2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-25 07:06:40 +08:00
linux-next/drivers/md/md-bitmap.c
Xianting Tian 313b825fa2 md: only calculate blocksize once and use i_blocksize()
We alreday has the interface i_blocksize(), which can be used
to get blocksize, so use it.
Only calculate blocksize once and use it within read_page().

Signed-off-by: Xianting Tian <tian.xianting@h3c.com>
Signed-off-by: Song Liu <songliubraving@fb.com>
2020-09-24 16:44:44 -07:00

2620 lines
70 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* bitmap.c two-level bitmap (C) Peter T. Breuer (ptb@ot.uc3m.es) 2003
*
* bitmap_create - sets up the bitmap structure
* bitmap_destroy - destroys the bitmap structure
*
* additions, Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.:
* - added disk storage for bitmap
* - changes to allow various bitmap chunk sizes
*/
/*
* Still to do:
*
* flush after percent set rather than just time based. (maybe both).
*/
#include <linux/blkdev.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/timer.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/file.h>
#include <linux/mount.h>
#include <linux/buffer_head.h>
#include <linux/seq_file.h>
#include <trace/events/block.h>
#include "md.h"
#include "md-bitmap.h"
static inline char *bmname(struct bitmap *bitmap)
{
return bitmap->mddev ? mdname(bitmap->mddev) : "mdX";
}
/*
* check a page and, if necessary, allocate it (or hijack it if the alloc fails)
*
* 1) check to see if this page is allocated, if it's not then try to alloc
* 2) if the alloc fails, set the page's hijacked flag so we'll use the
* page pointer directly as a counter
*
* if we find our page, we increment the page's refcount so that it stays
* allocated while we're using it
*/
static int md_bitmap_checkpage(struct bitmap_counts *bitmap,
unsigned long page, int create, int no_hijack)
__releases(bitmap->lock)
__acquires(bitmap->lock)
{
unsigned char *mappage;
if (page >= bitmap->pages) {
/* This can happen if bitmap_start_sync goes beyond
* End-of-device while looking for a whole page.
* It is harmless.
*/
return -EINVAL;
}
if (bitmap->bp[page].hijacked) /* it's hijacked, don't try to alloc */
return 0;
if (bitmap->bp[page].map) /* page is already allocated, just return */
return 0;
if (!create)
return -ENOENT;
/* this page has not been allocated yet */
spin_unlock_irq(&bitmap->lock);
/* It is possible that this is being called inside a
* prepare_to_wait/finish_wait loop from raid5c:make_request().
* In general it is not permitted to sleep in that context as it
* can cause the loop to spin freely.
* That doesn't apply here as we can only reach this point
* once with any loop.
* When this function completes, either bp[page].map or
* bp[page].hijacked. In either case, this function will
* abort before getting to this point again. So there is
* no risk of a free-spin, and so it is safe to assert
* that sleeping here is allowed.
*/
sched_annotate_sleep();
mappage = kzalloc(PAGE_SIZE, GFP_NOIO);
spin_lock_irq(&bitmap->lock);
if (mappage == NULL) {
pr_debug("md/bitmap: map page allocation failed, hijacking\n");
/* We don't support hijack for cluster raid */
if (no_hijack)
return -ENOMEM;
/* failed - set the hijacked flag so that we can use the
* pointer as a counter */
if (!bitmap->bp[page].map)
bitmap->bp[page].hijacked = 1;
} else if (bitmap->bp[page].map ||
bitmap->bp[page].hijacked) {
/* somebody beat us to getting the page */
kfree(mappage);
} else {
/* no page was in place and we have one, so install it */
bitmap->bp[page].map = mappage;
bitmap->missing_pages--;
}
return 0;
}
/* if page is completely empty, put it back on the free list, or dealloc it */
/* if page was hijacked, unmark the flag so it might get alloced next time */
/* Note: lock should be held when calling this */
static void md_bitmap_checkfree(struct bitmap_counts *bitmap, unsigned long page)
{
char *ptr;
if (bitmap->bp[page].count) /* page is still busy */
return;
/* page is no longer in use, it can be released */
if (bitmap->bp[page].hijacked) { /* page was hijacked, undo this now */
bitmap->bp[page].hijacked = 0;
bitmap->bp[page].map = NULL;
} else {
/* normal case, free the page */
ptr = bitmap->bp[page].map;
bitmap->bp[page].map = NULL;
bitmap->missing_pages++;
kfree(ptr);
}
}
/*
* bitmap file handling - read and write the bitmap file and its superblock
*/
/*
* basic page I/O operations
*/
/* IO operations when bitmap is stored near all superblocks */
static int read_sb_page(struct mddev *mddev, loff_t offset,
struct page *page,
unsigned long index, int size)
{
/* choose a good rdev and read the page from there */
struct md_rdev *rdev;
sector_t target;
rdev_for_each(rdev, mddev) {
if (! test_bit(In_sync, &rdev->flags)
|| test_bit(Faulty, &rdev->flags)
|| test_bit(Bitmap_sync, &rdev->flags))
continue;
target = offset + index * (PAGE_SIZE/512);
if (sync_page_io(rdev, target,
roundup(size, bdev_logical_block_size(rdev->bdev)),
page, REQ_OP_READ, 0, true)) {
page->index = index;
return 0;
}
}
return -EIO;
}
static struct md_rdev *next_active_rdev(struct md_rdev *rdev, struct mddev *mddev)
{
/* Iterate the disks of an mddev, using rcu to protect access to the
* linked list, and raising the refcount of devices we return to ensure
* they don't disappear while in use.
* As devices are only added or removed when raid_disk is < 0 and
* nr_pending is 0 and In_sync is clear, the entries we return will
* still be in the same position on the list when we re-enter
* list_for_each_entry_continue_rcu.
