2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-29 15:43:59 +08:00
linux-next/drivers/net/sfc/mcdi_phy.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

610 lines
17 KiB
C

/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2009 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
/*
* Driver for PHY related operations via MCDI.
*/
#include <linux/slab.h>
#include "efx.h"
#include "phy.h"
#include "mcdi.h"
#include "mcdi_pcol.h"
#include "mdio_10g.h"
struct efx_mcdi_phy_cfg {
u32 flags;
u32 type;
u32 supported_cap;
u32 channel;
u32 port;
u32 stats_mask;
u8 name[20];
u32 media;
u32 mmd_mask;
u8 revision[20];
u32 forced_cap;
};
static int
efx_mcdi_get_phy_cfg(struct efx_nic *efx, struct efx_mcdi_phy_cfg *cfg)
{
u8 outbuf[MC_CMD_GET_PHY_CFG_OUT_LEN];
size_t outlen;
int rc;
BUILD_BUG_ON(MC_CMD_GET_PHY_CFG_IN_LEN != 0);
BUILD_BUG_ON(MC_CMD_GET_PHY_CFG_OUT_NAME_LEN != sizeof(cfg->name));
rc = efx_mcdi_rpc(efx, MC_CMD_GET_PHY_CFG, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc)
goto fail;
if (outlen < MC_CMD_GET_PHY_CFG_OUT_LEN) {
rc = -EMSGSIZE;
goto fail;
}
cfg->flags = MCDI_DWORD(outbuf, GET_PHY_CFG_OUT_FLAGS);
cfg->type = MCDI_DWORD(outbuf, GET_PHY_CFG_OUT_TYPE);
cfg->supported_cap =
MCDI_DWORD(outbuf, GET_PHY_CFG_OUT_SUPPORTED_CAP);
cfg->channel = MCDI_DWORD(outbuf, GET_PHY_CFG_OUT_CHANNEL);
cfg->port = MCDI_DWORD(outbuf, GET_PHY_CFG_OUT_PRT);
cfg->stats_mask = MCDI_DWORD(outbuf, GET_PHY_CFG_OUT_STATS_MASK);
memcpy(cfg->name, MCDI_PTR(outbuf, GET_PHY_CFG_OUT_NAME),
sizeof(cfg->name));
cfg->media = MCDI_DWORD(outbuf, GET_PHY_CFG_OUT_MEDIA_TYPE);
cfg->mmd_mask = MCDI_DWORD(outbuf, GET_PHY_CFG_OUT_MMD_MASK);
memcpy(cfg->revision, MCDI_PTR(outbuf, GET_PHY_CFG_OUT_REVISION),
sizeof(cfg->revision));
return 0;
fail:
EFX_ERR(efx, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
static int efx_mcdi_set_link(struct efx_nic *efx, u32 capabilities,
u32 flags, u32 loopback_mode,
u32 loopback_speed)
{
u8 inbuf[MC_CMD_SET_LINK_IN_LEN];
int rc;
BUILD_BUG_ON(MC_CMD_SET_LINK_OUT_LEN != 0);
MCDI_SET_DWORD(inbuf, SET_LINK_IN_CAP, capabilities);
MCDI_SET_DWORD(inbuf, SET_LINK_IN_FLAGS, flags);
MCDI_SET_DWORD(inbuf, SET_LINK_IN_LOOPBACK_MODE, loopback_mode);
MCDI_SET_DWORD(inbuf, SET_LINK_IN_LOOPBACK_SPEED, loopback_speed);
rc = efx_mcdi_rpc(efx, MC_CMD_SET_LINK, inbuf, sizeof(inbuf),
NULL, 0, NULL);
if (rc)
goto fail;
return 0;
fail:
EFX_ERR(efx, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
static int efx_mcdi_loopback_modes(struct efx_nic *efx, u64 *loopback_modes)
{
u8 outbuf[MC_CMD_GET_LOOPBACK_MODES_OUT_LEN];
size_t outlen;
int rc;
rc = efx_mcdi_rpc(efx, MC_CMD_GET_LOOPBACK_MODES, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc)
goto fail;
if (outlen < MC_CMD_GET_LOOPBACK_MODES_OUT_LEN) {
rc = -EMSGSIZE;
goto fail;
}
