mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-02 10:43:57 +08:00
a2a892a236
Implementation: =============== The encrypt/decrypt code is based on an x86 implementation I did a while ago which I never published. This unpublished implementation does include an assembler based key schedule and precomputed tables. For simplicity and best acceptance, however, I took Gladman's in-kernel code for table generation and key schedule for the kernel port of my assembler code and modified this code to produce the key schedule as required by my assembler implementation. File locations and Kconfig are kept similar to the i586 AES assembler implementation. It may seem a little bit strange to use 32 bit I/O and registers in the assembler implementation but this gives the best code size. My implementation takes one instruction more per round compared to Gladman's x86 assembler but it doesn't require any stack for local variables or saved registers and it is less serialized than Gladman's code. Note that all comparisons to Gladman's code were done after my code was implemented. I did only use FIPS PUB 197 for the implementation so my implementation is independent work. If anybody has a better assembler solution for x86_64 I'll be pleased to have my code replaced with the better solution. Testing: ======== The implementation passes the in-kernel crypto testing module and I'm running it without any problems on my laptop where it is mainly used for dm-crypt. Microbenchmark: =============== The microbenchmark was done in userspace with similar compile flags as used during kernel compile. Encrypt/decrypt is about 35% faster than the generic C implementation. As the generic C as well as my assembler implementation are both table I don't really expect that there is much room for further improvements though I'll be glad to be corrected here. The key schedule is about 5% slower than the generic C implementation. This is due to the fact that some more work has to be done in the key schedule routine to fit the schedule to the assembler implementation. Code Size: ========== Encrypt and decrypt are together about 2.1 Kbytes smaller than the generic C implementation which is important with regard to L1 cache usage. The key schedule routine is about 100 bytes larger than the generic C implementation. Data Size: ========== There's no difference in data size requirements between the assembler implementation and the generic C implementation. License: ======== Gladmans's code is dual BSD/GPL whereas my assembler code is GPLv2 only (I'm not going to change the license for my code). So I had to change the module license for the x86_64 aes module from 'Dual BSD/GPL' to 'GPL' to reflect the most restrictive license within the module. Signed-off-by: Andreas Steinmetz <ast@domdv.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