*
* Note that if entered with 'rdev == NULL' to start at the
* beginning, we temporarily assign 'rdev' to an address which
* isn't really an rdev, but which can be used by
* list_for_each_entry_continue_rcu() to find the first entry.
*/
rcu_read_lock();
if (rdev == NULL)
/* start at the beginning */
rdev = list_entry(&mddev->disks, struct md_rdev, same_set);
else {
/* release the previous rdev and start from there. */
rdev_dec_pending(rdev, mddev);
}
list_for_each_entry_continue_rcu(rdev, &mddev->disks, same_set) {
if (rdev->raid_disk >= 0 &&
!test_bit(Faulty, &rdev->flags)) {
/* this is a usable devices */
atomic_inc(&rdev->nr_pending);
rcu_read_unlock();
return rdev;
}
}
rcu_read_unlock();
return NULL;
}
static int write_sb_page(struct bitmap *bitmap, struct page *page, int wait)
{
struct md_rdev *rdev;
struct block_device *bdev;
struct mddev *mddev = bitmap->mddev;
struct bitmap_storage *store = &bitmap->storage;
restart:
rdev = NULL;
while ((rdev = next_active_rdev(rdev, mddev)) != NULL) {
int size = PAGE_SIZE;
loff_t offset = mddev->bitmap_info.offset;
bdev = (rdev->meta_bdev) ? rdev->meta_bdev : rdev->bdev;
if (page->index == store->file_pages-1) {
int last_page_size = store->bytes & (PAGE_SIZE-1);
if (last_page_size == 0)
last_page_size = PAGE_SIZE;
size = roundup(last_page_size,
bdev_logical_block_size(bdev));
}
/* Just make sure we aren't corrupting data or
* metadata
*/
if (mddev->external) {
/* Bitmap could be anywhere. */
if (rdev->sb_start + offset + (page->index
* (PAGE_SIZE/512))
> rdev->data_offset
&&
rdev->sb_start + offset
< (rdev->data_offset + mddev->dev_sectors
+ (PAGE_SIZE/512)))
goto bad_alignment;
} else if (offset < 0) {
/* DATA BITMAP METADATA */
if (offset
+ (long)(page->index * (PAGE_SIZE/512))
+ size/512 > 0)
/* bitmap runs in to metadata */
goto bad_alignment;
if (rdev->data_offset + mddev->dev_sectors
> rdev->sb_start + offset)
/* data runs in to bitmap */
goto bad_alignment;
} else if (rdev->sb_start < rdev->data_offset) {
/* METADATA BITMAP DATA */
if (rdev->sb_start
+ offset
+ page->index*(PAGE_SIZE/512) + size/512
> rdev->data_offset)
/* bitmap runs in to data */
goto bad_alignment;
} else {
/* DATA METADATA BITMAP - no problems */
}
md_super_write(mddev, rdev,
rdev->sb_start + offset
+ page->index * (PAGE_SIZE/512),
size,
page);
}
if (wait && md_super_wait(mddev) < 0)
goto restart;
return 0;
bad_alignment:
return -EINVAL;
}
static void md_bitmap_file_kick(struct bitmap *bitmap);
/*
* write out a page to a file
*/
static void write_page(struct bitmap *bitmap, struct page *page, int wait)
{
struct buffer_head *bh;
if (bitmap->storage.file == NULL) {
switch (write_sb_page(bitmap, page, wait)) {
case -EINVAL:
set_bit(BITMAP_WRITE_ERROR, &bitmap->flags);
}
} else {
bh = page_buffers(page);
while (bh && bh->b_blocknr) {
atomic_inc(&bitmap->pending_writes);
set_buffer_locked(bh);
set_buffer_mapped(bh);
submit_bh(REQ_OP_WRITE, REQ_SYNC, bh);
bh = bh->b_this_page;
}
if (wait)
wait_event(bitmap->write_wait,
atomic_read(&bitmap->pending_writes)==0);
}
if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags))
md_bitmap_file_kick(bitmap);
}
static void end_bitmap_write(struct buffer_head *bh, int uptodate)
{
struct bitmap *bitmap = bh->b_private;
if (!uptodate)
set_bit(BITMAP_WRITE_ERROR, &bitmap->flags);
if (atomic_dec_and_test(&bitmap->pending_writes))
wake_up(&bitmap->write_wait);
}
static void free_buffers(struct page *page)
{
struct buffer_head *bh;
if (!PagePrivate(page))
return;
bh = page_buffers(page);
while (bh) {
struct buffer_head *next = bh->b_this_page;
free_buffer_head(bh);
bh = next;
}
detach_page_private(page);
put_page(page);
}
/* read a page from a file.
* We both read the page, and attach buffers to the page to record the
* address of each block (using bmap). These addresses will be used
* to write the block later, completely bypassing the filesystem.
* This usage is similar to how swap files are handled, and allows us
* to write to a file with no concerns of memory allocation failing.