*loopback_modes = MCDI_QWORD(outbuf, GET_LOOPBACK_MODES_SUGGESTED);
return 0;
fail:
EFX_ERR(efx, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int efx_mcdi_mdio_read(struct efx_nic *efx, unsigned int bus,
unsigned int prtad, unsigned int devad, u16 addr,
u16 *value_out, u32 *status_out)
{
u8 inbuf[MC_CMD_MDIO_READ_IN_LEN];
u8 outbuf[MC_CMD_MDIO_READ_OUT_LEN];
size_t outlen;
int rc;
MCDI_SET_DWORD(inbuf, MDIO_READ_IN_BUS, bus);
MCDI_SET_DWORD(inbuf, MDIO_READ_IN_PRTAD, prtad);
MCDI_SET_DWORD(inbuf, MDIO_READ_IN_DEVAD, devad);
MCDI_SET_DWORD(inbuf, MDIO_READ_IN_ADDR, addr);
rc = efx_mcdi_rpc(efx, MC_CMD_MDIO_READ, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (rc)
goto fail;
*value_out = (u16)MCDI_DWORD(outbuf, MDIO_READ_OUT_VALUE);
*status_out = MCDI_DWORD(outbuf, MDIO_READ_OUT_STATUS);
return 0;
fail:
EFX_ERR(efx, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int efx_mcdi_mdio_write(struct efx_nic *efx, unsigned int bus,
unsigned int prtad, unsigned int devad, u16 addr,
u16 value, u32 *status_out)
{
u8 inbuf[MC_CMD_MDIO_WRITE_IN_LEN];
u8 outbuf[MC_CMD_MDIO_WRITE_OUT_LEN];
size_t outlen;
int rc;
MCDI_SET_DWORD(inbuf, MDIO_WRITE_IN_BUS, bus);
MCDI_SET_DWORD(inbuf, MDIO_WRITE_IN_PRTAD, prtad);
MCDI_SET_DWORD(inbuf, MDIO_WRITE_IN_DEVAD, devad);
MCDI_SET_DWORD(inbuf, MDIO_WRITE_IN_ADDR, addr);
MCDI_SET_DWORD(inbuf, MDIO_WRITE_IN_VALUE, value);
rc = efx_mcdi_rpc(efx, MC_CMD_MDIO_WRITE, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (rc)
goto fail;
*status_out = MCDI_DWORD(outbuf, MDIO_WRITE_OUT_STATUS);
return 0;
fail:
EFX_ERR(efx, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
static u32 mcdi_to_ethtool_cap(u32 media, u32 cap)
{
u32 result = 0;
switch (media) {
case MC_CMD_MEDIA_KX4:
result |= SUPPORTED_Backplane;
if (cap & (1 << MC_CMD_PHY_CAP_1000FDX_LBN))
result |= SUPPORTED_1000baseKX_Full;
if (cap & (1 << MC_CMD_PHY_CAP_10000FDX_LBN))
result |= SUPPORTED_10000baseKX4_Full;
break;
case MC_CMD_MEDIA_XFP:
case MC_CMD_MEDIA_SFP_PLUS:
result |= SUPPORTED_FIBRE;
break;
case MC_CMD_MEDIA_BASE_T:
result |= SUPPORTED_TP;
if (cap & (1 << MC_CMD_PHY_CAP_10HDX_LBN))
result |= SUPPORTED_10baseT_Half;
if (cap & (1 << MC_CMD_PHY_CAP_10FDX_LBN))
result |= SUPPORTED_10baseT_Full;
if (cap & (1 << MC_CMD_PHY_CAP_100HDX_LBN))
result |= SUPPORTED_100baseT_Half;
if (cap & (1 << MC_CMD_PHY_CAP_100FDX_LBN))
result |= SUPPORTED_100baseT_Full;
if (cap & (1 << MC_CMD_PHY_CAP_1000HDX_LBN))
result |= SUPPORTED_1000baseT_Half;
if (cap & (1 << MC_CMD_PHY_CAP_1000FDX_LBN))
result |= SUPPORTED_1000baseT_Full;
if (cap & (1 << MC_CMD_PHY_CAP_10000FDX_LBN))
result |= SUPPORTED_10000baseT_Full;
break;
}
if (cap & (1 << MC_CMD_PHY_CAP_PAUSE_LBN))
result |= SUPPORTED_Pause;
if (cap & (1 << MC_CMD_PHY_CAP_ASYM_LBN))
result |= SUPPORTED_Asym_Pause;
if (cap & (1 << MC_CMD_PHY_CAP_AN_LBN))
result |= SUPPORTED_Autoneg;
