2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-22 04:24:02 +08:00
linux-next/drivers/net/ieee802154/at86rf230.c
Joe Perches d61e403856 drivers/net: Use octal not symbolic permissions
Prefer the direct use of octal for permissions.

Done with checkpatch -f --types=SYMBOLIC_PERMS --fix-inplace
and some typing.

Miscellanea:

o Whitespace neatening around these conversions.

Signed-off-by: Joe Perches <joe@perches.com>
Reviewed-by: Wei Liu <wei.liu2@citrix.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-26 12:07:49 -04:00

1842 lines
44 KiB
C

/*
* AT86RF230/RF231 driver
*
* Copyright (C) 2009-2012 Siemens AG
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Written by:
* Dmitry Eremin-Solenikov <dbaryshkov@gmail.com>
* Alexander Smirnov <alex.bluesman.smirnov@gmail.com>
* Alexander Aring <aar@pengutronix.de>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/hrtimer.h>
#include <linux/jiffies.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/gpio.h>
#include <linux/delay.h>
#include <linux/spi/spi.h>
#include <linux/spi/at86rf230.h>
#include <linux/regmap.h>
#include <linux/skbuff.h>
#include <linux/of_gpio.h>
#include <linux/ieee802154.h>
#include <linux/debugfs.h>
#include <net/mac802154.h>
#include <net/cfg802154.h>
#include "at86rf230.h"
struct at86rf230_local;
/* at86rf2xx chip depend data.
* All timings are in us.
*/
struct at86rf2xx_chip_data {
u16 t_sleep_cycle;
u16 t_channel_switch;
u16 t_reset_to_off;
u16 t_off_to_aack;
u16 t_off_to_tx_on;
u16 t_off_to_sleep;
u16 t_sleep_to_off;
u16 t_frame;
u16 t_p_ack;
int rssi_base_val;
int (*set_channel)(struct at86rf230_local *, u8, u8);
int (*set_txpower)(struct at86rf230_local *, s32);
};
#define AT86RF2XX_MAX_BUF (127 + 3)
/* tx retries to access the TX_ON state
* if it's above then force change will be started.
*
* We assume the max_frame_retries (7) value of 802.15.4 here.
*/
#define AT86RF2XX_MAX_TX_RETRIES 7
/* We use the recommended 5 minutes timeout to recalibrate */
#define AT86RF2XX_CAL_LOOP_TIMEOUT (5 * 60 * HZ)
struct at86rf230_state_change {
struct at86rf230_local *lp;
int irq;
struct hrtimer timer;
struct spi_message msg;
struct spi_transfer trx;
u8 buf[AT86RF2XX_MAX_BUF];
void (*complete)(void *context);
u8 from_state;
u8 to_state;
bool free;
};
struct at86rf230_trac {
u64 success;
u64 success_data_pending;
u64 success_wait_for_ack;
u64 channel_access_failure;
u64 no_ack;
u64 invalid;
};
struct at86rf230_local {
struct spi_device *spi;
struct ieee802154_hw *hw;
struct at86rf2xx_chip_data *data;
struct regmap *regmap;
int slp_tr;
bool sleep;
struct completion state_complete;
struct at86rf230_state_change state;
unsigned long cal_timeout;
bool is_tx;
bool is_tx_from_off;
u8 tx_retry;
struct sk_buff *tx_skb;
struct at86rf230_state_change tx;
struct at86rf230_trac trac;
};
#define AT86RF2XX_NUMREGS 0x3F
static void
at86rf230_async_state_change(struct at86rf230_local *lp,
struct at86rf230_state_change *ctx,
const u8 state, void (*complete)(void *context));
static inline void
at86rf230_sleep(struct at86rf230_local *lp)
{
if (gpio_is_valid(lp->slp_tr)) {
gpio_set_value(lp->slp_tr, 1);
usleep_range(lp->data->t_off_to_sleep,
lp->data->t_off_to_sleep + 10);
lp->sleep = true;
}
}
static inline void
at86rf230_awake(struct at86rf230_local *lp)
{
if (gpio_is_valid(lp->slp_tr)) {
gpio_set_value(lp->slp_tr, 0);
usleep_range(lp->data->t_sleep_to_off,
lp->data->t_sleep_to_off + 100);
lp->sleep = false;
}
}
static inline int
__at86rf230_write(struct at86rf230_local *lp,
unsigned int addr, unsigned int data)
{
bool sleep = lp->sleep;
int ret;
/* awake for register setting if sleep */
if (sleep)
at86rf230_awake(lp);
ret = regmap_write(lp->regmap, addr, data);
/* sleep again if was sleeping */
if (sleep)
at86rf230_sleep(lp);
return ret;
}
static inline int
__at86rf230_read(struct at86rf230_local *lp,
unsigned int addr, unsigned int *data)
{
bool sleep = lp->sleep;
int ret;
/* awake for register setting if sleep */
if (sleep)
at86rf230_awake(lp);
ret = regmap_read(lp->regmap, addr, data);
/* sleep again if was sleeping */
if (sleep)
at86rf230_sleep(lp);
return ret;
}
static inline int
at86rf230_read_subreg(struct at86rf230_local *lp,
unsigned int addr, unsigned int mask,
unsigned int shift, unsigned int *data)
{
int rc;
rc = __at86rf230_read(lp, addr, data);
if (!rc)
*data = (*data & mask) >> shift;
return rc;
}
static inline int
at86rf230_write_subreg(struct at86rf230_local *lp,
unsigned int addr, unsigned int mask,
unsigned int shift, unsigned int data)
{
bool sleep = lp->sleep;
int ret;
/* awake for register setting if sleep */
if (sleep)
at86rf230_awake(lp);
ret = regmap_update_bits(lp->regmap, addr, mask, data << shift);
/* sleep again if was sleeping */
if (sleep)
at86rf230_sleep(lp);
return ret;
}
static inline void
at86rf230_slp_tr_rising_edge(struct at86rf230_local *lp)
{
gpio_set_value(lp->slp_tr, 1);
udelay(1);
gpio_set_value(lp->slp_tr, 0);
}
static bool
at86rf230_reg_writeable(struct device *dev, unsigned int reg)
{
switch (reg) {
case RG_TRX_STATE:
case RG_TRX_CTRL_0:
case RG_TRX_CTRL_1:
case RG_PHY_TX_PWR:
case RG_PHY_ED_LEVEL:
case RG_PHY_CC_CCA:
case RG_CCA_THRES:
case RG_RX_CTRL:
case RG_SFD_VALUE:
case RG_TRX_CTRL_2:
case RG_ANT_DIV:
case RG_IRQ_MASK:
case RG_VREG_CTRL:
case RG_BATMON:
case RG_XOSC_CTRL:
case RG_RX_SYN:
case RG_XAH_CTRL_1:
case RG_FTN_CTRL:
case RG_PLL_CF:
case RG_PLL_DCU:
case RG_SHORT_ADDR_0:
case RG_SHORT_ADDR_1:
case RG_PAN_ID_0:
case RG_PAN_ID_1:
case RG_IEEE_ADDR_0:
case RG_IEEE_ADDR_1:
case RG_IEEE_ADDR_2:
case RG_IEEE_ADDR_3:
case RG_IEEE_ADDR_4:
case RG_IEEE_ADDR_5:
case RG_IEEE_ADDR_6:
case RG_IEEE_ADDR_7:
case RG_XAH_CTRL_0:
case RG_CSMA_SEED_0:
case RG_CSMA_SEED_1:
case RG_CSMA_BE:
return true;
default:
return false;
}
}
static bool
at86rf230_reg_readable(struct device *dev, unsigned int reg)
{
bool rc;
/* all writeable are also readable */
rc = at86rf230_reg_writeable(dev, reg);
if (rc)
return rc;
/* readonly regs */
switch (reg) {
case RG_TRX_STATUS:
case RG_PHY_RSSI:
case RG_IRQ_STATUS:
case RG_PART_NUM:
case RG_VERSION_NUM:
case RG_MAN_ID_1:
case RG_MAN_ID_0:
return true;
default:
return false;
}
}
static bool
at86rf230_reg_volatile(struct device *dev, unsigned int reg)
{
/* can be changed during runtime */
switch (reg) {
case RG_TRX_STATUS:
case RG_TRX_STATE:
case RG_PHY_RSSI:
case RG_PHY_ED_LEVEL:
case RG_IRQ_STATUS:
case RG_VREG_CTRL:
case RG_PLL_CF:
case RG_PLL_DCU:
return true;
default:
return false;
}
}
static bool
at86rf230_reg_precious(struct device *dev, unsigned int reg)
{
/* don't clear irq line on read */
switch (reg) {
case RG_IRQ_STATUS:
return true;
default:
return false;
}
}
static const struct regmap_config at86rf230_regmap_spi_config = {
.reg_bits = 8,
.val_bits = 8,
.write_flag_mask = CMD_REG | CMD_WRITE,
.read_flag_mask = CMD_REG,
.cache_type = REGCACHE_RBTREE,
.max_register = AT86RF2XX_NUMREGS,
.writeable_reg = at86rf230_reg_writeable,
.readable_reg = at86rf230_reg_readable,
.volatile_reg = at86rf230_reg_volatile,
.precious_reg = at86rf230_reg_precious,
};
static void
at86rf230_async_error_recover_complete(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
if (ctx->free)
kfree(ctx);
ieee802154_wake_queue(lp->hw);
}
static void
at86rf230_async_error_recover(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
lp->is_tx = 0;
at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON,
at86rf230_async_error_recover_complete);
}
static inline void
at86rf230_async_error(struct at86rf230_local *lp,
struct at86rf230_state_change *ctx, int rc)
{
dev_err(&lp->spi->dev, "spi_async error %d\n", rc);
at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF,
at86rf230_async_error_recover);
}
/* Generic function to get some register value in async mode */
static void
at86rf230_async_read_reg(struct at86rf230_local *lp, u8 reg,
struct at86rf230_state_change *ctx,
void (*complete)(void *context))
{
int rc;
u8 *tx_buf = ctx->buf;
tx_buf[0] = (reg & CMD_REG_MASK) | CMD_REG;
ctx->msg.complete = complete;
rc = spi_async(lp->spi, &ctx->msg);
if (rc)
at86rf230_async_error(lp, ctx, rc);
}
static void
at86rf230_async_write_reg(struct at86rf230_local *lp, u8 reg, u8 val,
struct at86rf230_state_change *ctx,
void (*complete)(void *context))
{
int rc;
ctx->buf[0] = (reg & CMD_REG_MASK) | CMD_REG | CMD_WRITE;
ctx->buf[1] = val;
ctx->msg.complete = complete;
rc = spi_async(lp->spi, &ctx->msg);
if (rc)
at86rf230_async_error(lp, ctx, rc);
}
static void
at86rf230_async_state_assert(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
const u8 *buf = ctx->buf;
const u8 trx_state = buf[1] & TRX_STATE_MASK;
/* Assert state change */
if (trx_state != ctx->to_state) {
/* Special handling if transceiver state is in
* STATE_BUSY_RX_AACK and a SHR was detected.
*/
if (trx_state == STATE_BUSY_RX_AACK) {
/* Undocumented race condition. If we send a state
* change to STATE_RX_AACK_ON the transceiver could
* change his state automatically to STATE_BUSY_RX_AACK
* if a SHR was detected. This is not an error, but we
* can't assert this.
*/
if (ctx->to_state == STATE_RX_AACK_ON)
goto done;
/* If we change to STATE_TX_ON without forcing and
* transceiver state is STATE_BUSY_RX_AACK, we wait
* 'tFrame + tPAck' receiving time. In this time the
* PDU should be received. If the transceiver is still
* in STATE_BUSY_RX_AACK, we run a force state change
* to STATE_TX_ON. This is a timeout handling, if the
* transceiver stucks in STATE_BUSY_RX_AACK.
*
* Additional we do several retries to try to get into
* TX_ON state without forcing. If the retries are
* higher or equal than AT86RF2XX_MAX_TX_RETRIES we
* will do a force change.
*/
if (ctx->to_state == STATE_TX_ON ||
ctx->to_state == STATE_TRX_OFF) {
u8 state = ctx->to_state;
if (lp->tx_retry >= AT86RF2XX_MAX_TX_RETRIES)
state = STATE_FORCE_TRX_OFF;
lp->tx_retry++;
at86rf230_async_state_change(lp, ctx, state,
ctx->complete);
return;
}
}
dev_warn(&lp->spi->dev, "unexcept state change from 0x%02x to 0x%02x. Actual state: 0x%02x\n",
ctx->from_state, ctx->to_state, trx_state);
}
done:
if (ctx->complete)
ctx->complete(context);
}
static enum hrtimer_restart at86rf230_async_state_timer(struct hrtimer *timer)
{
struct at86rf230_state_change *ctx =
container_of(timer, struct at86rf230_state_change, timer);
struct at86rf230_local *lp = ctx->lp;
at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
at86rf230_async_state_assert);
return HRTIMER_NORESTART;
}
/* Do state change timing delay. */
static void
at86rf230_async_state_delay(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
struct at86rf2xx_chip_data *c = lp->data;
bool force = false;
ktime_t tim;
/* The force state changes are will show as normal states in the
* state status subregister. We change the to_state to the
* corresponding one and remember if it was a force change, this
* differs if we do a state change from STATE_BUSY_RX_AACK.
