2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-24 21:24:00 +08:00
linux-next/drivers/media/i2c/ir-kbd-i2c.c
Wolfram Sang 1b09a2afa4 media: ir-kbd-i2c: convert to i2c_new_dummy_device()
Convert this driver to use the new i2c_new_dummy_device() call and bail
out if the dummy device cannot be registered to make failure more
visible to the user.

Signed-off-by: Wolfram Sang <wsa+renesas@sang-engineering.com>
Signed-off-by: Sean Young <sean@mess.org>
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
2019-08-14 05:05:10 -03:00

956 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
*
* keyboard input driver for i2c IR remote controls
*
* Copyright (c) 2000-2003 Gerd Knorr <kraxel@bytesex.org>
* modified for PixelView (BT878P+W/FM) by
* Michal Kochanowicz <mkochano@pld.org.pl>
* Christoph Bartelmus <lirc@bartelmus.de>
* modified for KNC ONE TV Station/Anubis Typhoon TView Tuner by
* Ulrich Mueller <ulrich.mueller42@web.de>
* modified for em2820 based USB TV tuners by
* Markus Rechberger <mrechberger@gmail.com>
* modified for DViCO Fusion HDTV 5 RT GOLD by
* Chaogui Zhang <czhang1974@gmail.com>
* modified for MSI TV@nywhere Plus by
* Henry Wong <henry@stuffedcow.net>
* Mark Schultz <n9xmj@yahoo.com>
* Brian Rogers <brian_rogers@comcast.net>
* modified for AVerMedia Cardbus by
* Oldrich Jedlicka <oldium.pro@seznam.cz>
* Zilog Transmitter portions/ideas were derived from GPLv2+ sources:
* - drivers/char/pctv_zilogir.[ch] from Hauppauge Broadway product
* Copyright 2011 Hauppauge Computer works
* - drivers/staging/media/lirc/lirc_zilog.c
* Copyright (c) 2000 Gerd Knorr <kraxel@goldbach.in-berlin.de>
* Michal Kochanowicz <mkochano@pld.org.pl>
* Christoph Bartelmus <lirc@bartelmus.de>
* Ulrich Mueller <ulrich.mueller42@web.de>
* Stefan Jahn <stefan@lkcc.org>
* Jerome Brock <jbrock@users.sourceforge.net>
* Thomas Reitmayr (treitmayr@yahoo.com)
* Mark Weaver <mark@npsl.co.uk>
* Jarod Wilson <jarod@redhat.com>
* Copyright (C) 2011 Andy Walls <awalls@md.metrocast.net>
*/
#include <asm/unaligned.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/workqueue.h>
#include <media/rc-core.h>
#include <media/i2c/ir-kbd-i2c.h>
#define FLAG_TX 1
#define FLAG_HDPVR 2
static bool enable_hdpvr;
module_param(enable_hdpvr, bool, 0644);
static int get_key_haup_common(struct IR_i2c *ir, enum rc_proto *protocol,
u32 *scancode, u8 *ptoggle, int size)
{
unsigned char buf[6];
int start, range, toggle, dev, code, ircode, vendor;
/* poll IR chip */
if (size != i2c_master_recv(ir->c, buf, size))
return -EIO;
if (buf[0] & 0x80) {
int offset = (size == 6) ? 3 : 0;
/* split rc5 data block ... */
start = (buf[offset] >> 7) & 1;
range = (buf[offset] >> 6) & 1;
toggle = (buf[offset] >> 5) & 1;
dev = buf[offset] & 0x1f;
code = (buf[offset+1] >> 2) & 0x3f;
/* rc5 has two start bits
* the first bit must be one
* the second bit defines the command range:
* 1 = 0-63, 0 = 64 - 127
*/
if (!start)
/* no key pressed */
return 0;
