mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-21 11:44:01 +08:00
5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
370 lines
8.9 KiB
C
370 lines
8.9 KiB
C
/*
|
|
* reg-virtual-consumer.c
|
|
*
|
|
* Copyright 2008 Wolfson Microelectronics PLC.
|
|
*
|
|
* Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation; either version 2 of the
|
|
* License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/err.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/regulator/consumer.h>
|
|
#include <linux/slab.h>
|
|
|
|
struct virtual_consumer_data {
|
|
struct mutex lock;
|
|
struct regulator *regulator;
|
|
bool enabled;
|
|
int min_uV;
|
|
int max_uV;
|
|
int min_uA;
|
|
int max_uA;
|
|
unsigned int mode;
|
|
};
|
|
|
|
static void update_voltage_constraints(struct device *dev,
|
|
struct virtual_consumer_data *data)
|
|
{
|
|
int ret;
|
|
|
|
if (data->min_uV && data->max_uV
|
|
&& data->min_uV <= data->max_uV) {
|
|
dev_dbg(dev, "Requesting %d-%duV\n",
|
|
data->min_uV, data->max_uV);
|
|
ret = regulator_set_voltage(data->regulator,
|
|
data->min_uV, data->max_uV);
|
|
if (ret != 0) {
|
|
dev_err(dev,
|
|
"regulator_set_voltage() failed: %d\n", ret);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (data->min_uV && data->max_uV && !data->enabled) {
|
|
dev_dbg(dev, "Enabling regulator\n");
|
|
ret = regulator_enable(data->regulator);
|
|
if (ret == 0)
|
|
data->enabled = true;
|
|
else
|
|
dev_err(dev, "regulator_enable() failed: %d\n",
|
|
ret);
|
|
}
|
|
|
|
if (!(data->min_uV && data->max_uV) && data->enabled) {
|
|
dev_dbg(dev, "Disabling regulator\n");
|
|
ret = regulator_disable(data->regulator);
|
|
if (ret == 0)
|
|
data->enabled = false;
|
|
else
|
|
dev_err(dev, "regulator_disable() failed: %d\n",
|
|
ret);
|
|
}
|
|
}
|
|
|
|
static void update_current_limit_constraints(struct device *dev,
|
|
struct virtual_consumer_data *data)
|
|
{
|
|
int ret;
|
|
|
|
if (data->max_uA
|
|
&& data->min_uA <= data->max_uA) {
|
|
dev_dbg(dev, "Requesting %d-%duA\n",
|
|
data->min_uA, data->max_uA);
|
|
ret = regulator_set_current_limit(data->regulator,
|
|
data->min_uA, data->max_uA);
|
|
if (ret != 0) {
|
|
dev_err(dev,
|
|
"regulator_set_current_limit() failed: %d\n",
|
|
ret);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (data->max_uA && !data->enabled) {
|
|
dev_dbg(dev, "Enabling regulator\n");
|
|
ret = regulator_enable(data->regulator);
|
|
if (ret == 0)
|
|
data->enabled = true;
|
|
else
|
|
dev_err(dev, "regulator_enable() failed: %d\n",
|
|
ret);
|
|
}
|
|
|
|
if (!(data->min_uA && data->max_uA) && data->enabled) {
|
|
dev_dbg(dev, "Disabling regulator\n");
|
|
ret = regulator_disable(data->regulator);
|
|
if (ret == 0)
|
|
data->enabled = false;
|
|
else
|
|
dev_err(dev, "regulator_disable() failed: %d\n",
|
|
ret);
|
|
}
|
|
}
|
|
|
|
static ssize_t show_min_uV(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct virtual_consumer_data *data = dev_get_drvdata(dev);
|
|
return sprintf(buf, "%d\n", data->min_uV);
