2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-12 23:54:19 +08:00
linux-next/kernel/smpboot.c
Oleg Nesterov c00166d87e stop_machine: Kill smp_hotplug_thread->pre_unpark, introduce stop_machine_unpark()
1. Change smpboot_unpark_thread() to check ->selfparking, just
   like smpboot_park_thread() does.

2. Introduce stop_machine_unpark() which sets ->enabled and calls
   kthread_unpark().

3. Change smpboot_thread_call() and cpu_stop_init() to call
   stop_machine_unpark() by hand.

This way:

    - IMO the ->selfparking logic becomes more consistent.

    - We can kill the smp_hotplug_thread->pre_unpark() method.

    - We can easily unpark the stopper thread earlier. Say, we
      can move stop_machine_unpark() from smpboot_thread_call()
      to sched_cpu_active() as Peter suggests.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: heiko.carstens@de.ibm.com
Link: http://lkml.kernel.org/r/20151009160049.GA10166@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-20 10:23:55 +02:00

527 lines
13 KiB
C

/*
* Common SMP CPU bringup/teardown functions
*/
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/smp.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/export.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/smpboot.h>
#include "smpboot.h"
#ifdef CONFIG_SMP
#ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
/*
* For the hotplug case we keep the task structs around and reuse
* them.
*/
static DEFINE_PER_CPU(struct task_struct *, idle_threads);
struct task_struct *idle_thread_get(unsigned int cpu)
{
struct task_struct *tsk = per_cpu(idle_threads, cpu);
if (!tsk)
return ERR_PTR(-ENOMEM);
init_idle(tsk, cpu);
return tsk;
}
void __init idle_thread_set_boot_cpu(void)
{
per_cpu(idle_threads, smp_processor_id()) = current;
}
/**
* idle_init - Initialize the idle thread for a cpu
* @cpu: The cpu for which the idle thread should be initialized
*
* Creates the thread if it does not exist.
*/
static inline void idle_init(unsigned int cpu)
{
struct task_struct *tsk = per_cpu(idle_threads, cpu);
if (!tsk) {
tsk = fork_idle(cpu);
if (IS_ERR(tsk))
pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
else
per_cpu(idle_threads, cpu) = tsk;
}
}
/**
* idle_threads_init - Initialize idle threads for all cpus
*/
void __init idle_threads_init(void)
{
unsigned int cpu, boot_cpu;
boot_cpu = smp_processor_id();
for_each_possible_cpu(cpu) {
if (cpu != boot_cpu)
idle_init(cpu);
}
}
#endif
#endif /* #ifdef CONFIG_SMP */
static LIST_HEAD(hotplug_threads);
static DEFINE_MUTEX(smpboot_threads_lock);
struct smpboot_thread_data {
unsigned int cpu;
unsigned int status;
struct smp_hotplug_thread *ht;
};
enum {
HP_THREAD_NONE = 0,
HP_THREAD_ACTIVE,
HP_THREAD_PARKED,
};
/**
* smpboot_thread_fn - percpu hotplug thread loop function
* @data: thread data pointer
*
* Checks for thread stop and park conditions. Calls the necessary
* setup, cleanup, park and unpark functions for the registered
* thread.
*
* Returns 1 when the thread should exit, 0 otherwise.
*/
static int smpboot_thread_fn(void *data)
{
struct smpboot_thread_data *td = data;
struct smp_hotplug_thread *ht = td->ht;
while (1) {
set_current_state(TASK_INTERRUPTIBLE);
preempt_disable();
if (kthread_should_stop()) {
__set_current_state(TASK_RUNNING);
preempt_enable();
/* cleanup must mirror setup */
if (ht->cleanup && td->status != HP_THREAD_NONE)
ht->cleanup(td->cpu, cpu_online(td->cpu));
kfree(td);
return 0;
}
if (kthread_should_park()) {
__set_current_state(TASK_RUNNING);
preempt_enable();
if (ht->park && td->status == HP_THREAD_ACTIVE) {
BUG_ON(td->cpu != smp_processor_id());
ht->park(td->cpu);
td->status = HP_THREAD_PARKED;
}
kthread_parkme();
/* We might have been woken for stop */
continue;
}
BUG_ON(td->cpu != smp_processor_id());
/* Check for state change setup */
switch (td->status) {
case HP_THREAD_NONE:
__set_current_state(TASK_RUNNING);
preempt_enable();
if (ht->setup)
ht->setup(td->cpu);
td->status = HP_THREAD_ACTIVE;
continue;
case HP_THREAD_PARKED:
__set_current_state(TASK_RUNNING);
preempt_enable();
if (ht->unpark)
ht->unpark(td->cpu);
td->status = HP_THREAD_ACTIVE;
continue;
}
if (!ht->thread_should_run(td->cpu)) {
preempt_enable_no_resched();
schedule();
} else {
__set_current_state(TASK_RUNNING);
preempt_enable();
ht->thread_fn(td->cpu);
}
}
}
static int
__smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
{
struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
struct smpboot_thread_data *td;
if (tsk)
return 0;
td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