*/
switch (ctx->to_state) {
case STATE_FORCE_TX_ON:
ctx->to_state = STATE_TX_ON;
force = true;
break;
case STATE_FORCE_TRX_OFF:
ctx->to_state = STATE_TRX_OFF;
force = true;
break;
default:
break;
}
switch (ctx->from_state) {
case STATE_TRX_OFF:
switch (ctx->to_state) {
case STATE_RX_AACK_ON:
tim = c->t_off_to_aack * NSEC_PER_USEC;
/* state change from TRX_OFF to RX_AACK_ON to do a
* calibration, we need to reset the timeout for the
* next one.
*/
lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
goto change;
case STATE_TX_ARET_ON:
case STATE_TX_ON:
tim = c->t_off_to_tx_on * NSEC_PER_USEC;
/* state change from TRX_OFF to TX_ON or ARET_ON to do
* a calibration, we need to reset the timeout for the
* next one.
*/
lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
goto change;
default:
break;
}
break;
case STATE_BUSY_RX_AACK:
switch (ctx->to_state) {
case STATE_TRX_OFF:
case STATE_TX_ON:
/* Wait for worst case receiving time if we
* didn't make a force change from BUSY_RX_AACK
* to TX_ON or TRX_OFF.
*/
if (!force) {
tim = (c->t_frame + c->t_p_ack) * NSEC_PER_USEC;
goto change;
}
break;
default:
break;
}
break;
/* Default value, means RESET state */
case STATE_P_ON:
switch (ctx->to_state) {
case STATE_TRX_OFF:
tim = c->t_reset_to_off * NSEC_PER_USEC;
goto change;
default:
break;
}
break;
default:
break;
}
/* Default delay is 1us in the most cases */
udelay(1);
at86rf230_async_state_timer(&ctx->timer);
return;
change:
hrtimer_start(&ctx->timer, tim, HRTIMER_MODE_REL);
}
static void
at86rf230_async_state_change_start(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
u8 *buf = ctx->buf;
const u8 trx_state = buf[1] & TRX_STATE_MASK;
/* Check for "possible" STATE_TRANSITION_IN_PROGRESS */
if (trx_state == STATE_TRANSITION_IN_PROGRESS) {
udelay(1);
at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
at86rf230_async_state_change_start);
return;
}
/* Check if we already are in the state which we change in */
if (trx_state == ctx->to_state) {
if (ctx->complete)
ctx->complete(context);
return;
}
/* Set current state to the context of state change */
ctx->from_state = trx_state;
/* Going into the next step for a state change which do a timing
* relevant delay.
*/
at86rf230_async_write_reg(lp, RG_TRX_STATE, ctx->to_state, ctx,
at86rf230_async_state_delay);
}
static void
at86rf230_async_state_change(struct at86rf230_local *lp,
struct at86rf230_state_change *ctx,
const u8 state, void (*complete)(void *context))
{
/* Initialization for the state change context */
ctx->to_state = state;
ctx->complete = complete;
at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
at86rf230_async_state_change_start);
}
static void
at86rf230_sync_state_change_complete(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
complete(&lp->state_complete);
}
/* This function do a sync framework above the async state change.
* Some callbacks of the IEEE 802.15.4 driver interface need to be
* handled synchronously.
*/
static int
at86rf230_sync_state_change(struct at86rf230_local *lp, unsigned int state)
{
unsigned long rc;
at86rf230_async_state_change(lp, &lp->state, state,
at86rf230_sync_state_change_complete);
rc = wait_for_completion_timeout(&lp->state_complete,
msecs_to_jiffies(100));
if (!rc) {
at86rf230_async_error(lp, &lp->state, -ETIMEDOUT);
return -ETIMEDOUT;
}
return 0;
}
static void
at86rf230_tx_complete(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
ieee802154_xmit_complete(lp->hw, lp->tx_skb, false);
kfree(ctx);
}
static void
at86rf230_tx_on(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON,
at86rf230_tx_complete);
}
static void
at86rf230_tx_trac_check(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
if (IS_ENABLED(CONFIG_IEEE802154_AT86RF230_DEBUGFS)) {
u8 trac = TRAC_MASK(ctx->buf[1]);
switch (trac) {
case TRAC_SUCCESS:
lp->trac.success++;
break;
case TRAC_SUCCESS_DATA_PENDING:
lp->trac.success_data_pending++;
break;
case TRAC_CHANNEL_ACCESS_FAILURE:
lp->trac.channel_access_failure++;
break;
case TRAC_NO_ACK:
lp->trac.no_ack++;
break;
case TRAC_INVALID:
lp->trac.invalid++;
break;
default:
WARN_ONCE(1, "received tx trac status %d\n", trac);
break;
}
}
at86rf230_async_state_change(lp, ctx, STATE_TX_ON, at86rf230_tx_on);
}
static void
at86rf230_rx_read_frame_complete(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
const u8 *buf = ctx->buf;
struct sk_buff *skb;
u8 len, lqi;
len = buf[1];
if (!ieee802154_is_valid_psdu_len(len)) {
dev_vdbg(&lp->spi->dev, "corrupted frame received\n");
len = IEEE802154_MTU;
}
lqi = buf[2 + len];
skb = dev_alloc_skb(IEEE802154_MTU);
if (!skb) {
dev_vdbg(&lp->spi->dev, "failed to allocate sk_buff\n");
kfree(ctx);
return;
}
skb_put_data(skb, buf + 2, len);
ieee802154_rx_irqsafe(lp->hw, skb, lqi);
kfree(ctx);
}
static void
at86rf230_rx_trac_check(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
u8 *buf = ctx->buf;
int rc;
if (IS_ENABLED(CONFIG_IEEE802154_AT86RF230_DEBUGFS)) {