/* filter out invalid key presses */
ircode = (start << 12) | (toggle << 11) | (dev << 6) | code;
if ((ircode & 0x1fff) == 0x1fff)
return 0;
if (!range)
code += 64;
dev_dbg(&ir->rc->dev,
"ir hauppauge (rc5): s%d r%d t%d dev=%d code=%d\n",
start, range, toggle, dev, code);
*protocol = RC_PROTO_RC5;
*scancode = RC_SCANCODE_RC5(dev, code);
*ptoggle = toggle;
return 1;
} else if (size == 6 && (buf[0] & 0x40)) {
code = buf[4];
dev = buf[3];
vendor = get_unaligned_be16(buf + 1);
if (vendor == 0x800f) {
*ptoggle = (dev & 0x80) != 0;
*protocol = RC_PROTO_RC6_MCE;
dev &= 0x7f;
dev_dbg(&ir->rc->dev,
"ir hauppauge (rc6-mce): t%d vendor=%d dev=%d code=%d\n",
*ptoggle, vendor, dev, code);
} else {
*ptoggle = 0;
*protocol = RC_PROTO_RC6_6A_32;
dev_dbg(&ir->rc->dev,
"ir hauppauge (rc6-6a-32): vendor=%d dev=%d code=%d\n",
vendor, dev, code);
}
*scancode = RC_SCANCODE_RC6_6A(vendor, dev, code);
return 1;
}
return 0;
}
static int get_key_haup(struct IR_i2c *ir, enum rc_proto *protocol,
u32 *scancode, u8 *toggle)
{
return get_key_haup_common(ir, protocol, scancode, toggle, 3);
}
static int get_key_haup_xvr(struct IR_i2c *ir, enum rc_proto *protocol,
u32 *scancode, u8 *toggle)
{
int ret;
unsigned char buf[1] = { 0 };
/*
* This is the same apparent "are you ready?" poll command observed
* watching Windows driver traffic and implemented in lirc_zilog. With
* this added, we get far saner remote behavior with z8 chips on usb
* connected devices, even with the default polling interval of 100ms.
*/
ret = i2c_master_send(ir->c, buf, 1);
if (ret != 1)
return (ret < 0) ? ret : -EINVAL;
return get_key_haup_common(ir, protocol, scancode, toggle, 6);
}
static int get_key_pixelview(struct IR_i2c *ir, enum rc_proto *protocol,
u32 *scancode, u8 *toggle)
{
int rc;
unsigned char b;
/* poll IR chip */
rc = i2c_master_recv(ir->c, &b, 1);
if (rc != 1) {
dev_dbg(&ir->rc->dev, "read error\n");
if (rc < 0)
return rc;
return -EIO;
}
*protocol = RC_PROTO_OTHER;
*scancode = b;
*toggle = 0;
return 1;
}
static int get_key_fusionhdtv(struct IR_i2c *ir, enum rc_proto *protocol,
u32 *scancode, u8 *toggle)
{
int rc;
unsigned char buf[4];
/* poll IR chip */
rc = i2c_master_recv(ir->c, buf, 4);
if (rc != 4) {
dev_dbg(&ir->rc->dev, "read error\n");
if (rc < 0)
return rc;
return -EIO;
}
if (buf[0] != 0 || buf[1] != 0 || buf[2] != 0 || buf[3] != 0)
dev_dbg(&ir->rc->dev, "%s: %*ph\n", __func__, 4, buf);
/* no key pressed or signal from other ir remote */
if(buf[0] != 0x1 || buf[1] != 0xfe)
return 0;
*protocol = RC_PROTO_UNKNOWN;
*scancode = buf[2];
*toggle = 0;
return 1;
}
static int get_key_knc1(struct IR_i2c *ir, enum rc_proto *protocol,
u32 *scancode, u8 *toggle)
{
int rc;
unsigned char b;
/* poll IR chip */
rc = i2c_master_recv(ir->c, &b, 1);
if (rc != 1) {
dev_dbg(&ir->rc->dev, "read error\n");
if (rc < 0)
return rc;
return -EIO;
}
/* it seems that 0xFE indicates that a button is still hold
down, while 0xff indicates that no button is hold
