2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-06 12:44:14 +08:00
linux-next/arch/arm/mm/nommu.c
Nicolas Pitre 195320fd6e ARM: 8700/1: nommu: always reserve address 0 away
Some nommu systems have RAM at address 0. When vectors are not located
there, the very beginning of memory remains available for dynamic
allocations. The memblock allocator explicitly skips the first page
but the standard page allocator does not, and while it correctly returns
a non-null struct page pointer for that page, page_address() gives 0
which gets confused with NULL (out of memory) by callers despite having
plenty of free memory left.

Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
2017-10-12 11:18:17 +01:00

472 lines
12 KiB
C

/*
* linux/arch/arm/mm/nommu.c
*
* ARM uCLinux supporting functions.
*/
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/io.h>
#include <linux/memblock.h>
#include <linux/kernel.h>
#include <asm/cacheflush.h>
#include <asm/cp15.h>
#include <asm/sections.h>
#include <asm/page.h>
#include <asm/setup.h>
#include <asm/traps.h>
#include <asm/mach/arch.h>
#include <asm/cputype.h>
#include <asm/mpu.h>
#include <asm/procinfo.h>
#include "mm.h"
unsigned long vectors_base;
#ifdef CONFIG_ARM_MPU
struct mpu_rgn_info mpu_rgn_info;
/* Region number */
static void rgnr_write(u32 v)
{
asm("mcr p15, 0, %0, c6, c2, 0" : : "r" (v));
}
/* Data-side / unified region attributes */
/* Region access control register */
static void dracr_write(u32 v)
{
asm("mcr p15, 0, %0, c6, c1, 4" : : "r" (v));
}
/* Region size register */
static void drsr_write(u32 v)
{
asm("mcr p15, 0, %0, c6, c1, 2" : : "r" (v));
}
/* Region base address register */
static void drbar_write(u32 v)
{
asm("mcr p15, 0, %0, c6, c1, 0" : : "r" (v));
}
static u32 drbar_read(void)
{
u32 v;
asm("mrc p15, 0, %0, c6, c1, 0" : "=r" (v));
return v;
}
/* Optional instruction-side region attributes */
/* I-side Region access control register */
static void iracr_write(u32 v)
{
asm("mcr p15, 0, %0, c6, c1, 5" : : "r" (v));
}
/* I-side Region size register */
static void irsr_write(u32 v)
{
asm("mcr p15, 0, %0, c6, c1, 3" : : "r" (v));
}
/* I-side Region base address register */
static void irbar_write(u32 v)
{
asm("mcr p15, 0, %0, c6, c1, 1" : : "r" (v));
}
static unsigned long irbar_read(void)
{
unsigned long v;
asm("mrc p15, 0, %0, c6, c1, 1" : "=r" (v));
return v;
}
/* MPU initialisation functions */
void __init adjust_lowmem_bounds_mpu(void)
{
phys_addr_t phys_offset = PHYS_OFFSET;
phys_addr_t aligned_region_size, specified_mem_size, rounded_mem_size;
struct memblock_region *reg;
bool first = true;
phys_addr_t mem_start;
phys_addr_t mem_end;
for_each_memblock(memory, reg) {
if (first) {
/*
* Initially only use memory continuous from
* PHYS_OFFSET */
if (reg->base != phys_offset)
panic("First memory bank must be contiguous from PHYS_OFFSET");
mem_start = reg->base;
mem_end = reg->base + reg->size;
specified_mem_size = reg->size;
first = false;
} else {
/*
* memblock auto merges contiguous blocks, remove
* all blocks afterwards in one go (we can't remove
* blocks separately while iterating)
*/
pr_notice("Ignoring RAM after %pa, memory at %pa ignored\n",
&mem_end, &reg->base);
memblock_remove(reg->base, 0 - reg->base);
break;
}
}
/*
* MPU has curious alignment requirements: Size must be power of 2, and
* region start must be aligned to the region size
*/
if (phys_offset != 0)
pr_info("PHYS_OFFSET != 0 => MPU Region size constrained by alignment requirements\n");
/*
* Maximum aligned region might overflow phys_addr_t if phys_offset is
* 0. Hence we keep everything below 4G until we take the smaller of
* the aligned_region_size and rounded_mem_size, one of which is
* guaranteed to be smaller than the maximum physical address.