u8 trac = TRAC_MASK(buf[1]);
switch (trac) {
case TRAC_SUCCESS:
lp->trac.success++;
break;
case TRAC_SUCCESS_WAIT_FOR_ACK:
lp->trac.success_wait_for_ack++;
break;
case TRAC_INVALID:
lp->trac.invalid++;
break;
default:
WARN_ONCE(1, "received rx trac status %d\n", trac);
break;
}
}
buf[0] = CMD_FB;
ctx->trx.len = AT86RF2XX_MAX_BUF;
ctx->msg.complete = at86rf230_rx_read_frame_complete;
rc = spi_async(lp->spi, &ctx->msg);
if (rc) {
ctx->trx.len = 2;
at86rf230_async_error(lp, ctx, rc);
}
}
static void
at86rf230_irq_trx_end(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
if (lp->is_tx) {
lp->is_tx = 0;
at86rf230_async_read_reg(lp, RG_TRX_STATE, ctx,
at86rf230_tx_trac_check);
} else {
at86rf230_async_read_reg(lp, RG_TRX_STATE, ctx,
at86rf230_rx_trac_check);
}
}
static void
at86rf230_irq_status(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
const u8 *buf = ctx->buf;
u8 irq = buf[1];
enable_irq(lp->spi->irq);
if (irq & IRQ_TRX_END) {
at86rf230_irq_trx_end(ctx);
} else {
dev_err(&lp->spi->dev, "not supported irq %02x received\n",
irq);
kfree(ctx);
}
}
static void
at86rf230_setup_spi_messages(struct at86rf230_local *lp,
struct at86rf230_state_change *state)
{
state->lp = lp;
state->irq = lp->spi->irq;
spi_message_init(&state->msg);
state->msg.context = state;
state->trx.len = 2;
state->trx.tx_buf = state->buf;
state->trx.rx_buf = state->buf;
spi_message_add_tail(&state->trx, &state->msg);
hrtimer_init(&state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
state->timer.function = at86rf230_async_state_timer;
}
static irqreturn_t at86rf230_isr(int irq, void *data)
{
struct at86rf230_local *lp = data;
struct at86rf230_state_change *ctx;
int rc;
disable_irq_nosync(irq);
ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
if (!ctx) {
enable_irq(irq);
return IRQ_NONE;
}
at86rf230_setup_spi_messages(lp, ctx);
/* tell on error handling to free ctx */
ctx->free = true;
ctx->buf[0] = (RG_IRQ_STATUS & CMD_REG_MASK) | CMD_REG;
ctx->msg.complete = at86rf230_irq_status;
rc = spi_async(lp->spi, &ctx->msg);
if (rc) {
at86rf230_async_error(lp, ctx, rc);
enable_irq(irq);
return IRQ_NONE;
}
return IRQ_HANDLED;
}
static void
at86rf230_write_frame_complete(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
ctx->trx.len = 2;
if (gpio_is_valid(lp->slp_tr))
at86rf230_slp_tr_rising_edge(lp);
else
at86rf230_async_write_reg(lp, RG_TRX_STATE, STATE_BUSY_TX, ctx,
NULL);
}
static void
at86rf230_write_frame(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
struct sk_buff *skb = lp->tx_skb;
u8 *buf = ctx->buf;
int rc;
lp->is_tx = 1;
buf[0] = CMD_FB | CMD_WRITE;
buf[1] = skb->len + 2;
memcpy(buf + 2, skb->data, skb->len);
ctx->trx.len = skb->len + 2;
ctx->msg.complete = at86rf230_write_frame_complete;
rc = spi_async(lp->spi, &ctx->msg);
if (rc) {
ctx->trx.len = 2;
at86rf230_async_error(lp, ctx, rc);
}
}
static void
at86rf230_xmit_tx_on(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON,
at86rf230_write_frame);
}
static void
at86rf230_xmit_start(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
/* check if we change from off state */
if (lp->is_tx_from_off)
at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON,
at86rf230_write_frame);
else
at86rf230_async_state_change(lp, ctx, STATE_TX_ON,
at86rf230_xmit_tx_on);
}
static int
at86rf230_xmit(struct ieee802154_hw *hw, struct sk_buff *skb)
{
struct at86rf230_local *lp = hw->priv;
struct at86rf230_state_change *ctx = &lp->tx;
lp->tx_skb = skb;
lp->tx_retry = 0;
/* After 5 minutes in PLL and the same frequency we run again the
* calibration loops which is recommended by at86rf2xx datasheets.
*
* The calibration is initiate by a state change from TRX_OFF
* to TX_ON, the lp->cal_timeout should be reinit by state_delay
* function then to start in the next 5 minutes.
*/
if (time_is_before_jiffies(lp->cal_timeout)) {
lp->is_tx_from_off = true;
at86rf230_async_state_change(lp, ctx, STATE_TRX_OFF,
at86rf230_xmit_start);
} else {
lp->is_tx_from_off = false;
at86rf230_xmit_start(ctx);
}
return 0;
}
static int
at86rf230_ed(struct ieee802154_hw *hw, u8 *level)
{
BUG_ON(!level);
*level = 0xbe;
return 0;
}
static int
at86rf230_start(struct ieee802154_hw *hw)
{
struct at86rf230_local *lp = hw->priv;
/* reset trac stats on start */
if (IS_ENABLED(CONFIG_IEEE802154_AT86RF230_DEBUGFS))
memset(&lp->trac, 0, sizeof(struct at86rf230_trac));
at86rf230_awake(lp);
enable_irq(lp->spi->irq);
return at86rf230_sync_state_change(lp, STATE_RX_AACK_ON);
}
static void
at86rf230_stop(struct ieee802154_hw *hw)
{
struct at86rf230_local *lp = hw->priv;
u8 csma_seed[2];
at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF);
disable_irq(lp->spi->irq);
/* It's recommended to set random new csma_seeds before sleep state.
* Makes only sense in the stop callback, not doing this inside of
* at86rf230_sleep, this is also used when we don't transmit afterwards
* when calling start callback again.