down. 0xfe sequences are sometimes interrupted by 0xFF */
dev_dbg(&ir->rc->dev, "key %02x\n", b);
if (b == 0xff)
return 0;
if (b == 0xfe)
/* keep old data */
return 1;
*protocol = RC_PROTO_UNKNOWN;
*scancode = b;
*toggle = 0;
return 1;
}
static int get_key_avermedia_cardbus(struct IR_i2c *ir, enum rc_proto *protocol,
u32 *scancode, u8 *toggle)
{
unsigned char subaddr, key, keygroup;
struct i2c_msg msg[] = { { .addr = ir->c->addr, .flags = 0,
.buf = &subaddr, .len = 1},
{ .addr = ir->c->addr, .flags = I2C_M_RD,
.buf = &key, .len = 1} };
subaddr = 0x0d;
if (2 != i2c_transfer(ir->c->adapter, msg, 2)) {
dev_dbg(&ir->rc->dev, "read error\n");
return -EIO;
}
if (key == 0xff)
return 0;
subaddr = 0x0b;
msg[1].buf = &keygroup;
if (2 != i2c_transfer(ir->c->adapter, msg, 2)) {
dev_dbg(&ir->rc->dev, "read error\n");
return -EIO;
}
if (keygroup == 0xff)
return 0;
dev_dbg(&ir->rc->dev, "read key 0x%02x/0x%02x\n", key, keygroup);
if (keygroup < 2 || keygroup > 4) {
dev_warn(&ir->rc->dev, "warning: invalid key group 0x%02x for key 0x%02x\n",
keygroup, key);
}
key |= (keygroup & 1) << 6;
*protocol = RC_PROTO_UNKNOWN;
*scancode = key;
if (ir->c->addr == 0x41) /* AVerMedia EM78P153 */
*scancode |= keygroup << 8;
*toggle = 0;
return 1;
}
/* ----------------------------------------------------------------------- */
static int ir_key_poll(struct IR_i2c *ir)
{
enum rc_proto protocol;
u32 scancode;
u8 toggle;
int rc;
dev_dbg(&ir->rc->dev, "%s\n", __func__);
rc = ir->get_key(ir, &protocol, &scancode, &toggle);
if (rc < 0) {
dev_warn(&ir->rc->dev, "error %d\n", rc);
return rc;
}
if (rc) {
dev_dbg(&ir->rc->dev, "%s: proto = 0x%04x, scancode = 0x%08x\n",
__func__, protocol, scancode);
rc_keydown(ir->rc, protocol, scancode, toggle);
}
return 0;
}
static void ir_work(struct work_struct *work)
{
int rc;
struct IR_i2c *ir = container_of(work, struct IR_i2c, work.work);
/*
* If the transmit code is holding the lock, skip polling for
* IR, we'll get it to it next time round
*/
if (mutex_trylock(&ir->lock)) {
rc = ir_key_poll(ir);
mutex_unlock(&ir->lock);
if (rc == -ENODEV) {
rc_unregister_device(ir->rc);
ir->rc = NULL;
return;
}
}
schedule_delayed_work(&ir->work, msecs_to_jiffies(ir->polling_interval));
}
static int ir_open(struct rc_dev *dev)
{
struct IR_i2c *ir = dev->priv;
schedule_delayed_work(&ir->work, 0);
return 0;
}
static void ir_close(struct rc_dev *dev)
{
struct IR_i2c *ir = dev->priv;
cancel_delayed_work_sync(&ir->work);
}
/* Zilog Transmit Interface */
#define XTAL_FREQ 18432000
#define ZILOG_SEND 0x80
#define ZILOG_UIR_END 0x40
#define ZILOG_INIT_END 0x20
#define ZILOG_LIR_END 0x10
#define ZILOG_STATUS_OK 0x80
#define ZILOG_STATUS_TX 0x40
#define ZILOG_STATUS_SET 0x20
/*
* As you can see here, very few different lengths of pulse and space
* can be encoded. This means that the hardware does not work well with
* recorded IR. It's best to work with generated IR, like from ir-ctl or
* the in-kernel encoders.
