mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-29 23:53:55 +08:00
abcff86df2
scaled cputime is only meaningfull when the processor has SPURR and/or PURR, which means only on PPC64. Removing it on PPC32 significantly reduces the size of vtime_account_system() and vtime_account_idle() on an 8xx: Before: 00000000 l F .text 000000a8 vtime_delta 00000280 g F .text 0000010c vtime_account_system 0000038c g F .text 00000048 vtime_account_idle After: (vtime_delta gets inlined inside the two functions) 000001d8 g F .text 000000a0 vtime_account_system 00000278 g F .text 00000038 vtime_account_idle In terms of performance, we also get approximatly 7% improvement on task switch. The following small benchmark app is run with perf stat: void *thread(void *arg) { int i; for (i = 0; i < atoi((char*)arg); i++) pthread_yield(); } int main(int argc, char **argv) { pthread_t th1, th2; pthread_create(&th1, NULL, thread, argv[1]); pthread_create(&th2, NULL, thread, argv[1]); pthread_join(th1, NULL); pthread_join(th2, NULL); return 0; } Before the patch: Performance counter stats for 'chrt -f 98 ./sched 100000' (50 runs): 8228.476465 task-clock (msec) # 0.954 CPUs utilized ( +- 0.23% ) 200004 context-switches # 0.024 M/sec ( +- 0.00% ) After the patch: Performance counter stats for 'chrt -f 98 ./sched 100000' (50 runs): 7649.070444 task-clock (msec) # 0.955 CPUs utilized ( +- 0.27% ) 200004 context-switches # 0.026 M/sec ( +- 0.00% ) Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
1195 lines
34 KiB
Plaintext
1195 lines
34 KiB
Plaintext
# SPDX-License-Identifier: GPL-2.0
|
|
source "arch/powerpc/platforms/Kconfig.cputype"
|
|
|
|
config PPC32
|
|
bool
|
|
default y if !PPC64
|
|
|
|
config 32BIT
|
|
bool
|
|
default y if PPC32
|
|
|
|
config 64BIT
|
|
bool
|
|
default y if PPC64
|
|
|
|
config MMU
|
|
bool
|
|
default y
|
|
|
|
config ARCH_MMAP_RND_BITS_MAX
|
|
# On Book3S 64, the default virtual address space for 64-bit processes
|
|
# is 2^47 (128TB). As a maximum, allow randomisation to consume up to
|
|
# 32T of address space (2^45), which should ensure a reasonable gap
|
|
# between bottom-up and top-down allocations for applications that
|
|
# consume "normal" amounts of address space. Book3S 64 only supports 64K
|
|
# and 4K page sizes.
|
|
default 29 if PPC_BOOK3S_64 && PPC_64K_PAGES # 29 = 45 (32T) - 16 (64K)
|
|
default 33 if PPC_BOOK3S_64 # 33 = 45 (32T) - 12 (4K)
|
|
#
|
|
# On all other 64-bit platforms (currently only Book3E), the virtual
|
|
# address space is 2^46 (64TB). Allow randomisation to consume up to 16T
|
|
# of address space (2^44). Only 4K page sizes are supported.
|
|
default 32 if 64BIT # 32 = 44 (16T) - 12 (4K)
|
|
#
|
|
# For 32-bit, use the compat values, as they're the same.
|
|
default ARCH_MMAP_RND_COMPAT_BITS_MAX
|
|
|
|
config ARCH_MMAP_RND_BITS_MIN
|
|
# Allow randomisation to consume up to 1GB of address space (2^30).
|
|
default 14 if 64BIT && PPC_64K_PAGES # 14 = 30 (1GB) - 16 (64K)
|
|
default 18 if 64BIT # 18 = 30 (1GB) - 12 (4K)
|
|
#
|
|
# For 32-bit, use the compat values, as they're the same.
|
|
default ARCH_MMAP_RND_COMPAT_BITS_MIN
|
|
|
|
config ARCH_MMAP_RND_COMPAT_BITS_MAX
|
|
# Total virtual address space for 32-bit processes is 2^31 (2GB).
|
|
# Allow randomisation to consume up to 512MB of address space (2^29).
|
|
default 11 if PPC_256K_PAGES # 11 = 29 (512MB) - 18 (256K)
|
|
default 13 if PPC_64K_PAGES # 13 = 29 (512MB) - 16 (64K)
|
|
default 15 if PPC_16K_PAGES # 15 = 29 (512MB) - 14 (16K)
|
|
default 17 # 17 = 29 (512MB) - 12 (4K)
|
|
|
|
config ARCH_MMAP_RND_COMPAT_BITS_MIN
|
|
# Total virtual address space for 32-bit processes is 2^31 (2GB).
|
|
# Allow randomisation to consume up to 8MB of address space (2^23).
|
|
default 5 if PPC_256K_PAGES # 5 = 23 (8MB) - 18 (256K)
|
|
default 7 if PPC_64K_PAGES # 7 = 23 (8MB) - 16 (64K)
|
|
default 9 if PPC_16K_PAGES # 9 = 23 (8MB) - 14 (16K)
|
|
default 11 # 11 = 23 (8MB) - 12 (4K)
|
|
|
|
config HAVE_SETUP_PER_CPU_AREA
|
|
def_bool PPC64
|
|
|
|
config NEED_PER_CPU_EMBED_FIRST_CHUNK
|
|
def_bool PPC64
|
|
|
|
config NR_IRQS
|
|
int "Number of virtual interrupt numbers"
|
|
range 32 32768
|
|
default "512"
|
|
help
|
|
This defines the number of virtual interrupt numbers the kernel
|
|
can manage. Virtual interrupt numbers are what you see in
|
|
/proc/interrupts. If you configure your system to have too few,
|
|
drivers will fail to load or worse - handle with care.
|
|
|
|
config NMI_IPI
|
|
bool
|
|
depends on SMP && (DEBUGGER || KEXEC_CORE || HARDLOCKUP_DETECTOR)
|
|
default y
|
|
|
|
config PPC_WATCHDOG
|
|
bool
|
|
depends on HARDLOCKUP_DETECTOR
|
|
depends on HAVE_HARDLOCKUP_DETECTOR_ARCH
|
|
default y
|
|
help
|
|
This is a placeholder when the powerpc hardlockup detector
|
|
watchdog is selected (arch/powerpc/kernel/watchdog.c). It is
|
|
seleted via the generic lockup detector menu which is why we
|
|
have no standalone config option for it here.