return result;
}
static u32 ethtool_to_mcdi_cap(u32 cap)
{
u32 result = 0;
if (cap & SUPPORTED_10baseT_Half)
result |= (1 << MC_CMD_PHY_CAP_10HDX_LBN);
if (cap & SUPPORTED_10baseT_Full)
result |= (1 << MC_CMD_PHY_CAP_10FDX_LBN);
if (cap & SUPPORTED_100baseT_Half)
result |= (1 << MC_CMD_PHY_CAP_100HDX_LBN);
if (cap & SUPPORTED_100baseT_Full)
result |= (1 << MC_CMD_PHY_CAP_100FDX_LBN);
if (cap & SUPPORTED_1000baseT_Half)
result |= (1 << MC_CMD_PHY_CAP_1000HDX_LBN);
if (cap & (SUPPORTED_1000baseT_Full | SUPPORTED_1000baseKX_Full))
result |= (1 << MC_CMD_PHY_CAP_1000FDX_LBN);
if (cap & (SUPPORTED_10000baseT_Full | SUPPORTED_10000baseKX4_Full))
result |= (1 << MC_CMD_PHY_CAP_10000FDX_LBN);
if (cap & SUPPORTED_Pause)
result |= (1 << MC_CMD_PHY_CAP_PAUSE_LBN);
if (cap & SUPPORTED_Asym_Pause)
result |= (1 << MC_CMD_PHY_CAP_ASYM_LBN);
if (cap & SUPPORTED_Autoneg)
result |= (1 << MC_CMD_PHY_CAP_AN_LBN);
return result;
}
static u32 efx_get_mcdi_phy_flags(struct efx_nic *efx)
{
struct efx_mcdi_phy_cfg *phy_cfg = efx->phy_data;
enum efx_phy_mode mode, supported;
u32 flags;
/* TODO: Advertise the capabilities supported by this PHY */
supported = 0;
if (phy_cfg->flags & (1 << MC_CMD_GET_PHY_CFG_TXDIS_LBN))
supported |= PHY_MODE_TX_DISABLED;
if (phy_cfg->flags & (1 << MC_CMD_GET_PHY_CFG_LOWPOWER_LBN))
supported |= PHY_MODE_LOW_POWER;
if (phy_cfg->flags & (1 << MC_CMD_GET_PHY_CFG_POWEROFF_LBN))
supported |= PHY_MODE_OFF;
mode = efx->phy_mode & supported;
flags = 0;
if (mode & PHY_MODE_TX_DISABLED)
flags |= (1 << MC_CMD_SET_LINK_TXDIS_LBN);
if (mode & PHY_MODE_LOW_POWER)
flags |= (1 << MC_CMD_SET_LINK_LOWPOWER_LBN);
if (mode & PHY_MODE_OFF)
flags |= (1 << MC_CMD_SET_LINK_POWEROFF_LBN);
return flags;
}
static u32 mcdi_to_ethtool_media(u32 media)
{
switch (media) {
case MC_CMD_MEDIA_XAUI:
case MC_CMD_MEDIA_CX4:
case MC_CMD_MEDIA_KX4:
return PORT_OTHER;
case MC_CMD_MEDIA_XFP:
case MC_CMD_MEDIA_SFP_PLUS:
return PORT_FIBRE;
case MC_CMD_MEDIA_BASE_T:
return PORT_TP;
default:
return PORT_OTHER;
}
}
static int efx_mcdi_phy_probe(struct efx_nic *efx)
{
struct efx_mcdi_phy_cfg *phy_data;
u8 outbuf[MC_CMD_GET_LINK_OUT_LEN];
u32 caps;
int rc;
/* Initialise and populate phy_data */
phy_data = kzalloc(sizeof(*phy_data), GFP_KERNEL);
if (phy_data == NULL)
return -ENOMEM;
rc = efx_mcdi_get_phy_cfg(efx, phy_data);
if (rc != 0)
goto fail;
/* Read initial link advertisement */
BUILD_BUG_ON(MC_CMD_GET_LINK_IN_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_GET_LINK, NULL, 0,
outbuf, sizeof(outbuf), NULL);
if (rc)
goto fail;
/* Fill out nic state */
efx->phy_data = phy_data;
efx->phy_type = phy_data->type;
efx->mdio_bus = phy_data->channel;
efx->mdio.prtad = phy_data->port;
efx->mdio.mmds = phy_data->mmd_mask & ~(1 << MC_CMD_MMD_CLAUSE22);
efx->mdio.mode_support = 0;
if (phy_data->mmd_mask & (1 << MC_CMD_MMD_CLAUSE22))