*/
struct code_block {
u8 length;
u16 pulse[7]; /* not aligned */
u8 carrier_pulse;
u8 carrier_space;
u16 space[8]; /* not aligned */
u8 codes[61];
u8 csum[2];
} __packed;
static int send_data_block(struct IR_i2c *ir, int cmd,
struct code_block *code_block)
{
int i, j, ret;
u8 buf[5], *p;
p = &code_block->length;
for (i = 0; p < code_block->csum; i++)
code_block->csum[i & 1] ^= *p++;
p = &code_block->length;
for (i = 0; i < sizeof(*code_block);) {
int tosend = sizeof(*code_block) - i;
if (tosend > 4)
tosend = 4;
buf[0] = i + 1;
for (j = 0; j < tosend; ++j)
buf[1 + j] = p[i + j];
dev_dbg(&ir->rc->dev, "%*ph", tosend + 1, buf);
ret = i2c_master_send(ir->tx_c, buf, tosend + 1);
if (ret != tosend + 1) {
dev_dbg(&ir->rc->dev,
"i2c_master_send failed with %d\n", ret);
return ret < 0 ? ret : -EIO;
}
i += tosend;
}
buf[0] = 0;
buf[1] = cmd;
ret = i2c_master_send(ir->tx_c, buf, 2);
if (ret != 2) {
dev_err(&ir->rc->dev, "i2c_master_send failed with %d\n", ret);
return ret < 0 ? ret : -EIO;
}
usleep_range(2000, 5000);
ret = i2c_master_send(ir->tx_c, buf, 1);
if (ret != 1) {
dev_err(&ir->rc->dev, "i2c_master_send failed with %d\n", ret);
return ret < 0 ? ret : -EIO;
}
return 0;
}
static int zilog_init(struct IR_i2c *ir)
{
struct code_block code_block = { .length = sizeof(code_block) };
u8 buf[4];
int ret;
put_unaligned_be16(0x1000, &code_block.pulse[3]);
ret = send_data_block(ir, ZILOG_INIT_END, &code_block);
if (ret)
return ret;
ret = i2c_master_recv(ir->tx_c, buf, 4);
if (ret != 4) {
dev_err(&ir->c->dev, "failed to retrieve firmware version: %d\n",
ret);
return ret < 0 ? ret : -EIO;
}
dev_info(&ir->c->dev, "Zilog/Hauppauge IR blaster firmware version %d.%d.%d\n",
buf[1], buf[2], buf[3]);
return 0;
}
/*
* If the last slot for pulse is the same as the current slot for pulse,
* then use slot no 7.
*/
static void copy_codes(u8 *dst, u8 *src, unsigned int count)
{
u8 c, last = 0xff;
while (count--) {
c = *src++;
if ((c & 0xf0) == last) {
*dst++ = 0x70 | (c & 0xf);
} else {
*dst++ = c;
last = c & 0xf0;
}
}
}
/*
* When looking for repeats, we don't care about the trailing space. This
* is set to the shortest possible anyway.
*/
static int cmp_no_trail(u8 *a, u8 *b, unsigned int count)
{
while (--count) {
if (*a++ != *b++)
return 1;
}
return (*a & 0xf0) - (*b & 0xf0);
}
static int find_slot(u16 *array, unsigned int size, u16 val)
{
int i;
for (i = 0; i < size; i++) {
if (get_unaligned_be16(&array[i]) == val) {
return i;
} else if (!array[i]) {
put_unaligned_be16(val, &array[i]);
return i;
}
}
return -1;
}
static int zilog_ir_format(struct rc_dev *rcdev, unsigned int *txbuf,
unsigned int count, struct code_block *code_block)
{
struct IR_i2c *ir = rcdev->priv;
int rep, i, l, p = 0, s, c = 0;
bool repeating;
u8 codes[174];
code_block->carrier_pulse = DIV_ROUND_CLOSEST(
ir->duty_cycle * XTAL_FREQ / 1000, ir->carrier);
code_block->carrier_space = DIV_ROUND_CLOSEST(
(100 - ir->duty_cycle) * XTAL_FREQ / 1000, ir->carrier);
for (i = 0; i < count; i++) {
if (c >= ARRAY_SIZE(codes) - 1) {
dev_warn(&rcdev->dev, "IR too long, cannot transmit\n");
return -EINVAL;
}
/*
* Lengths more than 142220us cannot be encoded; also
* this checks for multiply overflow
*/
if (txbuf[i] > 142220)
return -EINVAL;
l = DIV_ROUND_CLOSEST((XTAL_FREQ / 1000) * txbuf[i], 40000);
if (i & 1) {
s = find_slot(code_block->space,
ARRAY_SIZE(code_block->space), l);
if (s == -1) {
dev_warn(&rcdev->dev, "Too many different lengths spaces, cannot transmit");
return -EINVAL;
}
/* We have a pulse and space */
codes[c++] = (p << 4) | s;
} else {
p = find_slot(code_block->pulse,
ARRAY_SIZE(code_block->pulse), l);
if (p == -1) {
dev_warn(&rcdev->dev, "Too many different lengths pulses, cannot transmit");
return -EINVAL;
}
}
}
/* We have to encode the trailing pulse. Find the shortest space */
s = 0;
for (i = 1; i < ARRAY_SIZE(code_block->space); i++) {
u16 d = get_unaligned_be16(&code_block->space[i]);
if (get_unaligned_be16(&code_block->space[s]) > d)
s = i;
}
codes[c++] = (p << 4) | s;
dev_dbg(&rcdev->dev, "generated %d codes\n", c);
/*
* Are the last N codes (so pulse + space) repeating 3 times?