|
|
|
|
config STACKTRACE_SUPPORT
|
|
bool
|
|
default y
|
|
|
|
config TRACE_IRQFLAGS_SUPPORT
|
|
bool
|
|
default y
|
|
|
|
config LOCKDEP_SUPPORT
|
|
bool
|
|
default y
|
|
|
|
config RWSEM_GENERIC_SPINLOCK
|
|
bool
|
|
|
|
config RWSEM_XCHGADD_ALGORITHM
|
|
bool
|
|
default y
|
|
|
|
config GENERIC_LOCKBREAK
|
|
bool
|
|
default y
|
|
depends on SMP && PREEMPT
|
|
|
|
config GENERIC_HWEIGHT
|
|
bool
|
|
default y
|
|
|
|
config ARCH_HAS_DMA_SET_COHERENT_MASK
|
|
bool
|
|
|
|
config PPC
|
|
bool
|
|
default y
|
|
#
|
|
# Please keep this list sorted alphabetically.
|
|
#
|
|
select ARCH_HAS_DEVMEM_IS_ALLOWED
|
|
select ARCH_HAS_DMA_SET_COHERENT_MASK
|
|
select ARCH_HAS_ELF_RANDOMIZE
|
|
select ARCH_HAS_FORTIFY_SOURCE
|
|
select ARCH_HAS_GCOV_PROFILE_ALL
|
|
select ARCH_HAS_PHYS_TO_DMA
|
|
select ARCH_HAS_PMEM_API if PPC64
|
|
select ARCH_HAS_PTE_SPECIAL
|
|
select ARCH_HAS_MEMBARRIER_CALLBACKS
|
|
select ARCH_HAS_SCALED_CPUTIME if VIRT_CPU_ACCOUNTING_NATIVE && PPC64
|
|
select ARCH_HAS_SG_CHAIN
|
|
select ARCH_HAS_STRICT_KERNEL_RWX if ((PPC_BOOK3S_64 || PPC32) && !RELOCATABLE && !HIBERNATION)
|
|
select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
|
|
select ARCH_HAS_UACCESS_FLUSHCACHE if PPC64
|
|
select ARCH_HAS_UBSAN_SANITIZE_ALL
|
|
select ARCH_HAS_ZONE_DEVICE if PPC_BOOK3S_64
|
|
select ARCH_HAVE_NMI_SAFE_CMPXCHG
|
|
select ARCH_MIGHT_HAVE_PC_PARPORT
|
|
select ARCH_MIGHT_HAVE_PC_SERIO
|
|
select ARCH_OPTIONAL_KERNEL_RWX if ARCH_HAS_STRICT_KERNEL_RWX
|
|
select ARCH_SUPPORTS_ATOMIC_RMW
|
|
select ARCH_USE_BUILTIN_BSWAP
|
|
select ARCH_USE_CMPXCHG_LOCKREF if PPC64
|
|
select ARCH_WANT_IPC_PARSE_VERSION
|
|
select ARCH_WEAK_RELEASE_ACQUIRE
|
|
select BINFMT_ELF
|
|
select BUILDTIME_EXTABLE_SORT
|
|
select CLONE_BACKWARDS
|
|
select DCACHE_WORD_ACCESS if PPC64 && CPU_LITTLE_ENDIAN
|
|
select DYNAMIC_FTRACE if FUNCTION_TRACER
|
|
select EDAC_ATOMIC_SCRUB
|
|
select EDAC_SUPPORT
|
|
select GENERIC_ATOMIC64 if PPC32
|
|
select GENERIC_CLOCKEVENTS
|
|
select GENERIC_CLOCKEVENTS_BROADCAST if SMP
|
|
select GENERIC_CMOS_UPDATE
|
|
select GENERIC_CPU_AUTOPROBE
|
|
select GENERIC_CPU_VULNERABILITIES if PPC_BARRIER_NOSPEC
|
|
select GENERIC_IRQ_SHOW
|
|
select GENERIC_IRQ_SHOW_LEVEL
|
|
select GENERIC_SMP_IDLE_THREAD
|
|
select GENERIC_STRNCPY_FROM_USER
|
|
select GENERIC_STRNLEN_USER
|
|
select GENERIC_TIME_VSYSCALL
|
|
select HAVE_ARCH_AUDITSYSCALL
|
|
select HAVE_ARCH_JUMP_LABEL
|
|
select HAVE_ARCH_KGDB
|
|
select HAVE_ARCH_MMAP_RND_BITS
|
|
select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
|
|
select HAVE_ARCH_SECCOMP_FILTER
|
|
select HAVE_ARCH_TRACEHOOK
|
|
select HAVE_CBPF_JIT if !PPC64
|
|
select HAVE_STACKPROTECTOR if PPC64 && $(cc-option,-mstack-protector-guard=tls -mstack-protector-guard-reg=r13)
|
|
select HAVE_STACKPROTECTOR if PPC32 && $(cc-option,-mstack-protector-guard=tls -mstack-protector-guard-reg=r2)
|
|
select HAVE_CONTEXT_TRACKING if PPC64
|
|
select HAVE_DEBUG_KMEMLEAK
|
|
select HAVE_DEBUG_STACKOVERFLOW
|
|
select HAVE_DYNAMIC_FTRACE
|
|
select HAVE_DYNAMIC_FTRACE_WITH_REGS if MPROFILE_KERNEL
|
|
select HAVE_EBPF_JIT if PPC64
|
|
select HAVE_EFFICIENT_UNALIGNED_ACCESS if !(CPU_LITTLE_ENDIAN && POWER7_CPU)
|
|
select HAVE_FTRACE_MCOUNT_RECORD
|
|
select HAVE_FUNCTION_ERROR_INJECTION
|
|
select HAVE_FUNCTION_GRAPH_TRACER
|
|
select HAVE_FUNCTION_TRACER
|
|
select HAVE_GCC_PLUGINS if GCC_VERSION >= 50200 # plugin support on gcc <= 5.1 is buggy on PPC
|
|
select HAVE_GENERIC_GUP
|
|
select HAVE_HW_BREAKPOINT if PERF_EVENTS && (PPC_BOOK3S || PPC_8xx)
|
|
select HAVE_IDE
|
|
select HAVE_IOREMAP_PROT
|
|
select HAVE_IRQ_EXIT_ON_IRQ_STACK
|
|
select HAVE_KERNEL_GZIP
|
|
select HAVE_KERNEL_XZ if PPC_BOOK3S
|
|
select HAVE_KPROBES
|
|
select HAVE_KPROBES_ON_FTRACE
|
|
select HAVE_KRETPROBES
|
|
select HAVE_LD_DEAD_CODE_DATA_ELIMINATION
|
|
select HAVE_LIVEPATCH if HAVE_DYNAMIC_FTRACE_WITH_REGS
|
|
select HAVE_MEMBLOCK
|
|
select HAVE_MEMBLOCK_NODE_MAP
|
|
select HAVE_MOD_ARCH_SPECIFIC
|
|
select HAVE_NMI if PERF_EVENTS || (PPC64 && PPC_BOOK3S)
|
|
select HAVE_HARDLOCKUP_DETECTOR_ARCH if (PPC64 && PPC_BOOK3S)
|
|
select HAVE_OPROFILE
|
|
select HAVE_OPTPROBES if PPC64
|
|
select HAVE_PERF_EVENTS
|
|
select HAVE_PERF_EVENTS_NMI if PPC64
|
|
select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && HAVE_PERF_EVENTS_NMI && !HAVE_HARDLOCKUP_DETECTOR_ARCH