*/
aligned_region_size = (phys_offset - 1) ^ (phys_offset);
/* Find the max power-of-two sized region that fits inside our bank */
rounded_mem_size = (1 << __fls(specified_mem_size)) - 1;
/* The actual region size is the smaller of the two */
aligned_region_size = aligned_region_size < rounded_mem_size
? aligned_region_size + 1
: rounded_mem_size + 1;
if (aligned_region_size != specified_mem_size) {
pr_warn("Truncating memory from %pa to %pa (MPU region constraints)",
&specified_mem_size, &aligned_region_size);
memblock_remove(mem_start + aligned_region_size,
specified_mem_size - aligned_region_size);
mem_end = mem_start + aligned_region_size;
}
pr_debug("MPU Region from %pa size %pa (end %pa))\n",
&phys_offset, &aligned_region_size, &mem_end);
}
static int mpu_present(void)
{
return ((read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA) == MMFR0_PMSAv7);
}
static int mpu_max_regions(void)
{
/*
* We don't support a different number of I/D side regions so if we
* have separate instruction and data memory maps then return
* whichever side has a smaller number of supported regions.
*/
u32 dregions, iregions, mpuir;
mpuir = read_cpuid(CPUID_MPUIR);
dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION;
/* Check for separate d-side and i-side memory maps */
if (mpuir & MPUIR_nU)
iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION;
/* Use the smallest of the two maxima */
return min(dregions, iregions);
}
static int mpu_iside_independent(void)
{
/* MPUIR.nU specifies whether there is *not* a unified memory map */
return read_cpuid(CPUID_MPUIR) & MPUIR_nU;
}
static int mpu_min_region_order(void)
{
u32 drbar_result, irbar_result;
/* We've kept a region free for this probing */
rgnr_write(MPU_PROBE_REGION);
isb();
/*
* As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum
* region order
*/
drbar_write(0xFFFFFFFC);
drbar_result = irbar_result = drbar_read();
drbar_write(0x0);
/* If the MPU is non-unified, we use the larger of the two minima*/
if (mpu_iside_independent()) {
irbar_write(0xFFFFFFFC);
irbar_result = irbar_read();
irbar_write(0x0);
}
isb(); /* Ensure that MPU region operations have completed */
/* Return whichever result is larger */
return __ffs(max(drbar_result, irbar_result));
}
static int mpu_setup_region(unsigned int number, phys_addr_t start,
unsigned int size_order, unsigned int properties)
{
u32 size_data;
/* We kept a region free for probing resolution of MPU regions*/
if (number > mpu_max_regions() || number == MPU_PROBE_REGION)
return -ENOENT;
if (size_order > 32)
return -ENOMEM;
if (size_order < mpu_min_region_order())
return -ENOMEM;
/* Writing N to bits 5:1 (RSR_SZ) specifies region size 2^N+1 */
size_data = ((size_order - 1) << MPU_RSR_SZ) | 1 << MPU_RSR_EN;
dsb(); /* Ensure all previous data accesses occur with old mappings */
rgnr_write(number);
isb();
drbar_write(start);
dracr_write(properties);
isb(); /* Propagate properties before enabling region */
drsr_write(size_data);
/* Check for independent I-side registers */
if (mpu_iside_independent()) {
irbar_write(start);
iracr_write(properties);
isb();
irsr_write(size_data);
}
isb();
/* Store region info (we treat i/d side the same, so only store d) */
mpu_rgn_info.rgns[number].dracr = properties;
mpu_rgn_info.rgns[number].drbar = start;
mpu_rgn_info.rgns[number].drsr = size_data;
return 0;
}
/*
* Set up default MPU regions, doing nothing if there is no MPU
*/
void __init mpu_setup(void)
{
int region_err;
if (!mpu_present())
return;
region_err = mpu_setup_region(MPU_RAM_REGION, PHYS_OFFSET,
ilog2(memblock.memory.regions[0].size),
MPU_AP_PL1RW_PL0RW | MPU_RGN_NORMAL);
if (region_err) {
panic("MPU region initialization failure! %d", region_err);
} else {
pr_info("Using ARMv7 PMSA Compliant MPU. "
"Region independence: %s, Max regions: %d\n",
mpu_iside_independent() ? "Yes" : "No",
mpu_max_regions());
}
}
#else
static void adjust_lowmem_bounds_mpu(void) {}
static void __init mpu_setup(void) {}
#endif /* CONFIG_ARM_MPU */
#ifdef CONFIG_CPU_CP15
#ifdef CONFIG_CPU_HIGH_VECTOR
static unsigned long __init setup_vectors_base(void)
{
unsigned long reg = get_cr();
set_cr(reg | CR_V);
return 0xffff0000;
}
#else /* CONFIG_CPU_HIGH_VECTOR */
/* Write exception base address to VBAR */
static inline void set_vbar(unsigned long val)
{
asm("mcr p15, 0, %0, c12, c0, 0" : : "r" (val) : "cc");
}
/*
* Security extensions, bits[7:4], permitted values,
* 0b0000 - not implemented, 0b0001/0b0010 - implemented
*/
static inline bool security_extensions_enabled(void)
{
/* Check CPUID Identification Scheme before ID_PFR1 read */
if ((read_cpuid_id() & 0x000f0000) == 0x000f0000)
return !!cpuid_feature_extract(CPUID_EXT_PFR1, 4);
return 0;
}
static unsigned long __init setup_vectors_base(void)
{
unsigned long base = 0, reg = get_cr();
set_cr(reg & ~CR_V);
if (security_extensions_enabled()) {
if (IS_ENABLED(CONFIG_REMAP_VECTORS_TO_RAM))
base = CONFIG_DRAM_BASE;
set_vbar(base);
} else if (IS_ENABLED(CONFIG_REMAP_VECTORS_TO_RAM)) {
if (CONFIG_DRAM_BASE != 0)
pr_err("Security extensions not enabled, vectors cannot be remapped to RAM, vectors base will be 0x00000000\n");
}
return base;
}
#endif /* CONFIG_CPU_HIGH_VECTOR */
#endif /* CONFIG_CPU_CP15 */
void __init arm_mm_memblock_reserve(void)
{
#ifndef CONFIG_CPU_V7M
vectors_base = IS_ENABLED(CONFIG_CPU_CP15) ? setup_vectors_base() : 0;
/*
* Register the exception vector page.