|
|
}
|
|
|
|
static ssize_t set_min_uV(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct virtual_consumer_data *data = dev_get_drvdata(dev);
|
|
long val;
|
|
|
|
if (strict_strtol(buf, 10, &val) != 0)
|
|
return count;
|
|
|
|
mutex_lock(&data->lock);
|
|
|
|
data->min_uV = val;
|
|
update_voltage_constraints(dev, data);
|
|
|
|
mutex_unlock(&data->lock);
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t show_max_uV(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct virtual_consumer_data *data = dev_get_drvdata(dev);
|
|
return sprintf(buf, "%d\n", data->max_uV);
|
|
}
|
|
|
|
static ssize_t set_max_uV(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct virtual_consumer_data *data = dev_get_drvdata(dev);
|
|
long val;
|
|
|
|
if (strict_strtol(buf, 10, &val) != 0)
|
|
return count;
|
|
|
|
mutex_lock(&data->lock);
|
|
|
|
data->max_uV = val;
|
|
update_voltage_constraints(dev, data);
|
|
|
|
mutex_unlock(&data->lock);
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t show_min_uA(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct virtual_consumer_data *data = dev_get_drvdata(dev);
|
|
return sprintf(buf, "%d\n", data->min_uA);
|
|
}
|
|
|
|
static ssize_t set_min_uA(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct virtual_consumer_data *data = dev_get_drvdata(dev);
|
|
long val;
|
|
|
|
if (strict_strtol(buf, 10, &val) != 0)
|
|
return count;
|
|
|
|
mutex_lock(&data->lock);
|
|
|
|
data->min_uA = val;
|
|
update_current_limit_constraints(dev, data);
|
|
|
|
mutex_unlock(&data->lock);
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t show_max_uA(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct virtual_consumer_data *data = dev_get_drvdata(dev);
|
|
return sprintf(buf, "%d\n", data->max_uA);
|
|
}
|
|
|
|
static ssize_t set_max_uA(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct virtual_consumer_data *data = dev_get_drvdata(dev);
|
|
long val;
|
|
|
|
if (strict_strtol(buf, 10, &val) != 0)
|
|
return count;
|
|
|
|
mutex_lock(&data->lock);
|
|
|
|
data->max_uA = val;
|
|
update_current_limit_constraints(dev, data);
|
|
|
|
mutex_unlock(&data->lock);
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t show_mode(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct virtual_consumer_data *data = dev_get_drvdata(dev);
|
|
|
|
switch (data->mode) {
|
|
case REGULATOR_MODE_FAST:
|
|
return sprintf(buf, "fast\n");
|
|
case REGULATOR_MODE_NORMAL:
|
|
return sprintf(buf, "normal\n");
|
|
case REGULATOR_MODE_IDLE:
|
|
return sprintf(buf, "idle\n");
|
|
case REGULATOR_MODE_STANDBY:
|
|
return sprintf(buf, "standby\n");
|
|
default:
|
|
return sprintf(buf, "unknown\n");
|
|
}
|
|
}
|
|
|
|
static ssize_t set_mode(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct virtual_consumer_data *data = dev_get_drvdata(dev);
|
|
unsigned int mode;
|
|
int ret;
|
|
|
|
/*
|
|
* sysfs_streq() doesn't need the \n's, but we add them so the strings
|
|
* will be shared with show_mode(), above.