187 lines
4.6 KiB
ArmAsm
187 lines
4.6 KiB
ArmAsm
/* AES (Rijndael) implementation (FIPS PUB 197) for x86_64
|
|
*
|
|
* Copyright (C) 2005 Andreas Steinmetz, <ast@domdv.de>
|
|
*
|
|
* License:
|
|
* This code can be distributed under the terms of the GNU General Public
|
|
* License (GPL) Version 2 provided that the above header down to and
|
|
* including this sentence is retained in full.
|
|
*/
|
|
|
|
.extern aes_ft_tab
|
|
.extern aes_it_tab
|
|
.extern aes_fl_tab
|
|
.extern aes_il_tab
|
|
|
|
.text
|
|
|
|
#define R1 %rax
|
|
#define R1E %eax
|
|
#define R1X %ax
|
|
#define R1H %ah
|
|
#define R1L %al
|
|
#define R2 %rbx
|
|
#define R2E %ebx
|
|
#define R2X %bx
|
|
#define R2H %bh
|
|
#define R2L %bl
|
|
#define R3 %rcx
|
|
#define R3E %ecx
|
|
#define R3X %cx
|
|
#define R3H %ch
|
|
#define R3L %cl
|
|
#define R4 %rdx
|
|
#define R4E %edx
|
|
#define R4X %dx
|
|
#define R4H %dh
|
|
#define R4L %dl
|
|
#define R5 %rsi
|
|
#define R5E %esi
|
|
#define R6 %rdi
|
|
#define R6E %edi
|
|
#define R7 %rbp
|
|
#define R7E %ebp
|
|
#define R8 %r8
|
|
#define R9 %r9
|
|
#define R10 %r10
|
|
#define R11 %r11
|
|
|
|
#define prologue(FUNC,BASE,B128,B192,r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11) \
|
|
.global FUNC; \
|
|
.type FUNC,@function; \
|
|
.align 8; \
|
|
FUNC: movq r1,r2; \
|
|
movq r3,r4; \
|
|
leaq BASE+52(r8),r9; \
|
|
movq r10,r11; \
|
|
movl (r7),r5 ## E; \
|
|
movl 4(r7),r1 ## E; \
|
|
movl 8(r7),r6 ## E; \
|
|
movl 12(r7),r7 ## E; \
|
|
movl (r8),r10 ## E; \
|
|
xorl -48(r9),r5 ## E; \
|
|
xorl -44(r9),r1 ## E; \
|
|
xorl -40(r9),r6 ## E; \
|
|
xorl -36(r9),r7 ## E; \
|
|
cmpl $24,r10 ## E; \
|
|
jb B128; \
|
|
leaq 32(r9),r9; \
|
|
je B192; \
|
|
leaq 32(r9),r9;
|
|
|
|
#define epilogue(r1,r2,r3,r4,r5,r6,r7,r8,r9) \
|
|
movq r1,r2; \
|
|
movq r3,r4; \
|
|
movl r5 ## E,(r9); \
|
|
movl r6 ## E,4(r9); \
|
|
movl r7 ## E,8(r9); \
|
|
movl r8 ## E,12(r9); \
|
|
ret;
|
|
|
|
#define round(TAB,OFFSET,r1,r2,r3,r4,r5,r6,r7,r8,ra,rb,rc,rd) \
|
|
movzbl r2 ## H,r5 ## E; \
|
|
movzbl r2 ## L,r6 ## E; \
|
|
movl TAB+1024(,r5,4),r5 ## E;\
|
|
movw r4 ## X,r2 ## X; \
|
|
movl TAB(,r6,4),r6 ## E; \
|
|
roll $16,r2 ## E; \
|
|
shrl $16,r4 ## E; \
|
|
movzbl r4 ## H,r7 ## E; \
|
|
movzbl r4 ## L,r4 ## E; \
|
|
xorl OFFSET(r8),ra ## E; \
|
|
xorl OFFSET+4(r8),rb ## E; \
|
|
xorl TAB+3072(,r7,4),r5 ## E;\
|
|
xorl TAB+2048(,r4,4),r6 ## E;\
|
|
movzbl r1 ## L,r7 ## E; \
|
|
movzbl r1 ## H,r4 ## E; \
|
|
movl TAB+1024(,r4,4),r4 ## E;\
|
|
movw r3 ## X,r1 ## X; \
|
|
roll $16,r1 ## E; \
|
|
shrl $16,r3 ## E; \
|
|
xorl TAB(,r7,4),r5 ## E; \