* if so we can shorten the codes list and use code 0xc0 to repeat
* them.
*/
repeating = false;
for (rep = c / 3; rep >= 1; rep--) {
if (!memcmp(&codes[c - rep * 3], &codes[c - rep * 2], rep) &&
!cmp_no_trail(&codes[c - rep], &codes[c - rep * 2], rep)) {
repeating = true;
break;
}
}
if (repeating) {
/* first copy any leading non-repeating */
int leading = c - rep * 3;
if (leading >= ARRAY_SIZE(code_block->codes) - 3 - rep) {
dev_warn(&rcdev->dev, "IR too long, cannot transmit\n");
return -EINVAL;
}
dev_dbg(&rcdev->dev, "found trailing %d repeat\n", rep);
copy_codes(code_block->codes, codes, leading);
code_block->codes[leading] = 0x82;
copy_codes(code_block->codes + leading + 1, codes + leading,
rep);
c = leading + 1 + rep;
code_block->codes[c++] = 0xc0;
} else {
if (c >= ARRAY_SIZE(code_block->codes) - 3) {
dev_warn(&rcdev->dev, "IR too long, cannot transmit\n");
return -EINVAL;
}
dev_dbg(&rcdev->dev, "found no trailing repeat\n");
code_block->codes[0] = 0x82;
copy_codes(code_block->codes + 1, codes, c);
c++;
code_block->codes[c++] = 0xc4;
}
while (c < ARRAY_SIZE(code_block->codes))
code_block->codes[c++] = 0x83;
return 0;
}
static int zilog_tx(struct rc_dev *rcdev, unsigned int *txbuf,
unsigned int count)
{
struct IR_i2c *ir = rcdev->priv;
struct code_block code_block = { .length = sizeof(code_block) };
u8 buf[2];
int ret, i;
ret = zilog_ir_format(rcdev, txbuf, count, &code_block);
if (ret)
return ret;
ret = mutex_lock_interruptible(&ir->lock);
if (ret)
return ret;
ret = send_data_block(ir, ZILOG_UIR_END, &code_block);
if (ret)
goto out_unlock;
ret = i2c_master_recv(ir->tx_c, buf, 1);
if (ret != 1) {
dev_err(&ir->rc->dev, "i2c_master_recv failed with %d\n", ret);
goto out_unlock;
}
dev_dbg(&ir->rc->dev, "code set status: %02x\n", buf[0]);
if (buf[0] != (ZILOG_STATUS_OK | ZILOG_STATUS_SET)) {
dev_err(&ir->rc->dev, "unexpected IR TX response %02x\n",
buf[0]);
ret = -EIO;
goto out_unlock;
}
buf[0] = 0x00;
buf[1] = ZILOG_SEND;
ret = i2c_master_send(ir->tx_c, buf, 2);
if (ret != 2) {
dev_err(&ir->rc->dev, "i2c_master_send failed with %d\n", ret);
if (ret >= 0)
ret = -EIO;
goto out_unlock;
}
dev_dbg(&ir->rc->dev, "send command sent\n");
/*
* This bit NAKs until the device is ready, so we retry it
* sleeping a bit each time. This seems to be what the windows
* driver does, approximately.
* Try for up to 1s.