*/
get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed));
at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]);
at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]);
at86rf230_sleep(lp);
}
static int
at86rf23x_set_channel(struct at86rf230_local *lp, u8 page, u8 channel)
{
return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
}
#define AT86RF2XX_MAX_ED_LEVELS 0xF
static const s32 at86rf233_ed_levels[AT86RF2XX_MAX_ED_LEVELS + 1] = {
-9400, -9200, -9000, -8800, -8600, -8400, -8200, -8000, -7800, -7600,
-7400, -7200, -7000, -6800, -6600, -6400,
};
static const s32 at86rf231_ed_levels[AT86RF2XX_MAX_ED_LEVELS + 1] = {
-9100, -8900, -8700, -8500, -8300, -8100, -7900, -7700, -7500, -7300,
-7100, -6900, -6700, -6500, -6300, -6100,
};
static const s32 at86rf212_ed_levels_100[AT86RF2XX_MAX_ED_LEVELS + 1] = {
-10000, -9800, -9600, -9400, -9200, -9000, -8800, -8600, -8400, -8200,
-8000, -7800, -7600, -7400, -7200, -7000,
};
static const s32 at86rf212_ed_levels_98[AT86RF2XX_MAX_ED_LEVELS + 1] = {
-9800, -9600, -9400, -9200, -9000, -8800, -8600, -8400, -8200, -8000,
-7800, -7600, -7400, -7200, -7000, -6800,
};
static inline int
at86rf212_update_cca_ed_level(struct at86rf230_local *lp, int rssi_base_val)
{
unsigned int cca_ed_thres;
int rc;
rc = at86rf230_read_subreg(lp, SR_CCA_ED_THRES, &cca_ed_thres);
if (rc < 0)
return rc;
switch (rssi_base_val) {
case -98:
lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_98;
lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_98);
lp->hw->phy->cca_ed_level = at86rf212_ed_levels_98[cca_ed_thres];
break;
case -100:
lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_100;
lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_100);
lp->hw->phy->cca_ed_level = at86rf212_ed_levels_100[cca_ed_thres];
break;
default:
WARN_ON(1);
}
return 0;
}
static int
at86rf212_set_channel(struct at86rf230_local *lp, u8 page, u8 channel)
{
int rc;
if (channel == 0)
rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 0);
else
rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 1);
if (rc < 0)
return rc;
if (page == 0) {
rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 0);
lp->data->rssi_base_val = -100;
} else {
rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 1);
lp->data->rssi_base_val = -98;
}
if (rc < 0)
return rc;
rc = at86rf212_update_cca_ed_level(lp, lp->data->rssi_base_val);
if (rc < 0)
return rc;
/* This sets the symbol_duration according frequency on the 212.
* TODO move this handling while set channel and page in cfg802154.
* We can do that, this timings are according 802.15.4 standard.
* If we do that in cfg802154, this is a more generic calculation.
*
* This should also protected from ifs_timer. Means cancel timer and
* init with a new value. For now, this is okay.
*/
if (channel == 0) {
if (page == 0) {
/* SUB:0 and BPSK:0 -> BPSK-20 */
lp->hw->phy->symbol_duration = 50;
} else {
/* SUB:1 and BPSK:0 -> BPSK-40 */
lp->hw->phy->symbol_duration = 25;
}
} else {
if (page == 0)
/* SUB:0 and BPSK:1 -> OQPSK-100/200/400 */
lp->hw->phy->symbol_duration = 40;
else
/* SUB:1 and BPSK:1 -> OQPSK-250/500/1000 */
lp->hw->phy->symbol_duration = 16;
}
lp->hw->phy->lifs_period = IEEE802154_LIFS_PERIOD *
lp->hw->phy->symbol_duration;
lp->hw->phy->sifs_period = IEEE802154_SIFS_PERIOD *
lp->hw->phy->symbol_duration;
return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
}
static int
at86rf230_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
{
struct at86rf230_local *lp = hw->priv;
int rc;
rc = lp->data->set_channel(lp, page, channel);
/* Wait for PLL */
usleep_range(lp->data->t_channel_switch,
lp->data->t_channel_switch + 10);
lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
return rc;
}
static int
at86rf230_set_hw_addr_filt(struct ieee802154_hw *hw,
struct ieee802154_hw_addr_filt *filt,
unsigned long changed)
{
struct at86rf230_local *lp = hw->priv;
if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
u16 addr = le16_to_cpu(filt->short_addr);
dev_vdbg(&lp->spi->dev,
"at86rf230_set_hw_addr_filt called for saddr\n");
__at86rf230_write(lp, RG_SHORT_ADDR_0, addr);
__at86rf230_write(lp, RG_SHORT_ADDR_1, addr >> 8);
}
if (changed & IEEE802154_AFILT_PANID_CHANGED) {
u16 pan = le16_to_cpu(filt->pan_id);
dev_vdbg(&lp->spi->dev,
"at86rf230_set_hw_addr_filt called for pan id\n");
__at86rf230_write(lp, RG_PAN_ID_0, pan);
__at86rf230_write(lp, RG_PAN_ID_1, pan >> 8);
}
if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
u8 i, addr[8];
memcpy(addr, &filt->ieee_addr, 8);
dev_vdbg(&lp->spi->dev,
"at86rf230_set_hw_addr_filt called for IEEE addr\n");
for (i = 0; i < 8; i++)
__at86rf230_write(lp, RG_IEEE_ADDR_0 + i, addr[i]);
}
if (changed & IEEE802154_AFILT_PANC_CHANGED) {
dev_vdbg(&lp->spi->dev,
"at86rf230_set_hw_addr_filt called for panc change\n");
if (filt->pan_coord)
at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 1);
else
at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 0);
}
return 0;
}
#define AT86RF23X_MAX_TX_POWERS 0xF
static const s32 at86rf233_powers[AT86RF23X_MAX_TX_POWERS + 1] = {
400, 370, 340, 300, 250, 200, 100, 0, -100, -200, -300, -400, -600,
-800, -1200, -1700,
};
static const s32 at86rf231_powers[AT86RF23X_MAX_TX_POWERS + 1] = {
300, 280, 230, 180, 130, 70, 0, -100, -200, -300, -400, -500, -700,
-900, -1200, -1700,
};
#define AT86RF212_MAX_TX_POWERS 0x1F
static const s32 at86rf212_powers[AT86RF212_MAX_TX_POWERS + 1] = {
500, 400, 300, 200, 100, 0, -100, -200, -300, -400, -500, -600, -700,
-800, -900, -1000, -1100, -1200, -1300, -1400, -1500, -1600, -1700,
-1800, -1900, -2000, -2100, -2200, -2300, -2400, -2500, -2600,
};
static int
at86rf23x_set_txpower(struct at86rf230_local *lp, s32 mbm)
{
u32 i;
for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) {
if (lp->hw->phy->supported.tx_powers[i] == mbm)