if (!td)
return -ENOMEM;
td->cpu = cpu;
td->ht = ht;
tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
ht->thread_comm);
if (IS_ERR(tsk)) {
kfree(td);
return PTR_ERR(tsk);
}
get_task_struct(tsk);
*per_cpu_ptr(ht->store, cpu) = tsk;
if (ht->create) {
/*
* Make sure that the task has actually scheduled out
* into park position, before calling the create
* callback. At least the migration thread callback
* requires that the task is off the runqueue.
*/
if (!wait_task_inactive(tsk, TASK_PARKED))
WARN_ON(1);
else
ht->create(cpu);
}
return 0;
}
int smpboot_create_threads(unsigned int cpu)
{
struct smp_hotplug_thread *cur;
int ret = 0;
mutex_lock(&smpboot_threads_lock);
list_for_each_entry(cur, &hotplug_threads, list) {
ret = __smpboot_create_thread(cur, cpu);
if (ret)
break;
}
mutex_unlock(&smpboot_threads_lock);
return ret;
}
static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
{
struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
if (!ht->selfparking)
kthread_unpark(tsk);
}
void smpboot_unpark_threads(unsigned int cpu)
{
struct smp_hotplug_thread *cur;
mutex_lock(&smpboot_threads_lock);
list_for_each_entry(cur, &hotplug_threads, list)
if (cpumask_test_cpu(cpu, cur->cpumask))
smpboot_unpark_thread(cur, cpu);
mutex_unlock(&smpboot_threads_lock);
}
static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
{
struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
if (tsk && !ht->selfparking)
kthread_park(tsk);
}
void smpboot_park_threads(unsigned int cpu)
{
struct smp_hotplug_thread *cur;
mutex_lock(&smpboot_threads_lock);
list_for_each_entry_reverse(cur, &hotplug_threads, list)
smpboot_park_thread(cur, cpu);
mutex_unlock(&smpboot_threads_lock);
}
static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
{
unsigned int cpu;
/* We need to destroy also the parked threads of offline cpus */
for_each_possible_cpu(cpu) {
struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
if (tsk) {
kthread_stop(tsk);
put_task_struct(tsk);
*per_cpu_ptr(ht->store, cpu) = NULL;
}
}
}
/**
* smpboot_register_percpu_thread_cpumask - Register a per_cpu thread related
* to hotplug
* @plug_thread: Hotplug thread descriptor
* @cpumask: The cpumask where threads run
*
* Creates and starts the threads on all online cpus.
*/
int smpboot_register_percpu_thread_cpumask(struct smp_hotplug_thread *plug_thread,
const struct cpumask *cpumask)
{
unsigned int cpu;
int ret = 0;
if (!alloc_cpumask_var(&plug_thread->cpumask, GFP_KERNEL))
return -ENOMEM;
cpumask_copy(plug_thread->cpumask, cpumask);
get_online_cpus();
mutex_lock(&smpboot_threads_lock);
for_each_online_cpu(cpu) {
ret = __smpboot_create_thread(plug_thread, cpu);
if (ret) {
smpboot_destroy_threads(plug_thread);
free_cpumask_var(plug_thread->cpumask);
goto out;
}
if (cpumask_test_cpu(cpu, cpumask))
smpboot_unpark_thread(plug_thread, cpu);
}
list_add(&plug_thread->list, &hotplug_threads);
out:
mutex_unlock(&smpboot_threads_lock);
put_online_cpus();
return ret;
}
EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread_cpumask);
/**
* smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
* @plug_thread: Hotplug thread descriptor
*
* Stops all threads on all possible cpus.
*/
void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
{
get_online_cpus();
mutex_lock(&smpboot_threads_lock);
list_del(&plug_thread->list);
smpboot_destroy_threads(plug_thread);
mutex_unlock(&smpboot_threads_lock);
put_online_cpus();
free_cpumask_var(plug_thread->cpumask);
}
EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
/**
* smpboot_update_cpumask_percpu_thread - Adjust which per_cpu hotplug threads stay parked
* @plug_thread: Hotplug thread descriptor
* @new: Revised mask to use
*
* The cpumask field in the smp_hotplug_thread must not be updated directly
* by the client, but only by calling this function.
* This function can only be called on a registered smp_hotplug_thread.
*/
int smpboot_update_cpumask_percpu_thread(struct smp_hotplug_thread *plug_thread,
const struct cpumask *new)
{
struct cpumask *old = plug_thread->cpumask;
cpumask_var_t tmp;
unsigned int cpu;
if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
return -ENOMEM;
get_online_cpus();
mutex_lock(&smpboot_threads_lock);
/* Park threads that were exclusively enabled on the old mask. */
cpumask_andnot(tmp, old, new);
for_each_cpu_and(cpu, tmp, cpu_online_mask)
smpboot_park_thread(plug_thread, cpu);
/* Unpark threads that are exclusively enabled on the new mask. */
cpumask_andnot(tmp, new, old);