|
|
movzbl r3 ## H,r7 ## E; \
|
|
movzbl r3 ## L,r3 ## E; \
|
|
xorl TAB+3072(,r7,4),r4 ## E;\
|
|
xorl TAB+2048(,r3,4),r5 ## E;\
|
|
movzbl r1 ## H,r7 ## E; \
|
|
movzbl r1 ## L,r3 ## E; \
|
|
shrl $16,r1 ## E; \
|
|
xorl TAB+3072(,r7,4),r6 ## E;\
|
|
movl TAB+2048(,r3,4),r3 ## E;\
|
|
movzbl r1 ## H,r7 ## E; \
|
|
movzbl r1 ## L,r1 ## E; \
|
|
xorl TAB+1024(,r7,4),r6 ## E;\
|
|
xorl TAB(,r1,4),r3 ## E; \
|
|
movzbl r2 ## H,r1 ## E; \
|
|
movzbl r2 ## L,r7 ## E; \
|
|
shrl $16,r2 ## E; \
|
|
xorl TAB+3072(,r1,4),r3 ## E;\
|
|
xorl TAB+2048(,r7,4),r4 ## E;\
|
|
movzbl r2 ## H,r1 ## E; \
|
|
movzbl r2 ## L,r2 ## E; \
|
|
xorl OFFSET+8(r8),rc ## E; \
|
|
xorl OFFSET+12(r8),rd ## E; \
|
|
xorl TAB+1024(,r1,4),r3 ## E;\
|
|
xorl TAB(,r2,4),r4 ## E;
|
|
|
|
#define move_regs(r1,r2,r3,r4) \
|
|
movl r3 ## E,r1 ## E; \
|
|
movl r4 ## E,r2 ## E;
|
|
|
|
#define entry(FUNC,BASE,B128,B192) \
|
|
prologue(FUNC,BASE,B128,B192,R2,R8,R7,R9,R1,R3,R4,R6,R10,R5,R11)
|
|
|
|
#define return epilogue(R8,R2,R9,R7,R5,R6,R3,R4,R11)
|
|
|
|
#define encrypt_round(TAB,OFFSET) \
|
|
round(TAB,OFFSET,R1,R2,R3,R4,R5,R6,R7,R10,R5,R6,R3,R4) \
|
|
move_regs(R1,R2,R5,R6)
|
|
|
|
#define encrypt_final(TAB,OFFSET) \
|
|
round(TAB,OFFSET,R1,R2,R3,R4,R5,R6,R7,R10,R5,R6,R3,R4)
|
|
|
|
#define decrypt_round(TAB,OFFSET) \
|
|
round(TAB,OFFSET,R2,R1,R4,R3,R6,R5,R7,R10,R5,R6,R3,R4) \
|
|
move_regs(R1,R2,R5,R6)
|
|
|
|
#define decrypt_final(TAB,OFFSET) \
|
|
round(TAB,OFFSET,R2,R1,R4,R3,R6,R5,R7,R10,R5,R6,R3,R4)
|
|
|
|
/* void aes_encrypt(void *ctx, u8 *out, const u8 *in) */
|
|
|
|
entry(aes_encrypt,0,enc128,enc192)
|
|
encrypt_round(aes_ft_tab,-96)
|
|
encrypt_round(aes_ft_tab,-80)
|
|
enc192: encrypt_round(aes_ft_tab,-64)
|
|
encrypt_round(aes_ft_tab,-48)
|
|
enc128: encrypt_round(aes_ft_tab,-32)
|
|
encrypt_round(aes_ft_tab,-16)
|
|
encrypt_round(aes_ft_tab, 0)
|
|
encrypt_round(aes_ft_tab, 16)
|
|
encrypt_round(aes_ft_tab, 32)
|
|
encrypt_round(aes_ft_tab, 48)
|
|
encrypt_round(aes_ft_tab, 64)
|
|
encrypt_round(aes_ft_tab, 80)
|
|
encrypt_round(aes_ft_tab, 96)
|
|
encrypt_final(aes_fl_tab,112)
|
|
return
|
|
|
|
/* void aes_decrypt(void *ctx, u8 *out, const u8 *in) */
|
|
|
|
entry(aes_decrypt,240,dec128,dec192)
|
|
decrypt_round(aes_it_tab,-96)
|
|
decrypt_round(aes_it_tab,-80)
|
|
dec192: decrypt_round(aes_it_tab,-64)
|
|
decrypt_round(aes_it_tab,-48)
|
|
dec128: decrypt_round(aes_it_tab,-32)
|
|
decrypt_round(aes_it_tab,-16)
|
|
decrypt_round(aes_it_tab, 0)
|
|
decrypt_round(aes_it_tab, 16)
|
|
decrypt_round(aes_it_tab, 32)
|
|
decrypt_round(aes_it_tab, 48)
|
|
decrypt_round(aes_it_tab, 64)
|
|
decrypt_round(aes_it_tab, 80)
|
|
decrypt_round(aes_it_tab, 96)
|
|
decrypt_final(aes_il_tab,112)
|
|
return
|