return at86rf230_write_subreg(lp, SR_TX_PWR_23X, i);
}
return -EINVAL;
}
static int
at86rf212_set_txpower(struct at86rf230_local *lp, s32 mbm)
{
u32 i;
for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) {
if (lp->hw->phy->supported.tx_powers[i] == mbm)
return at86rf230_write_subreg(lp, SR_TX_PWR_212, i);
}
return -EINVAL;
}
static int
at86rf230_set_txpower(struct ieee802154_hw *hw, s32 mbm)
{
struct at86rf230_local *lp = hw->priv;
return lp->data->set_txpower(lp, mbm);
}
static int
at86rf230_set_lbt(struct ieee802154_hw *hw, bool on)
{
struct at86rf230_local *lp = hw->priv;
return at86rf230_write_subreg(lp, SR_CSMA_LBT_MODE, on);
}
static int
at86rf230_set_cca_mode(struct ieee802154_hw *hw,
const struct wpan_phy_cca *cca)
{
struct at86rf230_local *lp = hw->priv;
u8 val;
/* mapping 802.15.4 to driver spec */
switch (cca->mode) {
case NL802154_CCA_ENERGY:
val = 1;
break;
case NL802154_CCA_CARRIER:
val = 2;
break;
case NL802154_CCA_ENERGY_CARRIER:
switch (cca->opt) {
case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
val = 3;
break;
case NL802154_CCA_OPT_ENERGY_CARRIER_OR:
val = 0;
break;
default:
return -EINVAL;
}
break;
default:
return -EINVAL;
}
return at86rf230_write_subreg(lp, SR_CCA_MODE, val);
}
static int
at86rf230_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm)
{
struct at86rf230_local *lp = hw->priv;
u32 i;
for (i = 0; i < hw->phy->supported.cca_ed_levels_size; i++) {
if (hw->phy->supported.cca_ed_levels[i] == mbm)
return at86rf230_write_subreg(lp, SR_CCA_ED_THRES, i);
}
return -EINVAL;
}
static int
at86rf230_set_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be,
u8 retries)
{
struct at86rf230_local *lp = hw->priv;
int rc;
rc = at86rf230_write_subreg(lp, SR_MIN_BE, min_be);
if (rc)
return rc;
rc = at86rf230_write_subreg(lp, SR_MAX_BE, max_be);
if (rc)
return rc;
return at86rf230_write_subreg(lp, SR_MAX_CSMA_RETRIES, retries);
}
static int
at86rf230_set_frame_retries(struct ieee802154_hw *hw, s8 retries)
{
struct at86rf230_local *lp = hw->priv;
return at86rf230_write_subreg(lp, SR_MAX_FRAME_RETRIES, retries);
}
static int
at86rf230_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on)
{
struct at86rf230_local *lp = hw->priv;
int rc;
if (on) {
rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 1);
if (rc < 0)
return rc;
rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 1);
if (rc < 0)
return rc;
} else {
rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 0);
if (rc < 0)
return rc;
rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 0);
if (rc < 0)
return rc;
}
return 0;
}
static const struct ieee802154_ops at86rf230_ops = {
.owner = THIS_MODULE,
.xmit_async = at86rf230_xmit,
.ed = at86rf230_ed,
.set_channel = at86rf230_channel,
.start = at86rf230_start,
.stop = at86rf230_stop,
.set_hw_addr_filt = at86rf230_set_hw_addr_filt,
.set_txpower = at86rf230_set_txpower,
.set_lbt = at86rf230_set_lbt,
.set_cca_mode = at86rf230_set_cca_mode,
.set_cca_ed_level = at86rf230_set_cca_ed_level,
.set_csma_params = at86rf230_set_csma_params,
.set_frame_retries = at86rf230_set_frame_retries,
.set_promiscuous_mode = at86rf230_set_promiscuous_mode,
};
static struct at86rf2xx_chip_data at86rf233_data = {
.t_sleep_cycle = 330,
.t_channel_switch = 11,
.t_reset_to_off = 26,
.t_off_to_aack = 80,
.t_off_to_tx_on = 80,
.t_off_to_sleep = 35,
.t_sleep_to_off = 1000,
.t_frame = 4096,
.t_p_ack = 545,
.rssi_base_val = -94,
.set_channel = at86rf23x_set_channel,
.set_txpower = at86rf23x_set_txpower,
};
static struct at86rf2xx_chip_data at86rf231_data = {
.t_sleep_cycle = 330,
.t_channel_switch = 24,
.t_reset_to_off = 37,
.t_off_to_aack = 110,
.t_off_to_tx_on = 110,
.t_off_to_sleep = 35,
.t_sleep_to_off = 1000,
.t_frame = 4096,
.t_p_ack = 545,
.rssi_base_val = -91,
.set_channel = at86rf23x_set_channel,
.set_txpower = at86rf23x_set_txpower,
};
static struct at86rf2xx_chip_data at86rf212_data = {
.t_sleep_cycle = 330,
.t_channel_switch = 11,
.t_reset_to_off = 26,
.t_off_to_aack = 200,
.t_off_to_tx_on = 200,
.t_off_to_sleep = 35,
.t_sleep_to_off = 1000,
.t_frame = 4096,
.t_p_ack = 545,
.rssi_base_val = -100,
.set_channel = at86rf212_set_channel,
.set_txpower = at86rf212_set_txpower,
};
static int at86rf230_hw_init(struct at86rf230_local *lp, u8 xtal_trim)
{
int rc, irq_type, irq_pol = IRQ_ACTIVE_HIGH;
unsigned int dvdd;
u8 csma_seed[2];
rc = at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF);
if (rc)
return rc;
irq_type = irq_get_trigger_type(lp->spi->irq);
if (irq_type == IRQ_TYPE_EDGE_FALLING ||
irq_type == IRQ_TYPE_LEVEL_LOW)
irq_pol = IRQ_ACTIVE_LOW;
rc = at86rf230_write_subreg(lp, SR_IRQ_POLARITY, irq_pol);
if (rc)
return rc;
rc = at86rf230_write_subreg(lp, SR_RX_SAFE_MODE, 1);
if (rc)
return rc;
rc = at86rf230_write_subreg(lp, SR_IRQ_MASK, IRQ_TRX_END);
if (rc)
return rc;
/* reset values differs in at86rf231 and at86rf233 */
rc = at86rf230_write_subreg(lp, SR_IRQ_MASK_MODE, 0);
if (rc)
return rc;
get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed));
rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]);
if (rc)
return rc;
rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]);
if (rc)
return rc;
/* CLKM changes are applied immediately */
rc = at86rf230_write_subreg(lp, SR_CLKM_SHA_SEL, 0x00);
if (rc)
return rc;
/* Turn CLKM Off */
rc = at86rf230_write_subreg(lp, SR_CLKM_CTRL, 0x00);
if (rc)
return rc;
/* Wait the next SLEEP cycle */
usleep_range(lp->data->t_sleep_cycle,
lp->data->t_sleep_cycle + 100);
/* xtal_trim value is calculated by:
* CL = 0.5 * (CX + CTRIM + CPAR)
*
* whereas:
* CL = capacitor of used crystal
* CX = connected capacitors at xtal pins
* CPAR = in all at86rf2xx datasheets this is a constant value 3 pF,
* but this is different on each board setup. You need to fine
* tuning this value via CTRIM.