efx->mdio.mode_support |= MDIO_SUPPORTS_C22;
if (phy_data->mmd_mask & ~(1 << MC_CMD_MMD_CLAUSE22))
efx->mdio.mode_support |= MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
caps = MCDI_DWORD(outbuf, GET_LINK_OUT_CAP);
if (caps & (1 << MC_CMD_PHY_CAP_AN_LBN))
efx->link_advertising =
mcdi_to_ethtool_cap(phy_data->media, caps);
else
phy_data->forced_cap = caps;
/* Assert that we can map efx -> mcdi loopback modes */
BUILD_BUG_ON(LOOPBACK_NONE != MC_CMD_LOOPBACK_NONE);
BUILD_BUG_ON(LOOPBACK_DATA != MC_CMD_LOOPBACK_DATA);
BUILD_BUG_ON(LOOPBACK_GMAC != MC_CMD_LOOPBACK_GMAC);
BUILD_BUG_ON(LOOPBACK_XGMII != MC_CMD_LOOPBACK_XGMII);
BUILD_BUG_ON(LOOPBACK_XGXS != MC_CMD_LOOPBACK_XGXS);
BUILD_BUG_ON(LOOPBACK_XAUI != MC_CMD_LOOPBACK_XAUI);
BUILD_BUG_ON(LOOPBACK_GMII != MC_CMD_LOOPBACK_GMII);
BUILD_BUG_ON(LOOPBACK_SGMII != MC_CMD_LOOPBACK_SGMII);
BUILD_BUG_ON(LOOPBACK_XGBR != MC_CMD_LOOPBACK_XGBR);
BUILD_BUG_ON(LOOPBACK_XFI != MC_CMD_LOOPBACK_XFI);
BUILD_BUG_ON(LOOPBACK_XAUI_FAR != MC_CMD_LOOPBACK_XAUI_FAR);
BUILD_BUG_ON(LOOPBACK_GMII_FAR != MC_CMD_LOOPBACK_GMII_FAR);
BUILD_BUG_ON(LOOPBACK_SGMII_FAR != MC_CMD_LOOPBACK_SGMII_FAR);
BUILD_BUG_ON(LOOPBACK_XFI_FAR != MC_CMD_LOOPBACK_XFI_FAR);
BUILD_BUG_ON(LOOPBACK_GPHY != MC_CMD_LOOPBACK_GPHY);
BUILD_BUG_ON(LOOPBACK_PHYXS != MC_CMD_LOOPBACK_PHYXS);
BUILD_BUG_ON(LOOPBACK_PCS != MC_CMD_LOOPBACK_PCS);
BUILD_BUG_ON(LOOPBACK_PMAPMD != MC_CMD_LOOPBACK_PMAPMD);
BUILD_BUG_ON(LOOPBACK_XPORT != MC_CMD_LOOPBACK_XPORT);
BUILD_BUG_ON(LOOPBACK_XGMII_WS != MC_CMD_LOOPBACK_XGMII_WS);
BUILD_BUG_ON(LOOPBACK_XAUI_WS != MC_CMD_LOOPBACK_XAUI_WS);
BUILD_BUG_ON(LOOPBACK_XAUI_WS_FAR != MC_CMD_LOOPBACK_XAUI_WS_FAR);
BUILD_BUG_ON(LOOPBACK_XAUI_WS_NEAR != MC_CMD_LOOPBACK_XAUI_WS_NEAR);
BUILD_BUG_ON(LOOPBACK_GMII_WS != MC_CMD_LOOPBACK_GMII_WS);
BUILD_BUG_ON(LOOPBACK_XFI_WS != MC_CMD_LOOPBACK_XFI_WS);
BUILD_BUG_ON(LOOPBACK_XFI_WS_FAR != MC_CMD_LOOPBACK_XFI_WS_FAR);
BUILD_BUG_ON(LOOPBACK_PHYXS_WS != MC_CMD_LOOPBACK_PHYXS_WS);
rc = efx_mcdi_loopback_modes(efx, &efx->loopback_modes);
if (rc != 0)
goto fail;
/* The MC indicates that LOOPBACK_NONE is a valid loopback mode,
* but by convention we don't */
efx->loopback_modes &= ~(1 << LOOPBACK_NONE);
/* Set the initial link mode */
efx_mcdi_phy_decode_link(
efx, &efx->link_state,
MCDI_DWORD(outbuf, GET_LINK_OUT_LINK_SPEED),
MCDI_DWORD(outbuf, GET_LINK_OUT_FLAGS),
MCDI_DWORD(outbuf, GET_LINK_OUT_FCNTL));
/* Default to Autonegotiated flow control if the PHY supports it */
efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
if (phy_data->supported_cap & (1 << MC_CMD_PHY_CAP_AN_LBN))
efx->wanted_fc |= EFX_FC_AUTO;
return 0;
fail:
kfree(phy_data);
return rc;
}
int efx_mcdi_phy_reconfigure(struct efx_nic *efx)
{
struct efx_mcdi_phy_cfg *phy_cfg = efx->phy_data;
u32 caps = (efx->link_advertising ?