* some architectures which the DRAM is the exception vector to trap,
* alloc_page breaks with error, although it is not NULL, but "0."
*/
memblock_reserve(vectors_base, 2 * PAGE_SIZE);
#else /* ifndef CONFIG_CPU_V7M */
/*
* There is no dedicated vector page on V7-M. So nothing needs to be
* reserved here.
*/
#endif
/*
* In any case, always ensure address 0 is never used as many things
* get very confused if 0 is returned as a legitimate address.
*/
memblock_reserve(0, 1);
}
void __init adjust_lowmem_bounds(void)
{
phys_addr_t end;
adjust_lowmem_bounds_mpu();
end = memblock_end_of_DRAM();
high_memory = __va(end - 1) + 1;
memblock_set_current_limit(end);
}
/*
* paging_init() sets up the page tables, initialises the zone memory
* maps, and sets up the zero page, bad page and bad page tables.
*/
void __init paging_init(const struct machine_desc *mdesc)
{
early_trap_init((void *)vectors_base);
mpu_setup();
bootmem_init();
}
/*
* We don't need to do anything here for nommu machines.
*/
void setup_mm_for_reboot(void)
{
}
void flush_dcache_page(struct page *page)
{
__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
}
EXPORT_SYMBOL(flush_dcache_page);
void flush_kernel_dcache_page(struct page *page)
{
__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
}
EXPORT_SYMBOL(flush_kernel_dcache_page);
void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
unsigned long uaddr, void *dst, const void *src,
unsigned long len)
{
memcpy(dst, src, len);
if (vma->vm_flags & VM_EXEC)
__cpuc_coherent_user_range(uaddr, uaddr + len);
}
void __iomem *__arm_ioremap_pfn(unsigned long pfn, unsigned long offset,
size_t size, unsigned int mtype)
{
if (pfn >= (0x100000000ULL >> PAGE_SHIFT))
return NULL;
return (void __iomem *) (offset + (pfn << PAGE_SHIFT));
}
EXPORT_SYMBOL(__arm_ioremap_pfn);
void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
unsigned int mtype, void *caller)
{
return (void __iomem *)phys_addr;
}
void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *);
void __iomem *ioremap(resource_size_t res_cookie, size_t size)
{
return __arm_ioremap_caller(res_cookie, size, MT_DEVICE,
__builtin_return_address(0));
}
EXPORT_SYMBOL(ioremap);
void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size)
__alias(ioremap_cached);
void __iomem *ioremap_cached(resource_size_t res_cookie, size_t size)
{
return __arm_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED,
__builtin_return_address(0));
}
EXPORT_SYMBOL(ioremap_cache);
EXPORT_SYMBOL(ioremap_cached);
void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size)
{
return __arm_ioremap_caller(res_cookie, size, MT_DEVICE_WC,
__builtin_return_address(0));
}
EXPORT_SYMBOL(ioremap_wc);
#ifdef CONFIG_PCI
#include <asm/mach/map.h>
void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size)
{
return arch_ioremap_caller(res_cookie, size, MT_UNCACHED,
__builtin_return_address(0));
}
EXPORT_SYMBOL_GPL(pci_remap_cfgspace);
#endif
void *arch_memremap_wb(phys_addr_t phys_addr, size_t size)
{
return (void *)phys_addr;
}
void __iounmap(volatile void __iomem *addr)
{
}
EXPORT_SYMBOL(__iounmap);
void (*arch_iounmap)(volatile void __iomem *);
void iounmap(volatile void __iomem *addr)
{
}
EXPORT_SYMBOL(iounmap);