|
|
select HAVE_PERF_REGS
|
|
select HAVE_PERF_USER_STACK_DUMP
|
|
select HAVE_RCU_TABLE_FREE if SMP
|
|
select HAVE_REGS_AND_STACK_ACCESS_API
|
|
select HAVE_RELIABLE_STACKTRACE if PPC64 && CPU_LITTLE_ENDIAN
|
|
select HAVE_SYSCALL_TRACEPOINTS
|
|
select HAVE_VIRT_CPU_ACCOUNTING
|
|
select HAVE_IRQ_TIME_ACCOUNTING
|
|
select HAVE_RSEQ
|
|
select IOMMU_HELPER if PPC64
|
|
select IRQ_DOMAIN
|
|
select IRQ_FORCED_THREADING
|
|
select MODULES_USE_ELF_RELA
|
|
select NEED_DMA_MAP_STATE if PPC64 || NOT_COHERENT_CACHE
|
|
select NEED_SG_DMA_LENGTH
|
|
select NO_BOOTMEM
|
|
select OF
|
|
select OF_EARLY_FLATTREE
|
|
select OF_RESERVED_MEM
|
|
select OLD_SIGACTION if PPC32
|
|
select OLD_SIGSUSPEND
|
|
select RTC_LIB
|
|
select SPARSE_IRQ
|
|
select SYSCTL_EXCEPTION_TRACE
|
|
select VIRT_TO_BUS if !PPC64
|
|
#
|
|
# Please keep this list sorted alphabetically.
|
|
#
|
|
|
|
config PPC_BARRIER_NOSPEC
|
|
bool
|
|
default y
|
|
depends on PPC_BOOK3S_64 || PPC_FSL_BOOK3E
|
|
|
|
config GENERIC_CSUM
|
|
def_bool n
|
|
|
|
config EARLY_PRINTK
|
|
bool
|
|
default y
|
|
|
|
config PANIC_TIMEOUT
|
|
int
|
|
default 180
|
|
|
|
config COMPAT
|
|
bool
|
|
default y if PPC64
|
|
select COMPAT_BINFMT_ELF
|
|
select ARCH_WANT_OLD_COMPAT_IPC
|
|
select COMPAT_OLD_SIGACTION
|
|
|
|
config SYSVIPC_COMPAT
|
|
bool
|
|
depends on COMPAT && SYSVIPC
|
|
default y
|
|
|
|
# All PPC32s use generic nvram driver through ppc_md
|
|
config GENERIC_NVRAM
|
|
bool
|
|
default y if PPC32
|
|
|
|
config SCHED_OMIT_FRAME_POINTER
|
|
bool
|
|
default y
|
|
|
|
config ARCH_MAY_HAVE_PC_FDC
|
|
bool
|
|
default PCI
|
|
|
|
config PPC_UDBG_16550
|
|
bool
|
|
|
|
config GENERIC_TBSYNC
|
|
bool
|
|
default y if PPC32 && SMP
|
|
|
|
config AUDIT_ARCH
|
|
bool
|
|
default y
|
|
|
|
config GENERIC_BUG
|
|
bool
|
|
default y
|
|
depends on BUG
|
|
|
|
config SYS_SUPPORTS_APM_EMULATION
|
|
default y if PMAC_APM_EMU
|
|
bool
|
|
|
|
config EPAPR_BOOT
|
|
bool
|
|
help
|
|
Used to allow a board to specify it wants an ePAPR compliant wrapper.
|
|
|
|
config DEFAULT_UIMAGE
|
|
bool
|
|
help
|
|
Used to allow a board to specify it wants a uImage built by default
|
|
|
|
config ARCH_HIBERNATION_POSSIBLE
|
|
bool
|
|
default y
|
|
|
|
config ARCH_SUSPEND_POSSIBLE
|
|
def_bool y
|
|
depends on ADB_PMU || PPC_EFIKA || PPC_LITE5200 || PPC_83xx || \
|
|
(PPC_85xx && !PPC_E500MC) || PPC_86xx || PPC_PSERIES \
|
|
|| 44x || 40x
|
|
|
|
config PPC_DCR_NATIVE
|
|
bool
|
|
|
|
config PPC_DCR_MMIO
|
|
bool
|
|
|
|
config PPC_DCR
|
|
bool
|
|
depends on PPC_DCR_NATIVE || PPC_DCR_MMIO
|
|
default y
|
|
|
|
config PPC_OF_PLATFORM_PCI
|
|
bool
|
|
depends on PCI
|
|
depends on PPC64 # not supported on 32 bits yet
|
|
|
|
config ARCH_SUPPORTS_DEBUG_PAGEALLOC
|
|
depends on PPC32 || PPC_BOOK3S_64
|
|
def_bool y
|
|
|
|
config ARCH_SUPPORTS_UPROBES
|
|
def_bool y
|
|
|
|
config PPC_ADV_DEBUG_REGS
|
|
bool
|
|
depends on 40x || BOOKE
|
|
default y
|
|
|
|
config PPC_ADV_DEBUG_IACS
|
|
int
|
|
depends on PPC_ADV_DEBUG_REGS
|
|
default 4 if 44x
|
|
default 2
|
|
|
|
config PPC_ADV_DEBUG_DACS
|
|
int
|
|
depends on PPC_ADV_DEBUG_REGS
|
|
default 2
|
|
|
|
config PPC_ADV_DEBUG_DVCS
|
|
int
|
|
depends on PPC_ADV_DEBUG_REGS
|
|
default 2 if 44x
|
|
default 0
|
|
|
|
config PPC_ADV_DEBUG_DAC_RANGE
|
|
bool
|
|
depends on PPC_ADV_DEBUG_REGS && 44x
|
|
default y
|
|
|
|
config ZONE_DMA32
|
|
bool
|
|
default y if PPC64
|
|
|
|
config PGTABLE_LEVELS
|
|
int
|
|
default 2 if !PPC64
|
|
default 3 if PPC_64K_PAGES && !PPC_BOOK3S_64
|
|
default 4
|
|
|
|
source "arch/powerpc/sysdev/Kconfig"
|
|
source "arch/powerpc/platforms/Kconfig"
|
|
|
|
menu "Kernel options"
|
|
|
|
config HIGHMEM
|
|
bool "High memory support"
|
|
depends on PPC32
|
|
|
|
source kernel/Kconfig.hz
|
|
|
|
config HUGETLB_PAGE_SIZE_VARIABLE
|
|
bool
|
|
depends on HUGETLB_PAGE
|
|
default y
|
|
|
|
config MATH_EMULATION
|
|
bool "Math emulation"
|
|
depends on 4xx || PPC_8xx || PPC_MPC832x || BOOKE
|
|
---help---
|
|
Some PowerPC chips designed for embedded applications do not have
|
|
a floating-point unit and therefore do not implement the
|
|
floating-point instructions in the PowerPC instruction set. If you
|
|
say Y here, the kernel will include code to emulate a floating-point
|
|
unit, which will allow programs that use floating-point
|
|
instructions to run.