*/
static int read_page(struct file *file, unsigned long index,
struct bitmap *bitmap,
unsigned long count,
struct page *page)
{
int ret = 0;
struct inode *inode = file_inode(file);
struct buffer_head *bh;
sector_t block, blk_cur;
unsigned long blocksize = i_blocksize(inode);
pr_debug("read bitmap file (%dB @ %llu)\n", (int)PAGE_SIZE,
(unsigned long long)index << PAGE_SHIFT);
bh = alloc_page_buffers(page, blocksize, false);
if (!bh) {
ret = -ENOMEM;
goto out;
}
attach_page_private(page, bh);
blk_cur = index << (PAGE_SHIFT - inode->i_blkbits);
while (bh) {
block = blk_cur;
if (count == 0)
bh->b_blocknr = 0;
else {
ret = bmap(inode, &block);
if (ret || !block) {
ret = -EINVAL;
bh->b_blocknr = 0;
goto out;
}
bh->b_blocknr = block;
bh->b_bdev = inode->i_sb->s_bdev;
if (count < blocksize)
count = 0;
else
count -= blocksize;
bh->b_end_io = end_bitmap_write;
bh->b_private = bitmap;
atomic_inc(&bitmap->pending_writes);
set_buffer_locked(bh);
set_buffer_mapped(bh);
submit_bh(REQ_OP_READ, 0, bh);
}
blk_cur++;
bh = bh->b_this_page;
}
page->index = index;
wait_event(bitmap->write_wait,
atomic_read(&bitmap->pending_writes)==0);
if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags))
ret = -EIO;
out:
if (ret)
pr_err("md: bitmap read error: (%dB @ %llu): %d\n",
(int)PAGE_SIZE,
(unsigned long long)index << PAGE_SHIFT,
ret);
return ret;
}
/*
* bitmap file superblock operations
*/
/*
* md_bitmap_wait_writes() should be called before writing any bitmap
* blocks, to ensure previous writes, particularly from
* md_bitmap_daemon_work(), have completed.
*/
static void md_bitmap_wait_writes(struct bitmap *bitmap)
{
if (bitmap->storage.file)
wait_event(bitmap->write_wait,
atomic_read(&bitmap->pending_writes)==0);
else
/* Note that we ignore the return value. The writes
* might have failed, but that would just mean that
* some bits which should be cleared haven't been,
* which is safe. The relevant bitmap blocks will
* probably get written again, but there is no great
* loss if they aren't.
*/
md_super_wait(bitmap->mddev);
}
/* update the event counter and sync the superblock to disk */
void md_bitmap_update_sb(struct bitmap *bitmap)
{
bitmap_super_t *sb;
if (!bitmap || !bitmap->mddev) /* no bitmap for this array */
return;
if (bitmap->mddev->bitmap_info.external)
return;
if (!bitmap->storage.sb_page) /* no superblock */
return;
sb = kmap_atomic(bitmap->storage.sb_page);
sb->events = cpu_to_le64(bitmap->mddev->events);
if (bitmap->mddev->events < bitmap->events_cleared)
/* rocking back to read-only */
bitmap->events_cleared = bitmap->mddev->events;
sb->events_cleared = cpu_to_le64(bitmap->events_cleared);
/*
* clear BITMAP_WRITE_ERROR bit to protect against the case that
* a bitmap write error occurred but the later writes succeeded.
*/
sb->state = cpu_to_le32(bitmap->flags & ~BIT(BITMAP_WRITE_ERROR));
/* Just in case these have been changed via sysfs: */
sb->daemon_sleep = cpu_to_le32(bitmap->mddev->bitmap_info.daemon_sleep/HZ);
sb->write_behind = cpu_to_le32(bitmap->mddev->bitmap_info.max_write_behind);
/* This might have been changed by a reshape */
sb->sync_size = cpu_to_le64(bitmap->mddev->resync_max_sectors);
sb->chunksize = cpu_to_le32(bitmap->mddev->bitmap_info.chunksize);
sb->nodes = cpu_to_le32(bitmap->mddev->bitmap_info.nodes);
sb->sectors_reserved = cpu_to_le32(bitmap->mddev->
bitmap_info.space);
kunmap_atomic(sb);
write_page(bitmap, bitmap->storage.sb_page, 1);
}
EXPORT_SYMBOL(md_bitmap_update_sb);
/* print out the bitmap file superblock */
void md_bitmap_print_sb(struct bitmap *bitmap)
{
bitmap_super_t *sb;
if (!bitmap || !bitmap->storage.sb_page)
return;
sb = kmap_atomic(bitmap->storage.sb_page);
pr_debug("%s: bitmap file superblock:\n", bmname(bitmap));
pr_debug(" magic: %08x\n", le32_to_cpu(sb->magic));
pr_debug(" version: %d\n", le32_to_cpu(sb->version));
pr_debug(" uuid: %08x.%08x.%08x.%08x\n",
le32_to_cpu(*(__le32 *)(sb->uuid+0)),
le32_to_cpu(*(__le32 *)(sb->uuid+4)),
le32_to_cpu(*(__le32 *)(sb->uuid+8)),
le32_to_cpu(*(__le32 *)(sb->uuid+12)));
pr_debug(" events: %llu\n",
(unsigned long long) le64_to_cpu(sb->events));
pr_debug("events cleared: %llu\n",
(unsigned long long) le64_to_cpu(sb->events_cleared));
pr_debug(" state: %08x\n", le32_to_cpu(sb->state));
pr_debug(" chunksize: %d B\n", le32_to_cpu(sb->chunksize));
pr_debug(" daemon sleep: %ds\n", le32_to_cpu(sb->daemon_sleep));
pr_debug(" sync size: %llu KB\n",
(unsigned long long)le64_to_cpu(sb->sync_size)/2);
pr_debug("max write behind: %d\n", le32_to_cpu(sb->write_behind));
kunmap_atomic(sb);
}
/*
* bitmap_new_disk_sb
* @bitmap
*
* This function is somewhat the reverse of bitmap_read_sb. bitmap_read_sb
* reads and verifies the on-disk bitmap superblock and populates bitmap_info.
* This function verifies 'bitmap_info' and populates the on-disk bitmap
* structure, which is to be written to disk.
