(cpu);
LEON3_BYPASS_STORE_PA(addr, (LEON3_BYPASS_LOAD_PA(addr) | mask));
spin_unlock_irqrestore(&leon_irq_lock, flags);
}
#endif
void __init leon_init_IRQ(void)
{
sparc_config.init_timers = leon_init_timers;
sparc_config.build_device_irq = _leon_build_device_irq;
sparc_config.clock_rate = 1000000;
sparc_config.clear_clock_irq = leon_clear_clock_irq;
sparc_config.load_profile_irq = leon_load_profile_irq;
}