|
|
|
|
This is also useful to emulate missing (optional) instructions
|
|
such as fsqrt on cores that do have an FPU but do not implement
|
|
them (such as Freescale BookE).
|
|
|
|
choice
|
|
prompt "Math emulation options"
|
|
default MATH_EMULATION_FULL
|
|
depends on MATH_EMULATION
|
|
|
|
config MATH_EMULATION_FULL
|
|
bool "Emulate all the floating point instructions"
|
|
---help---
|
|
Select this option will enable the kernel to support to emulate
|
|
all the floating point instructions. If your SoC doesn't have
|
|
a FPU, you should select this.
|
|
|
|
config MATH_EMULATION_HW_UNIMPLEMENTED
|
|
bool "Just emulate the FPU unimplemented instructions"
|
|
---help---
|
|
Select this if you know there does have a hardware FPU on your
|
|
SoC, but some floating point instructions are not implemented by that.
|
|
|
|
endchoice
|
|
|
|
config PPC_TRANSACTIONAL_MEM
|
|
bool "Transactional Memory support for POWERPC"
|
|
depends on PPC_BOOK3S_64
|
|
depends on SMP
|
|
select ALTIVEC
|
|
select VSX
|
|
---help---
|
|
Support user-mode Transactional Memory on POWERPC.
|
|
|
|
config LD_HEAD_STUB_CATCH
|
|
bool "Reserve 256 bytes to cope with linker stubs in HEAD text" if EXPERT
|
|
depends on PPC64
|
|
help
|
|
Very large kernels can cause linker branch stubs to be generated by
|
|
code in head_64.S, which moves the head text sections out of their
|
|
specified location. This option can work around the problem.
|
|
|
|
If unsure, say "N".
|
|
|
|
config MPROFILE_KERNEL
|
|
depends on PPC64 && CPU_LITTLE_ENDIAN
|
|
def_bool $(success,$(srctree)/arch/powerpc/tools/gcc-check-mprofile-kernel.sh $(CC) -I$(srctree)/include -D__KERNEL__)
|
|
|
|
config HOTPLUG_CPU
|
|
bool "Support for enabling/disabling CPUs"
|
|
depends on SMP && (PPC_PSERIES || \
|
|
PPC_PMAC || PPC_POWERNV || FSL_SOC_BOOKE)
|
|
---help---
|
|
Say Y here to be able to disable and re-enable individual
|
|
CPUs at runtime on SMP machines.
|
|
|
|
Say N if you are unsure.
|
|
|
|
config ARCH_CPU_PROBE_RELEASE
|
|
def_bool y
|
|
depends on HOTPLUG_CPU
|
|
|
|
config ARCH_ENABLE_MEMORY_HOTPLUG
|
|
def_bool y
|
|
|
|
config ARCH_HAS_WALK_MEMORY
|
|
def_bool y
|
|
|
|
config ARCH_ENABLE_MEMORY_HOTREMOVE
|
|
def_bool y
|
|
|
|
config PPC64_SUPPORTS_MEMORY_FAILURE
|
|
bool "Add support for memory hwpoison"
|
|
depends on PPC_BOOK3S_64
|
|
default "y" if PPC_POWERNV
|
|
select ARCH_SUPPORTS_MEMORY_FAILURE
|
|
|
|
config KEXEC
|
|
bool "kexec system call"
|
|
depends on (PPC_BOOK3S || FSL_BOOKE || (44x && !SMP)) || PPC_BOOK3E
|
|
select KEXEC_CORE
|
|
help
|
|
kexec is a system call that implements the ability to shutdown your
|
|
current kernel, and to start another kernel. It is like a reboot
|
|
but it is independent of the system firmware. And like a reboot
|
|
you can start any kernel with it, not just Linux.
|
|
|
|
The name comes from the similarity to the exec system call.
|
|
|
|
It is an ongoing process to be certain the hardware in a machine
|
|
is properly shutdown, so do not be surprised if this code does not
|
|
initially work for you. As of this writing the exact hardware
|
|
interface is strongly in flux, so no good recommendation can be
|
|
made.
|
|
|
|
config KEXEC_FILE
|
|
bool "kexec file based system call"
|
|
select KEXEC_CORE
|
|
select HAVE_IMA_KEXEC
|
|
select BUILD_BIN2C
|
|
depends on PPC64
|
|
depends on CRYPTO=y
|
|
depends on CRYPTO_SHA256=y
|
|
help
|
|
This is a new version of the kexec system call. This call is
|
|
file based and takes in file descriptors as system call arguments
|
|
for kernel and initramfs as opposed to a list of segments as is the
|
|
case for the older kexec call.
|
|
|
|
config ARCH_HAS_KEXEC_PURGATORY
|
|
def_bool KEXEC_FILE
|
|
|
|
config RELOCATABLE
|
|
bool "Build a relocatable kernel"
|
|
depends on PPC64 || (FLATMEM && (44x || FSL_BOOKE))
|
|
select NONSTATIC_KERNEL
|
|
select MODULE_REL_CRCS if MODVERSIONS
|
|
help
|
|
This builds a kernel image that is capable of running at the
|
|
location the kernel is loaded at. For ppc32, there is no any
|
|
alignment restrictions, and this feature is a superset of
|
|
DYNAMIC_MEMSTART and hence overrides it. For ppc64, we should use
|
|
16k-aligned base address. The kernel is linked as a
|
|
position-independent executable (PIE) and contains dynamic relocations
|
|
which are processed early in the bootup process.