*
* Returns: 0 on success, -Exxx on error
*/
static int md_bitmap_new_disk_sb(struct bitmap *bitmap)
{
bitmap_super_t *sb;
unsigned long chunksize, daemon_sleep, write_behind;
bitmap->storage.sb_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
if (bitmap->storage.sb_page == NULL)
return -ENOMEM;
bitmap->storage.sb_page->index = 0;
sb = kmap_atomic(bitmap->storage.sb_page);
sb->magic = cpu_to_le32(BITMAP_MAGIC);
sb->version = cpu_to_le32(BITMAP_MAJOR_HI);
chunksize = bitmap->mddev->bitmap_info.chunksize;
BUG_ON(!chunksize);
if (!is_power_of_2(chunksize)) {
kunmap_atomic(sb);
pr_warn("bitmap chunksize not a power of 2\n");
return -EINVAL;
}
sb->chunksize = cpu_to_le32(chunksize);
daemon_sleep = bitmap->mddev->bitmap_info.daemon_sleep;
if (!daemon_sleep || (daemon_sleep > MAX_SCHEDULE_TIMEOUT)) {
pr_debug("Choosing daemon_sleep default (5 sec)\n");
daemon_sleep = 5 * HZ;
}
sb->daemon_sleep = cpu_to_le32(daemon_sleep);
bitmap->mddev->bitmap_info.daemon_sleep = daemon_sleep;
/*
* FIXME: write_behind for RAID1. If not specified, what
* is a good choice? We choose COUNTER_MAX / 2 arbitrarily.
*/
write_behind = bitmap->mddev->bitmap_info.max_write_behind;
if (write_behind > COUNTER_MAX)
write_behind = COUNTER_MAX / 2;
sb->write_behind = cpu_to_le32(write_behind);
bitmap->mddev->bitmap_info.max_write_behind = write_behind;
/* keep the array size field of the bitmap superblock up to date */
sb->sync_size = cpu_to_le64(bitmap->mddev->resync_max_sectors);
memcpy(sb->uuid, bitmap->mddev->uuid, 16);
set_bit(BITMAP_STALE, &bitmap->flags);
sb->state = cpu_to_le32(bitmap->flags);
bitmap->events_cleared = bitmap->mddev->events;
sb->events_cleared = cpu_to_le64(bitmap->mddev->events);
bitmap->mddev->bitmap_info.nodes = 0;
kunmap_atomic(sb);
return 0;
}
/* read the superblock from the bitmap file and initialize some bitmap fields */
static int md_bitmap_read_sb(struct bitmap *bitmap)
{
char *reason = NULL;
bitmap_super_t *sb;
unsigned long chunksize, daemon_sleep, write_behind;
unsigned long long events;
int nodes = 0;
unsigned long sectors_reserved = 0;
int err = -EINVAL;
struct page *sb_page;
loff_t offset = bitmap->mddev->bitmap_info.offset;
if (!bitmap->storage.file && !bitmap->mddev->bitmap_info.offset) {
chunksize = 128 * 1024 * 1024;
daemon_sleep = 5 * HZ;
write_behind = 0;
set_bit(BITMAP_STALE, &bitmap->flags);
err = 0;
goto out_no_sb;
}
/* page 0 is the superblock, read it... */
sb_page = alloc_page(GFP_KERNEL);
if (!sb_page)
return -ENOMEM;
bitmap->storage.sb_page = sb_page;
re_read:
/* If cluster_slot is set, the cluster is setup */
if (bitmap->cluster_slot >= 0) {
sector_t bm_blocks = bitmap->mddev->resync_max_sectors;
sector_div(bm_blocks,
bitmap->mddev->bitmap_info.chunksize >> 9);
/* bits to bytes */
bm_blocks = ((bm_blocks+7) >> 3) + sizeof(bitmap_super_t);
/* to 4k blocks */
bm_blocks = DIV_ROUND_UP_SECTOR_T(bm_blocks, 4096);
offset = bitmap->mddev->bitmap_info.offset + (bitmap->cluster_slot * (bm_blocks << 3));
pr_debug("%s:%d bm slot: %d offset: %llu\n", __func__, __LINE__,
bitmap->cluster_slot, offset);
}
if (bitmap->storage.file) {
loff_t isize = i_size_read(bitmap->storage.file->f_mapping->host);
int bytes = isize > PAGE_SIZE ? PAGE_SIZE : isize;
err = read_page(bitmap->storage.file, 0,
bitmap, bytes, sb_page);
} else {
err = read_sb_page(bitmap->mddev,
offset,
sb_page,
0, sizeof(bitmap_super_t));
}
if (err)
return err;
err = -EINVAL;
sb = kmap_atomic(sb_page);
chunksize = le32_to_cpu(sb->chunksize);
daemon_sleep = le32_to_cpu(sb->daemon_sleep) * HZ;
write_behind = le32_to_cpu(sb->write_behind);
sectors_reserved = le32_to_cpu(sb->sectors_reserved);
/* Setup nodes/clustername only if bitmap version is
* cluster-compatible
*/
if (sb->version == cpu_to_le32(BITMAP_MAJOR_CLUSTERED)) {
nodes = le32_to_cpu(sb->nodes);
strlcpy(bitmap->mddev->bitmap_info.cluster_name,
sb->cluster_name, 64);
}
/* verify that the bitmap-specific fields are valid */
if (sb->magic != cpu_to_le32(BITMAP_MAGIC))
reason = "bad magic";
else if (le32_to_cpu(sb->version) < BITMAP_MAJOR_LO ||
le32_to_cpu(sb->version) > BITMAP_MAJOR_CLUSTERED)
reason = "unrecognized superblock version";
else if (chunksize < 512)
reason = "bitmap chunksize too small";
else if (!is_power_of_2(chunksize))
reason = "bitmap chunksize not a power of 2";
else if (daemon_sleep < 1 || daemon_sleep > MAX_SCHEDULE_TIMEOUT)
reason = "daemon sleep period out of range";
else if (write_behind > COUNTER_MAX)
reason = "write-behind limit out of range (0 - 16383)";
if (reason) {
pr_warn("%s: invalid bitmap file superblock: %s\n",
bmname(bitmap), reason);
goto out;
}
/* keep the array size field of the bitmap superblock up to date */
sb->sync_size = cpu_to_le64(bitmap->mddev->resync_max_sectors);
if (bitmap->mddev->persistent) {
/*
* We have a persistent array superblock, so compare the
* bitmap's UUID and event counter to the mddev's
*/
if (memcmp(sb->uuid, bitmap->mddev->uuid, 16)) {
pr_warn("%s: bitmap superblock UUID mismatch\n",
bmname(bitmap));
goto out;
}
events = le64_to_cpu(sb->events);
if (!nodes && (events < bitmap->mddev->events)) {
