mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-02 10:43:57 +08:00
8387ff2577
We always mixed in the parent pointer into the dentry name hash, but we did it late at lookup time. It turns out that we can simplify that lookup-time action by salting the hash with the parent pointer early instead of late. A few other users of our string hashes also wanted to mix in their own pointers into the hash, and those are updated to use the same mechanism. Hash users that don't have any particular initial salt can just use the NULL pointer as a no-salt. Cc: Vegard Nossum <vegard.nossum@oracle.com> Cc: George Spelvin <linux@sciencehorizons.net> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
251 lines
6.2 KiB
C
251 lines
6.2 KiB
C
/*
|
|
* Test cases for <linux/hash.h> and <linux/stringhash.h>
|
|
* This just verifies that various ways of computing a hash
|
|
* produce the same thing and, for cases where a k-bit hash
|
|
* value is requested, is of the requested size.
|
|
*
|
|
* We fill a buffer with a 255-byte null-terminated string,
|
|
* and use both full_name_hash() and hashlen_string() to hash the
|
|
* substrings from i to j, where 0 <= i < j < 256.
|
|
*
|
|
* The returned values are used to check that __hash_32() and
|
|
* __hash_32_generic() compute the same thing. Likewise hash_32()
|
|
* and hash_64().
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt "\n"
|
|
|
|
#include <linux/compiler.h>
|
|
#include <linux/types.h>
|
|
#include <linux/module.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/stringhash.h>
|
|
#include <linux/printk.h>
|
|
|
|
/* 32-bit XORSHIFT generator. Seed must not be zero. */
|
|
static u32 __init __attribute_const__
|
|
xorshift(u32 seed)
|
|
{
|
|
seed ^= seed << 13;
|
|
seed ^= seed >> 17;
|
|
seed ^= seed << 5;
|
|
return seed;
|
|
}
|
|
|
|
/* Given a non-zero x, returns a non-zero byte. */
|
|
static u8 __init __attribute_const__
|
|
mod255(u32 x)
|
|
{
|
|
x = (x & 0xffff) + (x >> 16); /* 1 <= x <= 0x1fffe */
|
|
x = (x & 0xff) + (x >> 8); /* 1 <= x <= 0x2fd */
|
|
x = (x & 0xff) + (x >> 8); /* 1 <= x <= 0x100 */
|
|
x = (x & 0xff) + (x >> 8); /* 1 <= x <= 0xff */
|
|
return x;
|
|
}
|
|
|
|
/* Fill the buffer with non-zero bytes. */
|
|
static void __init
|
|
fill_buf(char *buf, size_t len, u32 seed)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
seed = xorshift(seed);
|
|
buf[i] = mod255(seed);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Test the various integer hash functions. h64 (or its low-order bits)
|
|
* is the integer to hash. hash_or accumulates the OR of the hash values,
|
|
* which are later checked to see that they cover all the requested bits.
|
|
*
|
|
* Because these functions (as opposed to the string hashes) are all
|
|
* inline, the code being tested is actually in the module, and you can
|
|
* recompile and re-test the module without rebooting.
|
|
*/
|
|
static bool __init
|
|
test_int_hash(unsigned long long h64, u32 hash_or[2][33])
|
|
{
|
|
int k;
|
|
u32 h0 = (u32)h64, h1, h2;
|
|
|
|
/* Test __hash32 */
|
|
hash_or[0][0] |= h1 = __hash_32(h0);
|
|
#ifdef HAVE_ARCH__HASH_32
|
|
hash_or[1][0] |= h2 = __hash_32_generic(h0);
|
|
#if HAVE_ARCH__HASH_32 == 1
|
|
if (h1 != h2) {
|
|
pr_err("__hash_32(%#x) = %#x != __hash_32_generic() = %#x",
|
|
h0, h1, h2);
|
|
return false;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
/* Test k = 1..32 bits */
|
|
for (k = 1; k <= 32; k++) {
|
|
u32 const m = ((u32)2 << (k-1)) - 1; /* Low k bits set */
|
|
|
|
/* Test hash_32 */
|
|
hash_or[0][k] |= h1 = hash_32(h0, k);
|
|
if (h1 > m) {
|
|
pr_err("hash_32(%#x, %d) = %#x > %#x", h0, k, h1, m);
|
|
return false;
|
|
}
|
|
#ifdef HAVE_ARCH_HASH_32
|
|
h2 = hash_32_generic(h0, k);
|
|
#if HAVE_ARCH_HASH_32 == 1
|
|
if (h1 != h2) {
|
|
pr_err("hash_32(%#x, %d) = %#x != hash_32_generic() "
|
|
" = %#x", h0, k, h1, h2);
|
|
return false;
|
|
}
|
|
#else
|
|
if (h2 > m) {
|
|