|
|
|
|
One use is for the kexec on panic case where the recovery kernel
|
|
must live at a different physical address than the primary
|
|
kernel.
|
|
|
|
Note: If CONFIG_RELOCATABLE=y, then the kernel runs from the address
|
|
it has been loaded at and the compile time physical addresses
|
|
CONFIG_PHYSICAL_START is ignored. However CONFIG_PHYSICAL_START
|
|
setting can still be useful to bootwrappers that need to know the
|
|
load address of the kernel (eg. u-boot/mkimage).
|
|
|
|
config RELOCATABLE_TEST
|
|
bool "Test relocatable kernel"
|
|
depends on (PPC64 && RELOCATABLE)
|
|
help
|
|
This runs the relocatable kernel at the address it was initially
|
|
loaded at, which tends to be non-zero and therefore test the
|
|
relocation code.
|
|
|
|
config CRASH_DUMP
|
|
bool "Build a dump capture kernel"
|
|
depends on PPC64 || 6xx || FSL_BOOKE || (44x && !SMP)
|
|
select RELOCATABLE if PPC64 || 44x || FSL_BOOKE
|
|
help
|
|
Build a kernel suitable for use as a dump capture kernel.
|
|
The same kernel binary can be used as production kernel and dump
|
|
capture kernel.
|
|
|
|
config FA_DUMP
|
|
bool "Firmware-assisted dump"
|
|
depends on PPC64 && PPC_RTAS
|
|
select CRASH_CORE
|
|
select CRASH_DUMP
|
|
help
|
|
A robust mechanism to get reliable kernel crash dump with
|
|
assistance from firmware. This approach does not use kexec,
|
|
instead firmware assists in booting the capture kernel
|
|
while preserving memory contents. Firmware-assisted dump
|
|
is meant to be a kdump replacement offering robustness and
|
|
speed not possible without system firmware assistance.
|
|
|
|
If unsure, say "N"
|
|
|
|
config IRQ_ALL_CPUS
|
|
bool "Distribute interrupts on all CPUs by default"
|
|
depends on SMP
|
|
help
|
|
This option gives the kernel permission to distribute IRQs across
|
|
multiple CPUs. Saying N here will route all IRQs to the first
|
|
CPU. Generally saying Y is safe, although some problems have been
|
|
reported with SMP Power Macintoshes with this option enabled.
|
|
|
|
config NUMA
|
|
bool "NUMA support"
|
|
depends on PPC64
|
|
default y if SMP && PPC_PSERIES
|
|
|
|
config NODES_SHIFT
|
|
int
|
|
default "8" if PPC64
|
|
default "4"
|
|
depends on NEED_MULTIPLE_NODES
|
|
|
|
config USE_PERCPU_NUMA_NODE_ID
|
|
def_bool y
|
|
depends on NUMA
|
|
|
|
config HAVE_MEMORYLESS_NODES
|
|
def_bool y
|
|
depends on NUMA
|
|
|
|
config ARCH_SELECT_MEMORY_MODEL
|
|
def_bool y
|
|
depends on PPC64
|
|
|
|
config ARCH_FLATMEM_ENABLE
|
|
def_bool y
|
|
depends on (PPC64 && !NUMA) || PPC32
|
|
|
|
config ARCH_SPARSEMEM_ENABLE
|
|
def_bool y
|
|
depends on PPC64
|
|
select SPARSEMEM_VMEMMAP_ENABLE
|
|
|
|
config ARCH_SPARSEMEM_DEFAULT
|
|
def_bool y
|
|
depends on PPC_BOOK3S_64
|
|
|
|
config SYS_SUPPORTS_HUGETLBFS
|
|
bool
|
|
|
|
config ILLEGAL_POINTER_VALUE
|
|
hex
|
|
# This is roughly half way between the top of user space and the bottom
|
|
# of kernel space, which seems about as good as we can get.
|
|
default 0x5deadbeef0000000 if PPC64
|
|
default 0
|
|
|
|
config ARCH_MEMORY_PROBE
|
|
def_bool y
|
|
depends on MEMORY_HOTPLUG
|
|
|
|
# Some NUMA nodes have memory ranges that span
|
|
# other nodes. Even though a pfn is valid and
|
|
# between a node's start and end pfns, it may not
|
|
# reside on that node. See memmap_init_zone()
|
|
# for details.
|
|
config NODES_SPAN_OTHER_NODES
|
|
def_bool y
|
|
depends on NEED_MULTIPLE_NODES
|
|
|
|
config STDBINUTILS
|
|
bool "Using standard binutils settings"
|
|
depends on 44x
|
|
default y
|
|
help
|
|
Turning this option off allows you to select 256KB PAGE_SIZE on 44x.
|
|
Note, that kernel will be able to run only those applications,
|
|
which had been compiled using binutils later than 2.17.50.0.3 with
|
|
'-zmax-page-size' set to 256K (the default is 64K). Or, if using
|
|
the older binutils, you can patch them with a trivial patch, which
|
|
changes the ELF_MAXPAGESIZE definition from 0x10000 to 0x40000.
|
|
|
|
choice
|
|
prompt "Page size"
|
|
default PPC_4K_PAGES
|
|
help
|
|
Select the kernel logical page size. Increasing the page size
|
|
will reduce software overhead at each page boundary, allow
|
|
hardware prefetch mechanisms to be more effective, and allow
|
|
larger dma transfers increasing IO efficiency and reducing
|
|
overhead. However the utilization of memory will increase.
|
|
For example, each cached file will using a multiple of the
|
|
page size to hold its contents and the difference between the
|
|
end of file and the end of page is wasted.
|
|
|
|
Some dedicated systems, such as software raid serving with
|
|
accelerated calculations, have shown significant increases.
|
|
|
|
If you configure a 64 bit kernel for 64k pages but the
|
|
processor does not support them, then the kernel will simulate
|
|
them with 4k pages, loading them on demand, but with the
|
|
reduced software overhead and larger internal fragmentation.
|
|
For the 32 bit kernel, a large page option will not be offered
|
|
unless it is supported by the configured processor.
|
|
|
|
If unsure, choose 4K_PAGES.
|
|
|
|
config PPC_4K_PAGES
|
|
bool "4k page size"
|
|
select HAVE_ARCH_SOFT_DIRTY if PPC_BOOK3S_64
|
|
|
|
config PPC_16K_PAGES
|
|
bool "16k page size"
|
|
depends on 44x || PPC_8xx
|
|
|
|
config PPC_64K_PAGES
|
|
bool "64k page size"
|
|
depends on !PPC_FSL_BOOK3E && (44x || PPC_BOOK3S_64 || PPC_BOOK3E_64)
|
|
select HAVE_ARCH_SOFT_DIRTY if PPC_BOOK3S_64
|
|
|
|
config PPC_256K_PAGES
|
|
bool "256k page size"
|
|
depends on 44x && !STDBINUTILS
|
|
help
|
|
Make the page size 256k.