pr_warn("%s: bitmap file is out of date (%llu < %llu) -- forcing full recovery\n",
bmname(bitmap), events,
(unsigned long long) bitmap->mddev->events);
set_bit(BITMAP_STALE, &bitmap->flags);
}
}
/* assign fields using values from superblock */
bitmap->flags |= le32_to_cpu(sb->state);
if (le32_to_cpu(sb->version) == BITMAP_MAJOR_HOSTENDIAN)
set_bit(BITMAP_HOSTENDIAN, &bitmap->flags);
bitmap->events_cleared = le64_to_cpu(sb->events_cleared);
strlcpy(bitmap->mddev->bitmap_info.cluster_name, sb->cluster_name, 64);
err = 0;
out:
kunmap_atomic(sb);
/* Assigning chunksize is required for "re_read" */
bitmap->mddev->bitmap_info.chunksize = chunksize;
if (err == 0 && nodes && (bitmap->cluster_slot < 0)) {
err = md_setup_cluster(bitmap->mddev, nodes);
if (err) {
pr_warn("%s: Could not setup cluster service (%d)\n",
bmname(bitmap), err);
goto out_no_sb;
}
bitmap->cluster_slot = md_cluster_ops->slot_number(bitmap->mddev);
goto re_read;
}
out_no_sb:
if (test_bit(BITMAP_STALE, &bitmap->flags))
bitmap->events_cleared = bitmap->mddev->events;
bitmap->mddev->bitmap_info.chunksize = chunksize;
bitmap->mddev->bitmap_info.daemon_sleep = daemon_sleep;
bitmap->mddev->bitmap_info.max_write_behind = write_behind;
bitmap->mddev->bitmap_info.nodes = nodes;
if (bitmap->mddev->bitmap_info.space == 0 ||
bitmap->mddev->bitmap_info.space > sectors_reserved)
bitmap->mddev->bitmap_info.space = sectors_reserved;
if (err) {
md_bitmap_print_sb(bitmap);
if (bitmap->cluster_slot < 0)
md_cluster_stop(bitmap->mddev);
}
return err;
}
/*
* general bitmap file operations
*/
/*
* on-disk bitmap:
*
* Use one bit per "chunk" (block set). We do the disk I/O on the bitmap
* file a page at a time. There's a superblock at the start of the file.
*/
/* calculate the index of the page that contains this bit */
static inline unsigned long file_page_index(struct bitmap_storage *store,
unsigned long chunk)
{
if (store->sb_page)
chunk += sizeof(bitmap_super_t) << 3;
return chunk >> PAGE_BIT_SHIFT;
}
/* calculate the (bit) offset of this bit within a page */
static inline unsigned long file_page_offset(struct bitmap_storage *store,
unsigned long chunk)
{
if (store->sb_page)
chunk += sizeof(bitmap_super_t) << 3;
return chunk & (PAGE_BITS - 1);
}
/*
* return a pointer to the page in the filemap that contains the given bit
*
*/
static inline struct page *filemap_get_page(struct bitmap_storage *store,
unsigned long chunk)
{
if (file_page_index(store, chunk) >= store->file_pages)
return NULL;
return store->filemap[file_page_index(store, chunk)];
}
static int md_bitmap_storage_alloc(struct bitmap_storage *store,
unsigned long chunks, int with_super,
int slot_number)
{
int pnum, offset = 0;
unsigned long num_pages;
unsigned long bytes;
bytes = DIV_ROUND_UP(chunks, 8);
if (with_super)
bytes += sizeof(bitmap_super_t);
num_pages = DIV_ROUND_UP(bytes, PAGE_SIZE);
offset = slot_number * num_pages;
store->filemap = kmalloc_array(num_pages, sizeof(struct page *),
GFP_KERNEL);
if (!store->filemap)
return -ENOMEM;
if (with_super && !store->sb_page) {
store->sb_page = alloc_page(GFP_KERNEL|__GFP_ZERO);
if (store->sb_page == NULL)
return -ENOMEM;
}
pnum = 0;
if (store->sb_page) {
store->filemap[0] = store->sb_page;
pnum = 1;
store->sb_page->index = offset;
}
for ( ; pnum < num_pages; pnum++) {
store->filemap[pnum] = alloc_page(GFP_KERNEL|__GFP_ZERO);
if (!store->filemap[pnum]) {
store->file_pages = pnum;
return -ENOMEM;
}
store->filemap[pnum]->index = pnum + offset;
}
store->file_pages = pnum;
/* We need 4 bits per page, rounded up to a multiple
* of sizeof(unsigned long) */
store->filemap_attr = kzalloc(
roundup(DIV_ROUND_UP(num_pages*4, 8), sizeof(unsigned long)),
GFP_KERNEL);
if (!store->filemap_attr)
return -ENOMEM;
store->bytes = bytes;
return 0;
}
static void md_bitmap_file_unmap(struct bitmap_storage *store)
{
struct page **map, *sb_page;
int pages;
struct file *file;
file = store->file;
map = store->filemap;
pages = store->file_pages;
sb_page = store->sb_page;
while (pages--)
if (map[pages] != sb_page) /* 0 is sb_page, release it below */
free_buffers(map[pages]);
kfree(map);
kfree(store->filemap_attr);
if (sb_page)
free_buffers(sb_page);
if (file) {
struct inode *inode = file_inode(file);
invalidate_mapping_pages(inode->i_mapping, 0, -1);
fput(file);
}
}
/*
* bitmap_file_kick - if an error occurs while manipulating the bitmap file
* then it is no longer reliable, so we stop using it and we mark the file
* as failed in the superblock
*/
static void md_bitmap_file_kick(struct bitmap *bitmap)
{
char *path, *ptr = NULL;
if (!test_and_set_bit(BITMAP_STALE, &bitmap->flags)) {
md_bitmap_update_sb(bitmap);
if (bitmap->storage.file) {
path = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (path)
ptr = file_path(bitmap->storage.file,
path, PAGE_SIZE);
pr_warn("%s: kicking failed bitmap file %s from array!\n",
bmname(bitmap), IS_ERR(ptr) ? "" : ptr);
kfree(path);
} else
pr_warn("%s: disabling internal bitmap due to errors\n",
bmname(bitmap));
}
}
enum bitmap_page_attr {
BITMAP_PAGE_DIRTY = 0, /* there are set bits that need to be synced */
BITMAP_PAGE_PENDING = 1, /* there are bits that are being cleaned.