for_each_cpu_and(cpu, tmp, cpu_online_mask)
smpboot_unpark_thread(plug_thread, cpu);
cpumask_copy(old, new);
mutex_unlock(&smpboot_threads_lock);
put_online_cpus();
free_cpumask_var(tmp);
return 0;
}
EXPORT_SYMBOL_GPL(smpboot_update_cpumask_percpu_thread);
static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
/*
* Called to poll specified CPU's state, for example, when waiting for
* a CPU to come online.
*/
int cpu_report_state(int cpu)
{
return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
}
/*
* If CPU has died properly, set its state to CPU_UP_PREPARE and
* return success. Otherwise, return -EBUSY if the CPU died after
* cpu_wait_death() timed out. And yet otherwise again, return -EAGAIN
* if cpu_wait_death() timed out and the CPU still hasn't gotten around
* to dying. In the latter two cases, the CPU might not be set up
* properly, but it is up to the arch-specific code to decide.
* Finally, -EIO indicates an unanticipated problem.
*
* Note that it is permissible to omit this call entirely, as is
* done in architectures that do no CPU-hotplug error checking.
*/
int cpu_check_up_prepare(int cpu)
{
if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
return 0;
}
switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
case CPU_POST_DEAD:
/* The CPU died properly, so just start it up again. */
atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
return 0;
case CPU_DEAD_FROZEN:
/*
* Timeout during CPU death, so let caller know.
* The outgoing CPU completed its processing, but after
* cpu_wait_death() timed out and reported the error. The
* caller is free to proceed, in which case the state
* will be reset properly by cpu_set_state_online().
* Proceeding despite this -EBUSY return makes sense
* for systems where the outgoing CPUs take themselves
* offline, with no post-death manipulation required from
* a surviving CPU.
*/
return -EBUSY;
case CPU_BROKEN:
/*
* The most likely reason we got here is that there was
* a timeout during CPU death, and the outgoing CPU never
* did complete its processing. This could happen on
* a virtualized system if the outgoing VCPU gets preempted
* for more than five seconds, and the user attempts to
* immediately online that same CPU. Trying again later
* might return -EBUSY above, hence -EAGAIN.
*/
return -EAGAIN;
default:
/* Should not happen. Famous last words. */
return -EIO;
}
}
/*
* Mark the specified CPU online.
*
* Note that it is permissible to omit this call entirely, as is
* done in architectures that do no CPU-hotplug error checking.
*/
void cpu_set_state_online(int cpu)
{
(void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
}
#ifdef CONFIG_HOTPLUG_CPU
/*
* Wait for the specified CPU to exit the idle loop and die.
*/
bool cpu_wait_death(unsigned int cpu, int seconds)
{
int jf_left = seconds * HZ;
int oldstate;
bool ret = true;
int sleep_jf = 1;
might_sleep();
/* The outgoing CPU will normally get done quite quickly. */
if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
goto update_state;
udelay(5);
/* But if the outgoing CPU dawdles, wait increasingly long times. */
while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
schedule_timeout_uninterruptible(sleep_jf);
jf_left -= sleep_jf;
if (jf_left <= 0)
break;
sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
}
update_state:
oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
if (oldstate == CPU_DEAD) {
/* Outgoing CPU died normally, update state. */
smp_mb(); /* atomic_read() before update. */
atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
} else {
/* Outgoing CPU still hasn't died, set state accordingly. */
if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
oldstate, CPU_BROKEN) != oldstate)
goto update_state;
ret = false;
}
return ret;
}
/*
* Called by the outgoing CPU to report its successful death. Return
* false if this report follows the surviving CPU's timing out.
*
* A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
* timed out. This approach allows architectures to omit calls to
* cpu_check_up_prepare() and cpu_set_state_online() without defeating
* the next cpu_wait_death()'s polling loop.
*/
bool cpu_report_death(void)
{
int oldstate;
int newstate;
int cpu = smp_processor_id();
do {
oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
if (oldstate != CPU_BROKEN)
newstate = CPU_DEAD;
else
newstate = CPU_DEAD_FROZEN;
} while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
oldstate, newstate) != oldstate);
return newstate == CPU_DEAD;
}
#endif /* #ifdef CONFIG_HOTPLUG_CPU */