|
|
|
|
As the ELF standard only requires alignment to support page
|
|
sizes up to 64k, you will need to compile all of your user
|
|
space applications with a non-standard binutils settings
|
|
(see the STDBINUTILS description for details).
|
|
|
|
Say N unless you know what you are doing.
|
|
|
|
endchoice
|
|
|
|
config THREAD_SHIFT
|
|
int "Thread shift" if EXPERT
|
|
range 13 15
|
|
default "15" if PPC_256K_PAGES
|
|
default "14" if PPC64
|
|
default "13"
|
|
help
|
|
Used to define the stack size. The default is almost always what you
|
|
want. Only change this if you know what you are doing.
|
|
|
|
config FORCE_MAX_ZONEORDER
|
|
int "Maximum zone order"
|
|
range 8 9 if PPC64 && PPC_64K_PAGES
|
|
default "9" if PPC64 && PPC_64K_PAGES
|
|
range 13 13 if PPC64 && !PPC_64K_PAGES
|
|
default "13" if PPC64 && !PPC_64K_PAGES
|
|
range 9 64 if PPC32 && PPC_16K_PAGES
|
|
default "9" if PPC32 && PPC_16K_PAGES
|
|
range 7 64 if PPC32 && PPC_64K_PAGES
|
|
default "7" if PPC32 && PPC_64K_PAGES
|
|
range 5 64 if PPC32 && PPC_256K_PAGES
|
|
default "5" if PPC32 && PPC_256K_PAGES
|
|
range 11 64
|
|
default "11"
|
|
help
|
|
The kernel memory allocator divides physically contiguous memory
|
|
blocks into "zones", where each zone is a power of two number of
|
|
pages. This option selects the largest power of two that the kernel
|
|
keeps in the memory allocator. If you need to allocate very large
|
|
blocks of physically contiguous memory, then you may need to
|
|
increase this value.
|
|
|
|
This config option is actually maximum order plus one. For example,
|
|
a value of 11 means that the largest free memory block is 2^10 pages.
|
|
|
|
The page size is not necessarily 4KB. For example, on 64-bit
|
|
systems, 64KB pages can be enabled via CONFIG_PPC_64K_PAGES. Keep
|
|
this in mind when choosing a value for this option.
|
|
|
|
config PPC_SUBPAGE_PROT
|
|
bool "Support setting protections for 4k subpages"
|
|
depends on PPC_BOOK3S_64 && PPC_64K_PAGES
|
|
help
|
|
This option adds support for a system call to allow user programs
|
|
to set access permissions (read/write, readonly, or no access)
|
|
on the 4k subpages of each 64k page.
|
|
|
|
config PPC_COPRO_BASE
|
|
bool
|
|
|
|
config SCHED_SMT
|
|
bool "SMT (Hyperthreading) scheduler support"
|
|
depends on PPC64 && SMP
|
|
help
|
|
SMT scheduler support improves the CPU scheduler's decision making
|
|
when dealing with POWER5 cpus at a cost of slightly increased
|
|
overhead in some places. If unsure say N here.
|
|
|
|
config PPC_DENORMALISATION
|
|
bool "PowerPC denormalisation exception handling"
|
|
depends on PPC_BOOK3S_64
|
|
default "y" if PPC_POWERNV
|
|
---help---
|
|
Add support for handling denormalisation of single precision
|
|
values. Useful for bare metal only. If unsure say Y here.
|
|
|
|
config CMDLINE_BOOL
|
|
bool "Default bootloader kernel arguments"
|
|
|
|
config CMDLINE
|
|
string "Initial kernel command string"
|
|
depends on CMDLINE_BOOL
|
|
default "console=ttyS0,9600 console=tty0 root=/dev/sda2"
|
|
help
|
|
On some platforms, there is currently no way for the boot loader to
|
|
pass arguments to the kernel. For these platforms, you can supply
|
|
some command-line options at build time by entering them here. In
|
|
most cases you will need to specify the root device here.
|
|
|
|
config CMDLINE_FORCE
|
|
bool "Always use the default kernel command string"
|
|
depends on CMDLINE_BOOL
|
|
help
|
|
Always use the default kernel command string, even if the boot
|
|
loader passes other arguments to the kernel.
|
|
This is useful if you cannot or don't want to change the
|
|
command-line options your boot loader passes to the kernel.
|
|
|
|
config EXTRA_TARGETS
|
|
string "Additional default image types"
|
|
help
|
|
List additional targets to be built by the bootwrapper here (separated
|
|
by spaces). This is useful for targets that depend of device tree
|
|
files in the .dts directory.
|
|
|
|
Targets in this list will be build as part of the default build
|
|
target, or when the user does a 'make zImage' or a
|
|
'make zImage.initrd'.
|
|
|
|
If unsure, leave blank
|
|
|
|
config ARCH_WANTS_FREEZER_CONTROL
|
|
def_bool y
|
|
depends on ADB_PMU
|
|
|
|
source kernel/power/Kconfig
|
|
|
|
config SECCOMP
|
|
bool "Enable seccomp to safely compute untrusted bytecode"
|
|
depends on PROC_FS
|
|
default y
|
|
help
|
|
This kernel feature is useful for number crunching applications
|
|
that may need to compute untrusted bytecode during their
|
|
execution. By using pipes or other transports made available to
|
|
the process as file descriptors supporting the read/write
|
|
syscalls, it's possible to isolate those applications in
|
|
their own address space using seccomp. Once seccomp is
|
|
enabled via /proc/<pid>/seccomp, it cannot be disabled
|
|
and the task is only allowed to execute a few safe syscalls
|
|
defined by each seccomp mode.
|
|
|
|
If unsure, say Y. Only embedded should say N here.
|
|
|
|
config PPC_MEM_KEYS
|
|
prompt "PowerPC Memory Protection Keys"
|
|
def_bool y
|
|
depends on PPC_BOOK3S_64
|
|
select ARCH_USES_HIGH_VMA_FLAGS
|
|
select ARCH_HAS_PKEYS
|
|
help
|
|
Memory Protection Keys provides a mechanism for enforcing
|
|
page-based protections, but without requiring modification of the
|
|
page tables when an application changes protection domains.
|
|
|
|
For details, see Documentation/vm/protection-keys.rst
|
|
|
|
If unsure, say y.