pr_err("hash_32_generic(%#x, %d) = %#x > %#x",
|
|
h0, k, h1, m);
|
|
return false;
|
|
}
|
|
#endif
|
|
#endif
|
|
/* Test hash_64 */
|
|
hash_or[1][k] |= h1 = hash_64(h64, k);
|
|
if (h1 > m) {
|
|
pr_err("hash_64(%#llx, %d) = %#x > %#x", h64, k, h1, m);
|
|
return false;
|
|
}
|
|
#ifdef HAVE_ARCH_HASH_64
|
|
h2 = hash_64_generic(h64, k);
|
|
#if HAVE_ARCH_HASH_64 == 1
|
|
if (h1 != h2) {
|
|
pr_err("hash_64(%#llx, %d) = %#x != hash_64_generic() "
|
|
"= %#x", h64, k, h1, h2);
|
|
return false;
|
|
}
|
|
#else
|
|
if (h2 > m) {
|
|
pr_err("hash_64_generic(%#llx, %d) = %#x > %#x",
|
|
h64, k, h1, m);
|
|
return false;
|
|
}
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
(void)h2; /* Suppress unused variable warning */
|
|
return true;
|
|
}
|
|
|
|
#define SIZE 256 /* Run time is cubic in SIZE */
|
|
|
|
static int __init
|
|
test_hash_init(void)
|
|
{
|
|
char buf[SIZE+1];
|
|
u32 string_or = 0, hash_or[2][33] = { 0 };
|
|
unsigned tests = 0;
|
|
unsigned long long h64 = 0;
|
|
int i, j;
|
|
|
|
fill_buf(buf, SIZE, 1);
|
|
|
|
/* Test every possible non-empty substring in the buffer. */
|
|
for (j = SIZE; j > 0; --j) {
|
|
buf[j] = '\0';
|
|
|
|
for (i = 0; i <= j; i++) {
|
|
u64 hashlen = hashlen_string(buf+i, buf+i);
|
|
u32 h0 = full_name_hash(buf+i, buf+i, j-i);
|
|
|
|
/* Check that hashlen_string gets the length right */
|
|
if (hashlen_len(hashlen) != j-i) {
|
|
pr_err("hashlen_string(%d..%d) returned length"
|
|
" %u, expected %d",
|
|
i, j, hashlen_len(hashlen), j-i);
|
|
return -EINVAL;
|
|
}
|
|
/* Check that the hashes match */
|
|
if (hashlen_hash(hashlen) != h0) {
|
|
pr_err("hashlen_string(%d..%d) = %08x != "
|
|
"full_name_hash() = %08x",
|
|
i, j, hashlen_hash(hashlen), h0);
|
|
return -EINVAL;
|
|
}
|
|
|
|
string_or |= h0;
|
|
h64 = h64 << 32 | h0; /* For use with hash_64 */
|
|
if (!test_int_hash(h64, hash_or))
|
|
return -EINVAL;
|
|
tests++;
|
|
} /* i */
|
|
} /* j */
|
|
|
|
/* The OR of all the hash values should cover all the bits */
|
|
if (~string_or) {
|
|
pr_err("OR of all string hash results = %#x != %#x",
|
|
string_or, -1u);
|
|
return -EINVAL;
|
|
}
|
|
if (~hash_or[0][0]) {
|
|
pr_err("OR of all __hash_32 results = %#x != %#x",
|
|
hash_or[0][0], -1u);
|
|
return -EINVAL;
|
|
}
|
|
#ifdef HAVE_ARCH__HASH_32
|
|
#if HAVE_ARCH__HASH_32 != 1 /* Test is pointless if results match */
|
|
if (~hash_or[1][0]) {
|
|
pr_err("OR of all __hash_32_generic results = %#x != %#x",
|
|
hash_or[1][0], -1u);
|
|
return -EINVAL;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
/* Likewise for all the i-bit hash values */
|
|
for (i = 1; i <= 32; i++) {
|
|
u32 const m = ((u32)2 << (i-1)) - 1; /* Low i bits set */
|
|
|
|
if (hash_or[0][i] != m) {
|
|
pr_err("OR of all hash_32(%d) results = %#x "
|
|
"(%#x expected)", i, hash_or[0][i], m);
|
|
return -EINVAL;
|
|
}
|
|
if (hash_or[1][i] != m) {
|
|
pr_err("OR of all hash_64(%d) results = %#x "
|
|
"(%#x expected)", i, hash_or[1][i], m);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* Issue notices about skipped tests. */
|
|
#ifndef HAVE_ARCH__HASH_32
|
|
pr_info("__hash_32() has no arch implementation to test.");
|
|
#elif HAVE_ARCH__HASH_32 != 1
|
|
pr_info("__hash_32() is arch-specific; not compared to generic.");
|
|
#endif
|
|
#ifndef HAVE_ARCH_HASH_32
|
|
pr_info("hash_32() has no arch implementation to test.");
|
|
#elif HAVE_ARCH_HASH_32 != 1
|
|
pr_info("hash_32() is arch-specific; not compared to generic.");
|
|
#endif
|
|
#ifndef HAVE_ARCH_HASH_64
|
|
pr_info("hash_64() has no arch implementation to test.");
|
|
#elif HAVE_ARCH_HASH_64 != 1
|
|
pr_info("hash_64() is arch-specific; not compared to generic.");
|
|
#endif
|
|
|
|
pr_notice("%u tests passed.", tests);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __exit test_hash_exit(void)
|
|
{
|
|
}
|
|
|
|
module_init(test_hash_init); /* Does everything */
|
|
module_exit(test_hash_exit); /* Does nothing */
|
|
|
|
MODULE_LICENSE("GPL");
|