ethtool_to_mcdi_cap(efx->link_advertising) :
phy_cfg->forced_cap);
return efx_mcdi_set_link(efx, caps, efx_get_mcdi_phy_flags(efx),
efx->loopback_mode, 0);
}
void efx_mcdi_phy_decode_link(struct efx_nic *efx,
struct efx_link_state *link_state,
u32 speed, u32 flags, u32 fcntl)
{
switch (fcntl) {
case MC_CMD_FCNTL_AUTO:
WARN_ON(1); /* This is not a link mode */
link_state->fc = EFX_FC_AUTO | EFX_FC_TX | EFX_FC_RX;
break;
case MC_CMD_FCNTL_BIDIR:
link_state->fc = EFX_FC_TX | EFX_FC_RX;
break;
case MC_CMD_FCNTL_RESPOND:
link_state->fc = EFX_FC_RX;
break;
default:
WARN_ON(1);
case MC_CMD_FCNTL_OFF:
link_state->fc = 0;
break;
}
link_state->up = !!(flags & (1 << MC_CMD_GET_LINK_LINK_UP_LBN));
link_state->fd = !!(flags & (1 << MC_CMD_GET_LINK_FULL_DUPLEX_LBN));
link_state->speed = speed;
}
/* Verify that the forced flow control settings (!EFX_FC_AUTO) are
* supported by the link partner. Warn the user if this isn't the case
*/
void efx_mcdi_phy_check_fcntl(struct efx_nic *efx, u32 lpa)
{
struct efx_mcdi_phy_cfg *phy_cfg = efx->phy_data;
u32 rmtadv;
/* The link partner capabilities are only relevent if the
* link supports flow control autonegotiation */
if (~phy_cfg->supported_cap & (1 << MC_CMD_PHY_CAP_AN_LBN))
return;
/* If flow control autoneg is supported and enabled, then fine */
if (efx->wanted_fc & EFX_FC_AUTO)
return;
rmtadv = 0;
if (lpa & (1 << MC_CMD_PHY_CAP_PAUSE_LBN))
rmtadv |= ADVERTISED_Pause;
if (lpa & (1 << MC_CMD_PHY_CAP_ASYM_LBN))
rmtadv |= ADVERTISED_Asym_Pause;
if ((efx->wanted_fc & EFX_FC_TX) && rmtadv == ADVERTISED_Asym_Pause)
EFX_ERR(efx, "warning: link partner doesn't support "
"pause frames");
}
static bool efx_mcdi_phy_poll(struct efx_nic *efx)
{
struct efx_link_state old_state = efx->link_state;
u8 outbuf[MC_CMD_GET_LINK_OUT_LEN];
int rc;
WARN_ON(!mutex_is_locked(&efx->mac_lock));
BUILD_BUG_ON(MC_CMD_GET_LINK_IN_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_GET_LINK, NULL, 0,
outbuf, sizeof(outbuf), NULL);
if (rc) {
EFX_ERR(efx, "%s: failed rc=%d\n", __func__, rc);
efx->link_state.up = false;
} else {
efx_mcdi_phy_decode_link(
efx, &efx->link_state,
MCDI_DWORD(outbuf, GET_LINK_OUT_LINK_SPEED),
MCDI_DWORD(outbuf, GET_LINK_OUT_FLAGS),
MCDI_DWORD(outbuf, GET_LINK_OUT_FCNTL));
}
return !efx_link_state_equal(&efx->link_state, &old_state);
}
static void efx_mcdi_phy_remove(struct efx_nic *efx)
{
struct efx_mcdi_phy_data *phy_data = efx->phy_data;
efx->phy_data = NULL;
kfree(phy_data);
}
static void efx_mcdi_phy_get_settings(struct efx_nic *efx, struct ethtool_cmd *ecmd)
{
struct efx_mcdi_phy_cfg *phy_cfg = efx->phy_data;
u8 outbuf[MC_CMD_GET_LINK_OUT_LEN];
int rc;
ecmd->supported =