* CTRIM = variable capacitor setting. Resolution is 0.3 pF range is
* 0 pF upto 4.5 pF.
*
* Examples:
* atben transceiver:
*
* CL = 8 pF
* CX = 12 pF
* CPAR = 3 pF (We assume the magic constant from datasheet)
* CTRIM = 0.9 pF
*
* (12+0.9+3)/2 = 7.95 which is nearly at 8 pF
*
* xtal_trim = 0x3
*
* openlabs transceiver:
*
* CL = 16 pF
* CX = 22 pF
* CPAR = 3 pF (We assume the magic constant from datasheet)
* CTRIM = 4.5 pF
*
* (22+4.5+3)/2 = 14.75 which is the nearest value to 16 pF
*
* xtal_trim = 0xf
*/
rc = at86rf230_write_subreg(lp, SR_XTAL_TRIM, xtal_trim);
if (rc)
return rc;
rc = at86rf230_read_subreg(lp, SR_DVDD_OK, &dvdd);
if (rc)
return rc;
if (!dvdd) {
dev_err(&lp->spi->dev, "DVDD error\n");
return -EINVAL;
}
/* Force setting slotted operation bit to 0. Sometimes the atben
* sets this bit and I don't know why. We set this always force
* to zero while probing.
*/
return at86rf230_write_subreg(lp, SR_SLOTTED_OPERATION, 0);
}
static int
at86rf230_get_pdata(struct spi_device *spi, int *rstn, int *slp_tr,
u8 *xtal_trim)
{
struct at86rf230_platform_data *pdata = spi->dev.platform_data;
int ret;
if (!IS_ENABLED(CONFIG_OF) || !spi->dev.of_node) {
if (!pdata)
return -ENOENT;
*rstn = pdata->rstn;
*slp_tr = pdata->slp_tr;
*xtal_trim = pdata->xtal_trim;
return 0;
}
*rstn = of_get_named_gpio(spi->dev.of_node, "reset-gpio", 0);
*slp_tr = of_get_named_gpio(spi->dev.of_node, "sleep-gpio", 0);
ret = of_property_read_u8(spi->dev.of_node, "xtal-trim", xtal_trim);
if (ret < 0 && ret != -EINVAL)
return ret;
return 0;
}
static int
at86rf230_detect_device(struct at86rf230_local *lp)
{
unsigned int part, version, val;
u16 man_id = 0;
const char *chip;
int rc;
rc = __at86rf230_read(lp, RG_MAN_ID_0, &val);
if (rc)
return rc;
man_id |= val;
rc = __at86rf230_read(lp, RG_MAN_ID_1, &val);
if (rc)
return rc;
man_id |= (val << 8);
rc = __at86rf230_read(lp, RG_PART_NUM, &part);
if (rc)
return rc;
rc = __at86rf230_read(lp, RG_VERSION_NUM, &version);
if (rc)
return rc;
if (man_id != 0x001f) {
dev_err(&lp->spi->dev, "Non-Atmel dev found (MAN_ID %02x %02x)\n",
man_id >> 8, man_id & 0xFF);
return -EINVAL;
}
lp->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM |
IEEE802154_HW_CSMA_PARAMS |
IEEE802154_HW_FRAME_RETRIES | IEEE802154_HW_AFILT |
IEEE802154_HW_PROMISCUOUS;
lp->hw->phy->flags = WPAN_PHY_FLAG_TXPOWER |
WPAN_PHY_FLAG_CCA_ED_LEVEL |
WPAN_PHY_FLAG_CCA_MODE;
lp->hw->phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) |
BIT(NL802154_CCA_CARRIER) | BIT(NL802154_CCA_ENERGY_CARRIER);
lp->hw->phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND) |
BIT(NL802154_CCA_OPT_ENERGY_CARRIER_OR);
lp->hw->phy->cca.mode = NL802154_CCA_ENERGY;
switch (part) {
case 2:
chip = "at86rf230";
rc = -ENOTSUPP;
goto not_supp;
case 3:
chip = "at86rf231";
lp->data = &at86rf231_data;
lp->hw->phy->supported.channels[0] = 0x7FFF800;
lp->hw->phy->current_channel = 11;
lp->hw->phy->symbol_duration = 16;
lp->hw->phy->supported.tx_powers = at86rf231_powers;
lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf231_powers);
lp->hw->phy->supported.cca_ed_levels = at86rf231_ed_levels;
lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf231_ed_levels);
break;
case 7:
chip = "at86rf212";
lp->data = &at86rf212_data;
lp->hw->flags |= IEEE802154_HW_LBT;
lp->hw->phy->supported.channels[0] = 0x00007FF;
lp->hw->phy->supported.channels[2] = 0x00007FF;
lp->hw->phy->current_channel = 5;
lp->hw->phy->symbol_duration = 25;
lp->hw->phy->supported.lbt = NL802154_SUPPORTED_BOOL_BOTH;
lp->hw->phy->supported.tx_powers = at86rf212_powers;
lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf212_powers);
lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_100;
lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_100);
break;
case 11:
chip = "at86rf233";
lp->data = &at86rf233_data;
lp->hw->phy->supported.channels[0] = 0x7FFF800;
lp->hw->phy->current_channel = 13;
lp->hw->phy->symbol_duration = 16;
lp->hw->phy->supported.tx_powers = at86rf233_powers;
lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf233_powers);
lp->hw->phy->supported.cca_ed_levels = at86rf233_ed_levels;
lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf233_ed_levels);
break;
default:
chip = "unknown";
rc = -ENOTSUPP;
goto not_supp;
}
lp->hw->phy->cca_ed_level = lp->hw->phy->supported.cca_ed_levels[7];
lp->hw->phy->transmit_power = lp->hw->phy->supported.tx_powers[0];
not_supp:
dev_info(&lp->spi->dev, "Detected %s chip version %d\n", chip, version);
return rc;
}
#ifdef CONFIG_IEEE802154_AT86RF230_DEBUGFS
static struct dentry *at86rf230_debugfs_root;
static int at86rf230_stats_show(struct seq_file *file, void *offset)
{
struct at86rf230_local *lp = file->private;
seq_printf(file, "SUCCESS:\t\t%8llu\n", lp->trac.success);