|
|
|
|
endmenu
|
|
|
|
config ISA_DMA_API
|
|
bool
|
|
default PCI
|
|
|
|
menu "Bus options"
|
|
|
|
config ISA
|
|
bool "Support for ISA-bus hardware"
|
|
depends on PPC_CHRP
|
|
select PPC_I8259
|
|
help
|
|
Find out whether you have ISA slots on your motherboard. ISA is the
|
|
name of a bus system, i.e. the way the CPU talks to the other stuff
|
|
inside your box. If you have an Apple machine, say N here; if you
|
|
have an IBM RS/6000 or pSeries machine, say Y. If you have an
|
|
embedded board, consult your board documentation.
|
|
|
|
config ZONE_DMA
|
|
bool
|
|
default y
|
|
|
|
config GENERIC_ISA_DMA
|
|
bool
|
|
depends on ISA_DMA_API
|
|
default y
|
|
|
|
config PPC_INDIRECT_PCI
|
|
bool
|
|
depends on PCI
|
|
default y if 40x || 44x
|
|
|
|
config EISA
|
|
bool
|
|
|
|
config SBUS
|
|
bool
|
|
|
|
config FSL_SOC
|
|
bool
|
|
|
|
config FSL_PCI
|
|
bool
|
|
select PPC_INDIRECT_PCI
|
|
select PCI_QUIRKS
|
|
|
|
config FSL_PMC
|
|
bool
|
|
default y
|
|
depends on SUSPEND && (PPC_85xx || PPC_86xx)
|
|
help
|
|
Freescale MPC85xx/MPC86xx power management controller support
|
|
(suspend/resume). For MPC83xx see platforms/83xx/suspend.c
|
|
|
|
config PPC4xx_CPM
|
|
bool
|
|
default y
|
|
depends on SUSPEND && (44x || 40x)
|
|
help
|
|
PPC4xx Clock Power Management (CPM) support (suspend/resume).
|
|
It also enables support for two different idle states (idle-wait
|
|
and idle-doze).
|
|
|
|
config 4xx_SOC
|
|
bool
|
|
|
|
config FSL_LBC
|
|
bool "Freescale Local Bus support"
|
|
help
|
|
Enables reporting of errors from the Freescale local bus
|
|
controller. Also contains some common code used by
|
|
drivers for specific local bus peripherals.
|
|
|
|
config FSL_GTM
|
|
bool
|
|
depends on PPC_83xx || QUICC_ENGINE || CPM2
|
|
help
|
|
Freescale General-purpose Timers support
|
|
|
|
# Yes MCA RS/6000s exist but Linux-PPC does not currently support any
|
|
config MCA
|
|
bool
|
|
|
|
# Platforms that what PCI turned unconditionally just do select PCI
|
|
# in their config node. Platforms that want to choose at config
|
|
# time should select PPC_PCI_CHOICE
|
|
config PPC_PCI_CHOICE
|
|
bool
|
|
|
|
config PCI
|
|
bool "PCI support" if PPC_PCI_CHOICE
|
|
default y if !40x && !CPM2 && !PPC_8xx && !PPC_83xx \
|
|
&& !PPC_85xx && !PPC_86xx && !GAMECUBE_COMMON
|
|
default PCI_QSPAN if PPC_8xx
|
|
select GENERIC_PCI_IOMAP
|
|
help
|
|
Find out whether your system includes a PCI bus. PCI is the name of
|
|
a bus system, i.e. the way the CPU talks to the other stuff inside
|
|
your box. If you say Y here, the kernel will include drivers and
|
|
infrastructure code to support PCI bus devices.
|
|
|
|
config PCI_DOMAINS
|
|
def_bool PCI
|
|
|
|
config PCI_SYSCALL
|
|
def_bool PCI
|
|
|
|
config PCI_QSPAN
|
|
bool "QSpan PCI"
|
|
depends on PPC_8xx
|
|
select PPC_I8259
|
|
help
|
|
Say Y here if you have a system based on a Motorola 8xx-series
|
|
embedded processor with a QSPAN PCI interface, otherwise say N.
|
|
|
|
config PCI_8260
|
|
bool
|
|
depends on PCI && 8260
|
|
select PPC_INDIRECT_PCI
|
|
default y
|
|
|
|
source "drivers/pci/Kconfig"
|
|
|
|
source "drivers/pcmcia/Kconfig"
|
|
|
|
config HAS_RAPIDIO
|
|
bool
|
|
|
|
config RAPIDIO
|
|
tristate "RapidIO support"
|
|
depends on HAS_RAPIDIO || PCI
|
|
help
|
|
If you say Y here, the kernel will include drivers and
|
|
infrastructure code to support RapidIO interconnect devices.
|
|
|
|
config FSL_RIO
|
|
bool "Freescale Embedded SRIO Controller support"
|
|
depends on RAPIDIO = y && HAS_RAPIDIO
|
|
default "n"
|
|
---help---
|
|
Include support for RapidIO controller on Freescale embedded
|
|
processors (MPC8548, MPC8641, etc).
|
|
|
|
source "drivers/rapidio/Kconfig"
|
|
|
|
endmenu
|
|
|
|
config NONSTATIC_KERNEL
|
|
bool
|
|
|
|
menu "Advanced setup"
|
|
depends on PPC32
|
|
|
|
config ADVANCED_OPTIONS
|
|
bool "Prompt for advanced kernel configuration options"
|
|
help
|
|
This option will enable prompting for a variety of advanced kernel
|
|
configuration options. These options can cause the kernel to not
|
|
work if they are set incorrectly, but can be used to optimize certain
|
|
aspects of kernel memory management.
|
|
|
|
Unless you know what you are doing, say N here.
|
|
|
|
comment "Default settings for advanced configuration options are used"
|
|
depends on !ADVANCED_OPTIONS
|
|
|
|
config LOWMEM_SIZE_BOOL
|
|
bool "Set maximum low memory"
|
|
depends on ADVANCED_OPTIONS
|
|
help
|
|
This option allows you to set the maximum amount of memory which
|
|
will be used as "low memory", that is, memory which the kernel can
|
|
access directly, without having to set up a kernel virtual mapping.
|
|
This can be useful in optimizing the layout of kernel virtual
|
|
memory.
|
|
|
|
Say N here unless you know what you are doing.