mcdi_to_ethtool_cap(phy_cfg->media, phy_cfg->supported_cap);
ecmd->advertising = efx->link_advertising;
ecmd->speed = efx->link_state.speed;
ecmd->duplex = efx->link_state.fd;
ecmd->port = mcdi_to_ethtool_media(phy_cfg->media);
ecmd->phy_address = phy_cfg->port;
ecmd->transceiver = XCVR_INTERNAL;
ecmd->autoneg = !!(efx->link_advertising & ADVERTISED_Autoneg);
ecmd->mdio_support = (efx->mdio.mode_support &
(MDIO_SUPPORTS_C45 | MDIO_SUPPORTS_C22));
BUILD_BUG_ON(MC_CMD_GET_LINK_IN_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_GET_LINK, NULL, 0,
outbuf, sizeof(outbuf), NULL);
if (rc) {
EFX_ERR(efx, "%s: failed rc=%d\n", __func__, rc);
return;
}
ecmd->lp_advertising =
mcdi_to_ethtool_cap(phy_cfg->media,
MCDI_DWORD(outbuf, GET_LINK_OUT_LP_CAP));
}
static int efx_mcdi_phy_set_settings(struct efx_nic *efx, struct ethtool_cmd *ecmd)
{
struct efx_mcdi_phy_cfg *phy_cfg = efx->phy_data;
u32 caps;
int rc;
if (ecmd->autoneg) {
caps = (ethtool_to_mcdi_cap(ecmd->advertising) |
1 << MC_CMD_PHY_CAP_AN_LBN);
} else if (ecmd->duplex) {
switch (ecmd->speed) {
case 10: caps = 1 << MC_CMD_PHY_CAP_10FDX_LBN; break;
case 100: caps = 1 << MC_CMD_PHY_CAP_100FDX_LBN; break;
case 1000: caps = 1 << MC_CMD_PHY_CAP_1000FDX_LBN; break;
case 10000: caps = 1 << MC_CMD_PHY_CAP_10000FDX_LBN; break;
default: return -EINVAL;
}
} else {
switch (ecmd->speed) {
case 10: caps = 1 << MC_CMD_PHY_CAP_10HDX_LBN; break;
case 100: caps = 1 << MC_CMD_PHY_CAP_100HDX_LBN; break;
case 1000: caps = 1 << MC_CMD_PHY_CAP_1000HDX_LBN; break;
default: return -EINVAL;
}
}
rc = efx_mcdi_set_link(efx, caps, efx_get_mcdi_phy_flags(efx),
efx->loopback_mode, 0);
if (rc)
return rc;
if (ecmd->autoneg) {
efx_link_set_advertising(
efx, ecmd->advertising | ADVERTISED_Autoneg);
phy_cfg->forced_cap = 0;
} else {
efx_link_set_advertising(efx, 0);
phy_cfg->forced_cap = caps;
}
return 0;
}
static int efx_mcdi_phy_test_alive(struct efx_nic *efx)
{
u8 outbuf[MC_CMD_GET_PHY_STATE_OUT_LEN];
size_t outlen;
int rc;
BUILD_BUG_ON(MC_CMD_GET_PHY_STATE_IN_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_GET_PHY_STATE, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc)
return rc;
if (outlen < MC_CMD_GET_PHY_STATE_OUT_LEN)
return -EMSGSIZE;
if (MCDI_DWORD(outbuf, GET_PHY_STATE_STATE) != MC_CMD_PHY_STATE_OK)
return -EINVAL;
return 0;
}
struct efx_phy_operations efx_mcdi_phy_ops = {
.probe = efx_mcdi_phy_probe,
.init = efx_port_dummy_op_int,
.reconfigure = efx_mcdi_phy_reconfigure,
.poll = efx_mcdi_phy_poll,
.fini = efx_port_dummy_op_void,
.remove = efx_mcdi_phy_remove,
.get_settings = efx_mcdi_phy_get_settings,
.set_settings = efx_mcdi_phy_set_settings,
.test_alive = efx_mcdi_phy_test_alive,
.run_tests = NULL,
.test_name = NULL,
};