*/
for (i = 0; i < 20; ++i) {
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(msecs_to_jiffies(50));
ret = i2c_master_send(ir->tx_c, buf, 1);
if (ret == 1)
break;
dev_dbg(&ir->rc->dev,
"NAK expected: i2c_master_send failed with %d (try %d)\n",
ret, i + 1);
}
if (ret != 1) {
dev_err(&ir->rc->dev,
"IR TX chip never got ready: last i2c_master_send failed with %d\n",
ret);
if (ret >= 0)
ret = -EIO;
goto out_unlock;
}
i = i2c_master_recv(ir->tx_c, buf, 1);
if (i != 1) {
dev_err(&ir->rc->dev, "i2c_master_recv failed with %d\n", ret);
ret = -EIO;
goto out_unlock;
} else if (buf[0] != ZILOG_STATUS_OK) {
dev_err(&ir->rc->dev, "unexpected IR TX response #2: %02x\n",
buf[0]);
ret = -EIO;
goto out_unlock;
}
dev_dbg(&ir->rc->dev, "transmit complete\n");
/* Oh good, it worked */
ret = count;
out_unlock:
mutex_unlock(&ir->lock);
return ret;
}
static int zilog_tx_carrier(struct rc_dev *dev, u32 carrier)
{
struct IR_i2c *ir = dev->priv;
if (carrier > 500000 || carrier < 20000)
return -EINVAL;
ir->carrier = carrier;
return 0;
}
static int zilog_tx_duty_cycle(struct rc_dev *dev, u32 duty_cycle)
{
struct IR_i2c *ir = dev->priv;
ir->duty_cycle = duty_cycle;
return 0;
}
static int ir_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
char *ir_codes = NULL;
const char *name = NULL;
u64 rc_proto = RC_PROTO_BIT_UNKNOWN;
struct IR_i2c *ir;
struct rc_dev *rc = NULL;
struct i2c_adapter *adap = client->adapter;
unsigned short addr = client->addr;
bool probe_tx = (id->driver_data & FLAG_TX) != 0;
int err;
if ((id->driver_data & FLAG_HDPVR) && !enable_hdpvr) {
dev_err(&client->dev, "IR for HDPVR is known to cause problems during recording, use enable_hdpvr modparam to enable\n");
return -ENODEV;
}
ir = devm_kzalloc(&client->dev, sizeof(*ir), GFP_KERNEL);
if (!ir)
return -ENOMEM;
ir->c = client;
ir->polling_interval = DEFAULT_POLLING_INTERVAL;
i2c_set_clientdata(client, ir);
switch(addr) {
case 0x64:
name = "Pixelview";
ir->get_key = get_key_pixelview;
rc_proto = RC_PROTO_BIT_OTHER;
ir_codes = RC_MAP_EMPTY;
break;
case 0x18:
case 0x1f:
case 0x1a:
name = "Hauppauge";
ir->get_key = get_key_haup;
rc_proto = RC_PROTO_BIT_RC5;
ir_codes = RC_MAP_HAUPPAUGE;
break;
case 0x30:
name = "KNC One";
ir->get_key = get_key_knc1;
rc_proto = RC_PROTO_BIT_OTHER;
ir_codes = RC_MAP_EMPTY;
break;
case 0x6b:
name = "FusionHDTV";
ir->get_key = get_key_fusionhdtv;
rc_proto = RC_PROTO_BIT_UNKNOWN;
ir_codes = RC_MAP_FUSIONHDTV_MCE;
break;
case 0x40:
name = "AVerMedia Cardbus remote";
ir->get_key = get_key_avermedia_cardbus;
rc_proto = RC_PROTO_BIT_OTHER;
ir_codes = RC_MAP_AVERMEDIA_CARDBUS;
break;
case 0x41:
name = "AVerMedia EM78P153";
ir->get_key = get_key_avermedia_cardbus;
rc_proto = RC_PROTO_BIT_OTHER;
/* RM-KV remote, seems to be same as RM-K6 */
ir_codes = RC_MAP_AVERMEDIA_M733A_RM_K6;
break;
case 0x71:
name = "Hauppauge/Zilog Z8";
ir->get_key = get_key_haup_xvr;
rc_proto = RC_PROTO_BIT_RC5 | RC_PROTO_BIT_RC6_MCE |
RC_PROTO_BIT_RC6_6A_32;
ir_codes = RC_MAP_HAUPPAUGE;
probe_tx = true;
break;
}
/* Let the caller override settings */
if (client->dev.platform_data) {
const struct IR_i2c_init_data *init_data =
client->dev.platform_data;
ir_codes = init_data->ir_codes;
rc = init_data->rc_dev;
name = init_data->name;
if (init_data->type)