|
|
|
|
config LOWMEM_SIZE
|
|
hex "Maximum low memory size (in bytes)" if LOWMEM_SIZE_BOOL
|
|
default "0x30000000"
|
|
|
|
config LOWMEM_CAM_NUM_BOOL
|
|
bool "Set number of CAMs to use to map low memory"
|
|
depends on ADVANCED_OPTIONS && FSL_BOOKE
|
|
help
|
|
This option allows you to set the maximum number of CAM slots that
|
|
will be used to map low memory. There are a limited number of slots
|
|
available and even more limited number that will fit in the L1 MMU.
|
|
However, using more entries will allow mapping more low memory. This
|
|
can be useful in optimizing the layout of kernel virtual memory.
|
|
|
|
Say N here unless you know what you are doing.
|
|
|
|
config LOWMEM_CAM_NUM
|
|
depends on FSL_BOOKE
|
|
int "Number of CAMs to use to map low memory" if LOWMEM_CAM_NUM_BOOL
|
|
default 3
|
|
|
|
config DYNAMIC_MEMSTART
|
|
bool "Enable page aligned dynamic load address for kernel"
|
|
depends on ADVANCED_OPTIONS && FLATMEM && (FSL_BOOKE || 44x)
|
|
select NONSTATIC_KERNEL
|
|
help
|
|
This option enables the kernel to be loaded at any page aligned
|
|
physical address. The kernel creates a mapping from KERNELBASE to
|
|
the address where the kernel is loaded. The page size here implies
|
|
the TLB page size of the mapping for kernel on the particular platform.
|
|
Please refer to the init code for finding the TLB page size.
|
|
|
|
DYNAMIC_MEMSTART is an easy way of implementing pseudo-RELOCATABLE
|
|
kernel image, where the only restriction is the page aligned kernel
|
|
load address. When this option is enabled, the compile time physical
|
|
address CONFIG_PHYSICAL_START is ignored.
|
|
|
|
This option is overridden by CONFIG_RELOCATABLE
|
|
|
|
config PAGE_OFFSET_BOOL
|
|
bool "Set custom page offset address"
|
|
depends on ADVANCED_OPTIONS
|
|
help
|
|
This option allows you to set the kernel virtual address at which
|
|
the kernel will map low memory. This can be useful in optimizing
|
|
the virtual memory layout of the system.
|
|
|
|
Say N here unless you know what you are doing.
|
|
|
|
config PAGE_OFFSET
|
|
hex "Virtual address of memory base" if PAGE_OFFSET_BOOL
|
|
default "0xc0000000"
|
|
|
|
config KERNEL_START_BOOL
|
|
bool "Set custom kernel base address"
|
|
depends on ADVANCED_OPTIONS
|
|
help
|
|
This option allows you to set the kernel virtual address at which
|
|
the kernel will be loaded. Normally this should match PAGE_OFFSET
|
|
however there are times (like kdump) that one might not want them
|
|
to be the same.
|
|
|
|
Say N here unless you know what you are doing.
|
|
|
|
config KERNEL_START
|
|
hex "Virtual address of kernel base" if KERNEL_START_BOOL
|
|
default PAGE_OFFSET if PAGE_OFFSET_BOOL
|
|
default "0xc2000000" if CRASH_DUMP && !NONSTATIC_KERNEL
|
|
default "0xc0000000"
|
|
|
|
config PHYSICAL_START_BOOL
|
|
bool "Set physical address where the kernel is loaded"
|
|
depends on ADVANCED_OPTIONS && FLATMEM && FSL_BOOKE
|
|
help
|
|
This gives the physical address where the kernel is loaded.
|
|
|
|
Say N here unless you know what you are doing.
|
|
|
|
config PHYSICAL_START
|
|
hex "Physical address where the kernel is loaded" if PHYSICAL_START_BOOL
|
|
default "0x02000000" if PPC_STD_MMU && CRASH_DUMP && !NONSTATIC_KERNEL
|
|
default "0x00000000"
|
|
|
|
config PHYSICAL_ALIGN
|
|
hex
|
|
default "0x04000000" if FSL_BOOKE
|
|
help
|
|
This value puts the alignment restrictions on physical address
|
|
where kernel is loaded and run from. Kernel is compiled for an
|
|
address which meets above alignment restriction.
|
|
|
|
config TASK_SIZE_BOOL
|
|
bool "Set custom user task size"
|
|
depends on ADVANCED_OPTIONS
|
|
help
|
|
This option allows you to set the amount of virtual address space
|
|
allocated to user tasks. This can be useful in optimizing the
|
|
virtual memory layout of the system.
|
|
|
|
Say N here unless you know what you are doing.
|
|
|
|
config TASK_SIZE
|
|
hex "Size of user task space" if TASK_SIZE_BOOL
|
|
default "0x80000000" if PPC_8xx
|
|
default "0xc0000000"
|
|
|
|
config CONSISTENT_SIZE_BOOL
|
|
bool "Set custom consistent memory pool size"
|
|
depends on ADVANCED_OPTIONS && NOT_COHERENT_CACHE
|
|
help
|
|
This option allows you to set the size of the
|
|
consistent memory pool. This pool of virtual memory
|
|
is used to make consistent memory allocations.
|
|
|
|
config CONSISTENT_SIZE
|
|
hex "Size of consistent memory pool" if CONSISTENT_SIZE_BOOL
|
|
default "0x00200000" if NOT_COHERENT_CACHE
|
|
|
|
config PIN_TLB
|
|
bool "Pinned Kernel TLBs (860 ONLY)"
|
|
depends on ADVANCED_OPTIONS && PPC_8xx && \
|
|
!DEBUG_PAGEALLOC && !STRICT_KERNEL_RWX
|
|
|
|
config PIN_TLB_DATA
|
|
bool "Pinned TLB for DATA"
|
|
depends on PIN_TLB
|
|
default y
|
|
|
|
config PIN_TLB_IMMR
|
|
bool "Pinned TLB for IMMR"
|
|
depends on PIN_TLB
|
|
default y
|
|
|
|
config PIN_TLB_TEXT
|
|
bool "Pinned TLB for TEXT"
|
|
depends on PIN_TLB
|
|
default y
|
|
endmenu
|
|
|
|
if PPC64
|
|
# This value must have zeroes in the bottom 60 bits otherwise lots will break
|
|
config PAGE_OFFSET
|
|
hex
|
|
default "0xc000000000000000"
|
|
config KERNEL_START
|
|
hex
|
|
default "0xc000000000000000"
|
|
config PHYSICAL_START
|
|
hex
|
|
default "0x00000000"
|
|
endif
|
|
|
|
config ARCH_RANDOM
|
|
def_bool n
|
|
|
|
config PPC_LIB_RHEAP
|
|
bool
|
|
|
|
source "arch/powerpc/kvm/Kconfig"
|
|
|
|
source "kernel/livepatch/Kconfig"
|