* i.e. counter is 1 or 2. */
BITMAP_PAGE_NEEDWRITE = 2, /* there are cleared bits that need to be synced */
};
static inline void set_page_attr(struct bitmap *bitmap, int pnum,
enum bitmap_page_attr attr)
{
set_bit((pnum<<2) + attr, bitmap->storage.filemap_attr);
}
static inline void clear_page_attr(struct bitmap *bitmap, int pnum,
enum bitmap_page_attr attr)
{
clear_bit((pnum<<2) + attr, bitmap->storage.filemap_attr);
}
static inline int test_page_attr(struct bitmap *bitmap, int pnum,
enum bitmap_page_attr attr)
{
return test_bit((pnum<<2) + attr, bitmap->storage.filemap_attr);
}
static inline int test_and_clear_page_attr(struct bitmap *bitmap, int pnum,
enum bitmap_page_attr attr)
{
return test_and_clear_bit((pnum<<2) + attr,
bitmap->storage.filemap_attr);
}
/*
* bitmap_file_set_bit -- called before performing a write to the md device
* to set (and eventually sync) a particular bit in the bitmap file
*
* we set the bit immediately, then we record the page number so that
* when an unplug occurs, we can flush the dirty pages out to disk
*/
static void md_bitmap_file_set_bit(struct bitmap *bitmap, sector_t block)
{
unsigned long bit;
struct page *page;
void *kaddr;
unsigned long chunk = block >> bitmap->counts.chunkshift;
struct bitmap_storage *store = &bitmap->storage;
unsigned long node_offset = 0;
if (mddev_is_clustered(bitmap->mddev))
node_offset = bitmap->cluster_slot * store->file_pages;
page = filemap_get_page(&bitmap->storage, chunk);
if (!page)
return;
bit = file_page_offset(&bitmap->storage, chunk);
/* set the bit */
kaddr = kmap_atomic(page);
if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags))
set_bit(bit, kaddr);
else
set_bit_le(bit, kaddr);
kunmap_atomic(kaddr);
pr_debug("set file bit %lu page %lu\n", bit, page->index);
/* record page number so it gets flushed to disk when unplug occurs */
set_page_attr(bitmap, page->index - node_offset, BITMAP_PAGE_DIRTY);
}
static void md_bitmap_file_clear_bit(struct bitmap *bitmap, sector_t block)
{
unsigned long bit;
struct page *page;
void *paddr;
unsigned long chunk = block >> bitmap->counts.chunkshift;
struct bitmap_storage *store = &bitmap->storage;
unsigned long node_offset = 0;
if (mddev_is_clustered(bitmap->mddev))
node_offset = bitmap->cluster_slot * store->file_pages;
page = filemap_get_page(&bitmap->storage, chunk);
if (!page)
return;
bit = file_page_offset(&bitmap->storage, chunk);
paddr = kmap_atomic(page);
if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags))
clear_bit(bit, paddr);
else
clear_bit_le(bit, paddr);
kunmap_atomic(paddr);
if (!test_page_attr(bitmap, page->index - node_offset, BITMAP_PAGE_NEEDWRITE)) {
set_page_attr(bitmap, page->index - node_offset, BITMAP_PAGE_PENDING);
bitmap->allclean = 0;
}
}
static int md_bitmap_file_test_bit(struct bitmap *bitmap, sector_t block)
{
unsigned long bit;
struct page *page;
void *paddr;
unsigned long chunk = block >> bitmap->counts.chunkshift;
int set = 0;
page = filemap_get_page(&bitmap->storage, chunk);
if (!page)
return -EINVAL;
bit = file_page_offset(&bitmap->storage, chunk);
paddr = kmap_atomic(page);
if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags))
set = test_bit(bit, paddr);
else
set = test_bit_le(bit, paddr);
kunmap_atomic(paddr);
return set;
}
/* this gets called when the md device is ready to unplug its underlying
* (slave) device queues -- before we let any writes go down, we need to
* sync the dirty pages of the bitmap file to disk */
void md_bitmap_unplug(struct bitmap *bitmap)
{
unsigned long i;
int dirty, need_write;
int writing = 0;
if (!bitmap || !bitmap->storage.filemap ||
test_bit(BITMAP_STALE, &bitmap->flags))
return;
/* look at each page to see if there are any set bits that need to be
* flushed out to disk */
for (i = 0; i < bitmap->storage.file_pages; i++) {
dirty = test_and_clear_page_attr(bitmap, i, BITMAP_PAGE_DIRTY);
need_write = test_and_clear_page_attr(bitmap, i,
BITMAP_PAGE_NEEDWRITE);
if (dirty || need_write) {
if (!writing) {
md_bitmap_wait_writes(bitmap);
if (bitmap->mddev->queue)
blk_add_trace_msg(bitmap->mddev->queue,
"md bitmap_unplug");
}
clear_page_attr(bitmap, i, BITMAP_PAGE_PENDING);
write_page(bitmap, bitmap->storage.filemap[i], 0);
writing = 1;
}
}
if (writing)
md_bitmap_wait_writes(bitmap);
if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags))
md_bitmap_file_kick(bitmap);
}
EXPORT_SYMBOL(md_bitmap_unplug);
static void md_bitmap_set_memory_bits(struct bitmap *bitmap, sector_t offset, int needed);
/* * bitmap_init_from_disk -- called at bitmap_create time to initialize
* the in-memory bitmap from the on-disk bitmap -- also, sets up the
* memory mapping of the bitmap file
* Special cases:
* if there's no bitmap file, or if the bitmap file had been
* previously kicked from the array, we mark all the bits as
* 1's in order to cause a full resync.