rc_proto = init_data->type;
if (init_data->polling_interval)
ir->polling_interval = init_data->polling_interval;
switch (init_data->internal_get_key_func) {
case IR_KBD_GET_KEY_CUSTOM:
/* The bridge driver provided us its own function */
ir->get_key = init_data->get_key;
break;
case IR_KBD_GET_KEY_PIXELVIEW:
ir->get_key = get_key_pixelview;
break;
case IR_KBD_GET_KEY_HAUP:
ir->get_key = get_key_haup;
break;
case IR_KBD_GET_KEY_KNC1:
ir->get_key = get_key_knc1;
break;
case IR_KBD_GET_KEY_FUSIONHDTV:
ir->get_key = get_key_fusionhdtv;
break;
case IR_KBD_GET_KEY_HAUP_XVR:
ir->get_key = get_key_haup_xvr;
break;
case IR_KBD_GET_KEY_AVERMEDIA_CARDBUS:
ir->get_key = get_key_avermedia_cardbus;
break;
}
}
if (!rc) {
/*
* If platform_data doesn't specify rc_dev, initialize it
* internally
*/
rc = rc_allocate_device(RC_DRIVER_SCANCODE);
if (!rc)
return -ENOMEM;
}
ir->rc = rc;
/* Make sure we are all setup before going on */
if (!name || !ir->get_key || !rc_proto || !ir_codes) {
dev_warn(&client->dev, "Unsupported device at address 0x%02x\n",
addr);
err = -ENODEV;
goto err_out_free;
}
ir->ir_codes = ir_codes;
snprintf(ir->phys, sizeof(ir->phys), "%s/%s", dev_name(&adap->dev),
dev_name(&client->dev));
/*
* Initialize input_dev fields
* It doesn't make sense to allow overriding them via platform_data
*/
rc->input_id.bustype = BUS_I2C;
rc->input_phys = ir->phys;
rc->device_name = name;
rc->dev.parent = &client->dev;
rc->priv = ir;
rc->open = ir_open;
rc->close = ir_close;
/*
* Initialize the other fields of rc_dev
*/
rc->map_name = ir->ir_codes;
rc->allowed_protocols = rc_proto;
if (!rc->driver_name)
rc->driver_name = KBUILD_MODNAME;
mutex_init(&ir->lock);
INIT_DELAYED_WORK(&ir->work, ir_work);
if (probe_tx) {
ir->tx_c = i2c_new_dummy_device(client->adapter, 0x70);
if (IS_ERR(ir->tx_c)) {
dev_err(&client->dev, "failed to setup tx i2c address");
err = PTR_ERR(ir->tx_c);
goto err_out_free;
} else if (!zilog_init(ir)) {
ir->carrier = 38000;
ir->duty_cycle = 40;
rc->tx_ir = zilog_tx;
rc->s_tx_carrier = zilog_tx_carrier;
rc->s_tx_duty_cycle = zilog_tx_duty_cycle;
}
}
err = rc_register_device(rc);
if (err)
goto err_out_free;
return 0;
err_out_free:
if (!IS_ERR(ir->tx_c))
i2c_unregister_device(ir->tx_c);
/* Only frees rc if it were allocated internally */
rc_free_device(rc);
return err;
}
static int ir_remove(struct i2c_client *client)
{
struct IR_i2c *ir = i2c_get_clientdata(client);
cancel_delayed_work_sync(&ir->work);
i2c_unregister_device(ir->tx_c);
rc_unregister_device(ir->rc);
return 0;
}
static const struct i2c_device_id ir_kbd_id[] = {
/* Generic entry for any IR receiver */
{ "ir_video", 0 },
/* IR device specific entries should be added here */
{ "ir_z8f0811_haup", FLAG_TX },
{ "ir_z8f0811_hdpvr", FLAG_TX | FLAG_HDPVR },
{ }
};
MODULE_DEVICE_TABLE(i2c, ir_kbd_id);
static struct i2c_driver ir_kbd_driver = {
.driver = {
.name = "ir-kbd-i2c",
},
.probe = ir_probe,
.remove = ir_remove,
.id_table = ir_kbd_id,
};
module_i2c_driver(ir_kbd_driver);
/* ----------------------------------------------------------------------- */
MODULE_AUTHOR("Gerd Knorr, Michal Kochanowicz, Christoph Bartelmus, Ulrich Mueller");
MODULE_DESCRIPTION("input driver for i2c IR remote controls");
MODULE_LICENSE("GPL");