seq_printf(file, "SUCCESS_DATA_PENDING:\t%8llu\n",
lp->trac.success_data_pending);
seq_printf(file, "SUCCESS_WAIT_FOR_ACK:\t%8llu\n",
lp->trac.success_wait_for_ack);
seq_printf(file, "CHANNEL_ACCESS_FAILURE:\t%8llu\n",
lp->trac.channel_access_failure);
seq_printf(file, "NO_ACK:\t\t\t%8llu\n", lp->trac.no_ack);
seq_printf(file, "INVALID:\t\t%8llu\n", lp->trac.invalid);
return 0;
}
static int at86rf230_stats_open(struct inode *inode, struct file *file)
{
return single_open(file, at86rf230_stats_show, inode->i_private);
}
static const struct file_operations at86rf230_stats_fops = {
.open = at86rf230_stats_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int at86rf230_debugfs_init(struct at86rf230_local *lp)
{
char debugfs_dir_name[DNAME_INLINE_LEN + 1] = "at86rf230-";
struct dentry *stats;
strncat(debugfs_dir_name, dev_name(&lp->spi->dev), DNAME_INLINE_LEN);
at86rf230_debugfs_root = debugfs_create_dir(debugfs_dir_name, NULL);
if (!at86rf230_debugfs_root)
return -ENOMEM;
stats = debugfs_create_file("trac_stats", 0444,
at86rf230_debugfs_root, lp,
&at86rf230_stats_fops);
if (!stats)
return -ENOMEM;
return 0;
}
static void at86rf230_debugfs_remove(void)
{
debugfs_remove_recursive(at86rf230_debugfs_root);
}
#else
static int at86rf230_debugfs_init(struct at86rf230_local *lp) { return 0; }
static void at86rf230_debugfs_remove(void) { }
#endif
static int at86rf230_probe(struct spi_device *spi)
{
struct ieee802154_hw *hw;
struct at86rf230_local *lp;
unsigned int status;
int rc, irq_type, rstn, slp_tr;
u8 xtal_trim = 0;
if (!spi->irq) {
dev_err(&spi->dev, "no IRQ specified\n");
return -EINVAL;
}
rc = at86rf230_get_pdata(spi, &rstn, &slp_tr, &xtal_trim);
if (rc < 0) {
dev_err(&spi->dev, "failed to parse platform_data: %d\n", rc);
return rc;
}
if (gpio_is_valid(rstn)) {
rc = devm_gpio_request_one(&spi->dev, rstn,
GPIOF_OUT_INIT_HIGH, "rstn");
if (rc)
return rc;
}
if (gpio_is_valid(slp_tr)) {
rc = devm_gpio_request_one(&spi->dev, slp_tr,
GPIOF_OUT_INIT_LOW, "slp_tr");
if (rc)
return rc;
}
/* Reset */
if (gpio_is_valid(rstn)) {
udelay(1);
gpio_set_value_cansleep(rstn, 0);
udelay(1);
gpio_set_value_cansleep(rstn, 1);
usleep_range(120, 240);
}
hw = ieee802154_alloc_hw(sizeof(*lp), &at86rf230_ops);
if (!hw)
return -ENOMEM;
lp = hw->priv;
lp->hw = hw;
lp->spi = spi;
lp->slp_tr = slp_tr;
hw->parent = &spi->dev;
ieee802154_random_extended_addr(&hw->phy->perm_extended_addr);
lp->regmap = devm_regmap_init_spi(spi, &at86rf230_regmap_spi_config);
if (IS_ERR(lp->regmap)) {
rc = PTR_ERR(lp->regmap);
dev_err(&spi->dev, "Failed to allocate register map: %d\n",
rc);
goto free_dev;
}
at86rf230_setup_spi_messages(lp, &lp->state);
at86rf230_setup_spi_messages(lp, &lp->tx);
rc = at86rf230_detect_device(lp);
if (rc < 0)
goto free_dev;
init_completion(&lp->state_complete);
spi_set_drvdata(spi, lp);
rc = at86rf230_hw_init(lp, xtal_trim);
if (rc)
goto free_dev;
/* Read irq status register to reset irq line */
rc = at86rf230_read_subreg(lp, RG_IRQ_STATUS, 0xff, 0, &status);
if (rc)
goto free_dev;
irq_type = irq_get_trigger_type(spi->irq);
if (!irq_type)
irq_type = IRQF_TRIGGER_HIGH;
rc = devm_request_irq(&spi->dev, spi->irq, at86rf230_isr,
IRQF_SHARED | irq_type, dev_name(&spi->dev), lp);
if (rc)
goto free_dev;
/* disable_irq by default and wait for starting hardware */
disable_irq(spi->irq);
/* going into sleep by default */
at86rf230_sleep(lp);
rc = at86rf230_debugfs_init(lp);
if (rc)
goto free_dev;
rc = ieee802154_register_hw(lp->hw);
if (rc)
goto free_debugfs;
return rc;
free_debugfs:
at86rf230_debugfs_remove();
free_dev:
ieee802154_free_hw(lp->hw);
return rc;
}
static int at86rf230_remove(struct spi_device *spi)
{
struct at86rf230_local *lp = spi_get_drvdata(spi);
/* mask all at86rf230 irq's */
at86rf230_write_subreg(lp, SR_IRQ_MASK, 0);
ieee802154_unregister_hw(lp->hw);
ieee802154_free_hw(lp->hw);
at86rf230_debugfs_remove();
dev_dbg(&spi->dev, "unregistered at86rf230\n");
return 0;
}
static const struct of_device_id at86rf230_of_match[] = {
{ .compatible = "atmel,at86rf230", },
{ .compatible = "atmel,at86rf231", },
{ .compatible = "atmel,at86rf233", },
{ .compatible = "atmel,at86rf212", },
{ },
};
MODULE_DEVICE_TABLE(of, at86rf230_of_match);
static const struct spi_device_id at86rf230_device_id[] = {
{ .name = "at86rf230", },
{ .name = "at86rf231", },
{ .name = "at86rf233", },
{ .name = "at86rf212", },
{ },
};
MODULE_DEVICE_TABLE(spi, at86rf230_device_id);
static struct spi_driver at86rf230_driver = {
.id_table = at86rf230_device_id,
.driver = {
.of_match_table = of_match_ptr(at86rf230_of_match),
.name = "at86rf230",
},
.probe = at86rf230_probe,
.remove = at86rf230_remove,
};
module_spi_driver(at86rf230_driver);
MODULE_DESCRIPTION("AT86RF230 Transceiver Driver");
MODULE_LICENSE("GPL v2");