*
* We ignore all bits for sectors that end earlier than 'start'.
* This is used when reading an out-of-date bitmap...
*/
static int md_bitmap_init_from_disk(struct bitmap *bitmap, sector_t start)
{
unsigned long i, chunks, index, oldindex, bit, node_offset = 0;
struct page *page = NULL;
unsigned long bit_cnt = 0;
struct file *file;
unsigned long offset;
int outofdate;
int ret = -ENOSPC;
void *paddr;
struct bitmap_storage *store = &bitmap->storage;
chunks = bitmap->counts.chunks;
file = store->file;
if (!file && !bitmap->mddev->bitmap_info.offset) {
/* No permanent bitmap - fill with '1s'. */
store->filemap = NULL;
store->file_pages = 0;
for (i = 0; i < chunks ; i++) {
/* if the disk bit is set, set the memory bit */
int needed = ((sector_t)(i+1) << (bitmap->counts.chunkshift)
>= start);
md_bitmap_set_memory_bits(bitmap,
(sector_t)i << bitmap->counts.chunkshift,
needed);
}
return 0;
}
outofdate = test_bit(BITMAP_STALE, &bitmap->flags);
if (outofdate)
pr_warn("%s: bitmap file is out of date, doing full recovery\n", bmname(bitmap));
if (file && i_size_read(file->f_mapping->host) < store->bytes) {
pr_warn("%s: bitmap file too short %lu < %lu\n",
bmname(bitmap),
(unsigned long) i_size_read(file->f_mapping->host),
store->bytes);
goto err;
}
oldindex = ~0L;
offset = 0;
if (!bitmap->mddev->bitmap_info.external)
offset = sizeof(bitmap_super_t);
if (mddev_is_clustered(bitmap->mddev))
node_offset = bitmap->cluster_slot * (DIV_ROUND_UP(store->bytes, PAGE_SIZE));
for (i = 0; i < chunks; i++) {
int b;
index = file_page_index(&bitmap->storage, i);
bit = file_page_offset(&bitmap->storage, i);
if (index != oldindex) { /* this is a new page, read it in */
int count;
/* unmap the old page, we're done with it */
if (index == store->file_pages-1)
count = store->bytes - index * PAGE_SIZE;
else
count = PAGE_SIZE;
page = store->filemap[index];
if (file)
ret = read_page(file, index, bitmap,
count, page);
else
ret = read_sb_page(
bitmap->mddev,
bitmap->mddev->bitmap_info.offset,
page,
index + node_offset, count);
if (ret)
goto err;
oldindex = index;
if (outofdate) {
/*
* if bitmap is out of date, dirty the
* whole page and write it out
*/
paddr = kmap_atomic(page);
memset(paddr + offset, 0xff,
PAGE_SIZE - offset);
kunmap_atomic(paddr);
write_page(bitmap, page, 1);
ret = -EIO;
if (test_bit(BITMAP_WRITE_ERROR,
&bitmap->flags))
goto err;
}
}
paddr = kmap_atomic(page);
if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags))
b = test_bit(bit, paddr);
else
b = test_bit_le(bit, paddr);
kunmap_atomic(paddr);
if (b) {
/* if the disk bit is set, set the memory bit */
int needed = ((sector_t)(i+1) << bitmap->counts.chunkshift
>= start);
md_bitmap_set_memory_bits(bitmap,
(sector_t)i << bitmap->counts.chunkshift,
needed);
bit_cnt++;
}
offset = 0;
}
pr_debug("%s: bitmap initialized from disk: read %lu pages, set %lu of %lu bits\n",
bmname(bitmap), store->file_pages,
bit_cnt, chunks);
return 0;
err:
pr_warn("%s: bitmap initialisation failed: %d\n",
bmname(bitmap), ret);
return ret;
}
void md_bitmap_write_all(struct bitmap *bitmap)
{
/* We don't actually write all bitmap blocks here,
* just flag them as needing to be written
*/
int i;
if (!bitmap || !bitmap->storage.filemap)
return;
if (bitmap->storage.file)
/* Only one copy, so nothing needed */
return;
for (i = 0; i < bitmap->storage.file_pages; i++)
set_page_attr(bitmap, i,
BITMAP_PAGE_NEEDWRITE);
bitmap->allclean = 0;
}
static void md_bitmap_count_page(struct bitmap_counts *bitmap,
sector_t offset, int inc)
{
sector_t chunk = offset >> bitmap->chunkshift;
unsigned long page = chunk >> PAGE_COUNTER_SHIFT;
bitmap->bp[page].count += inc;
md_bitmap_checkfree(bitmap, page);
}
static void md_bitmap_set_pending(struct bitmap_counts *bitmap, sector_t offset)
{
sector_t chunk = offset >> bitmap->chunkshift;
unsigned long page = chunk >> PAGE_COUNTER_SHIFT;
struct bitmap_page *bp = &bitmap->bp[page];
if (!bp->pending)
bp->pending = 1;
}
static bitmap_counter_t *md_bitmap_get_counter(struct bitmap_counts *bitmap,
sector_t offset, sector_t *blocks,
int create);
/*
* bitmap daemon -- periodically wakes up to clean bits and flush pages
* out to disk
*/
void md_bitmap_daemon_work(struct mddev *mddev)
{
struct bitmap *bitmap;
unsigned long j;
unsigned long nextpage;
sector_t blocks;
struct bitmap_counts *counts;
/* Use a mutex to guard daemon_work against
* bitmap_destroy.