|
|
*/
|
|
if (sysfs_streq(buf, "fast\n"))
|
|
mode = REGULATOR_MODE_FAST;
|
|
else if (sysfs_streq(buf, "normal\n"))
|
|
mode = REGULATOR_MODE_NORMAL;
|
|
else if (sysfs_streq(buf, "idle\n"))
|
|
mode = REGULATOR_MODE_IDLE;
|
|
else if (sysfs_streq(buf, "standby\n"))
|
|
mode = REGULATOR_MODE_STANDBY;
|
|
else {
|
|
dev_err(dev, "Configuring invalid mode\n");
|
|
return count;
|
|
}
|
|
|
|
mutex_lock(&data->lock);
|
|
ret = regulator_set_mode(data->regulator, mode);
|
|
if (ret == 0)
|
|
data->mode = mode;
|
|
else
|
|
dev_err(dev, "Failed to configure mode: %d\n", ret);
|
|
mutex_unlock(&data->lock);
|
|
|
|
return count;
|
|
}
|
|
|
|
static DEVICE_ATTR(min_microvolts, 0666, show_min_uV, set_min_uV);
|
|
static DEVICE_ATTR(max_microvolts, 0666, show_max_uV, set_max_uV);
|
|
static DEVICE_ATTR(min_microamps, 0666, show_min_uA, set_min_uA);
|
|
static DEVICE_ATTR(max_microamps, 0666, show_max_uA, set_max_uA);
|
|
static DEVICE_ATTR(mode, 0666, show_mode, set_mode);
|
|
|
|
static struct attribute *regulator_virtual_attributes[] = {
|
|
&dev_attr_min_microvolts.attr,
|
|
&dev_attr_max_microvolts.attr,
|
|
&dev_attr_min_microamps.attr,
|
|
&dev_attr_max_microamps.attr,
|
|
&dev_attr_mode.attr,
|
|
NULL
|
|
};
|
|
|
|
static const struct attribute_group regulator_virtual_attr_group = {
|
|
.attrs = regulator_virtual_attributes,
|
|
};
|
|
|
|
static int __devinit regulator_virtual_probe(struct platform_device *pdev)
|
|
{
|
|
char *reg_id = pdev->dev.platform_data;
|
|
struct virtual_consumer_data *drvdata;
|
|
int ret;
|
|
|
|
drvdata = kzalloc(sizeof(struct virtual_consumer_data), GFP_KERNEL);
|
|
if (drvdata == NULL)
|
|
return -ENOMEM;
|
|
|
|
mutex_init(&drvdata->lock);
|
|
|
|
drvdata->regulator = regulator_get(&pdev->dev, reg_id);
|
|
if (IS_ERR(drvdata->regulator)) {
|
|
ret = PTR_ERR(drvdata->regulator);
|
|
dev_err(&pdev->dev, "Failed to obtain supply '%s': %d\n",
|
|
reg_id, ret);
|
|
goto err;
|
|
}
|
|
|
|
ret = sysfs_create_group(&pdev->dev.kobj,
|
|
®ulator_virtual_attr_group);
|
|
if (ret != 0) {
|
|
dev_err(&pdev->dev,
|
|
"Failed to create attribute group: %d\n", ret);
|
|
goto err_regulator;
|
|
}
|
|
|
|
drvdata->mode = regulator_get_mode(drvdata->regulator);
|
|
|
|
platform_set_drvdata(pdev, drvdata);
|
|
|
|
return 0;
|
|
|
|
err_regulator:
|
|
regulator_put(drvdata->regulator);
|
|
err:
|
|
kfree(drvdata);
|
|
return ret;
|
|
}
|
|
|
|
static int __devexit regulator_virtual_remove(struct platform_device *pdev)
|
|
{
|
|
struct virtual_consumer_data *drvdata = platform_get_drvdata(pdev);
|
|
|
|
sysfs_remove_group(&pdev->dev.kobj, ®ulator_virtual_attr_group);
|
|
|
|
if (drvdata->enabled)
|
|
regulator_disable(drvdata->regulator);
|
|
regulator_put(drvdata->regulator);
|
|
|
|
kfree(drvdata);
|
|
|
|
platform_set_drvdata(pdev, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver regulator_virtual_consumer_driver = {
|
|
.probe = regulator_virtual_probe,
|
|
.remove = __devexit_p(regulator_virtual_remove),
|
|
.driver = {
|
|
.name = "reg-virt-consumer",
|
|
.owner = THIS_MODULE,
|
|
},
|
|
};
|
|
|
|
static int __init regulator_virtual_consumer_init(void)
|
|
{
|
|
return platform_driver_register(®ulator_virtual_consumer_driver);
|
|
}
|
|
module_init(regulator_virtual_consumer_init);
|
|
|
|
static void __exit regulator_virtual_consumer_exit(void)
|
|
{
|
|
platform_driver_unregister(®ulator_virtual_consumer_driver);
|
|
}
|
|
module_exit(regulator_virtual_consumer_exit);
|
|
|
|
MODULE_AUTHOR("Mark Brown <broonie@opensource.wolfsonmicro.com>");
|
|
MODULE_DESCRIPTION("Virtual regulator consumer");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_ALIAS("platform:reg-virt-consumer");
|