*/
mutex_lock(&mddev->bitmap_info.mutex);
bitmap = mddev->bitmap;
if (bitmap == NULL) {
mutex_unlock(&mddev->bitmap_info.mutex);
return;
}
if (time_before(jiffies, bitmap->daemon_lastrun
+ mddev->bitmap_info.daemon_sleep))
goto done;
bitmap->daemon_lastrun = jiffies;
if (bitmap->allclean) {
mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
goto done;
}
bitmap->allclean = 1;
if (bitmap->mddev->queue)
blk_add_trace_msg(bitmap->mddev->queue,
"md bitmap_daemon_work");
/* Any file-page which is PENDING now needs to be written.
* So set NEEDWRITE now, then after we make any last-minute changes
* we will write it.
*/
for (j = 0; j < bitmap->storage.file_pages; j++)
if (test_and_clear_page_attr(bitmap, j,
BITMAP_PAGE_PENDING))
set_page_attr(bitmap, j,
BITMAP_PAGE_NEEDWRITE);
if (bitmap->need_sync &&
mddev->bitmap_info.external == 0) {
/* Arrange for superblock update as well as
* other changes */
bitmap_super_t *sb;
bitmap->need_sync = 0;
if (bitmap->storage.filemap) {
sb = kmap_atomic(bitmap->storage.sb_page);
sb->events_cleared =
cpu_to_le64(bitmap->events_cleared);
kunmap_atomic(sb);
set_page_attr(bitmap, 0,
BITMAP_PAGE_NEEDWRITE);
}
}
/* Now look at the bitmap counters and if any are '2' or '1',
* decrement and handle accordingly.
*/
counts = &bitmap->counts;
spin_lock_irq(&counts->lock);
nextpage = 0;
for (j = 0; j < counts->chunks; j++) {
bitmap_counter_t *bmc;
sector_t block = (sector_t)j << counts->chunkshift;
if (j == nextpage) {
nextpage += PAGE_COUNTER_RATIO;
if (!counts->bp[j >> PAGE_COUNTER_SHIFT].pending) {
j |= PAGE_COUNTER_MASK;
continue;
}
counts->bp[j >> PAGE_COUNTER_SHIFT].pending = 0;
}
bmc = md_bitmap_get_counter(counts, block, &blocks, 0);
if (!bmc) {
j |= PAGE_COUNTER_MASK;
continue;
}
if (*bmc == 1 && !bitmap->need_sync) {
/* We can clear the bit */
*bmc = 0;
md_bitmap_count_page(counts, block, -1);
md_bitmap_file_clear_bit(bitmap, block);
} else if (*bmc && *bmc <= 2) {
*bmc = 1;
md_bitmap_set_pending(counts, block);
bitmap->allclean = 0;
}
}
spin_unlock_irq(&counts->lock);
md_bitmap_wait_writes(bitmap);
/* Now start writeout on any page in NEEDWRITE that isn't DIRTY.
* DIRTY pages need to be written by bitmap_unplug so it can wait
* for them.
* If we find any DIRTY page we stop there and let bitmap_unplug
* handle all the rest. This is important in the case where
* the first blocking holds the superblock and it has been updated.
* We mustn't write any other blocks before the superblock.
*/
for (j = 0;
j < bitmap->storage.file_pages
&& !test_bit(BITMAP_STALE, &bitmap->flags);
j++) {
if (test_page_attr(bitmap, j,
BITMAP_PAGE_DIRTY))
/* bitmap_unplug will handle the rest */
break;
if (bitmap->storage.filemap &&
test_and_clear_page_attr(bitmap, j,
BITMAP_PAGE_NEEDWRITE)) {
write_page(bitmap, bitmap->storage.filemap[j], 0);
}
}
done:
if (bitmap->allclean == 0)
mddev->thread->timeout =
mddev->bitmap_info.daemon_sleep;
mutex_unlock(&mddev->bitmap_info.mutex);
}
static bitmap_counter_t *md_bitmap_get_counter(struct bitmap_counts *bitmap,
sector_t offset, sector_t *blocks,
int create)
__releases(bitmap->lock)
__acquires(bitmap->lock)
{
/* If 'create', we might release the lock and reclaim it.
* The lock must have been taken with interrupts enabled.
* If !create, we don't release the lock.
*/
sector_t chunk = offset >> bitmap->chunkshift;
unsigned long page = chunk >> PAGE_COUNTER_SHIFT;
unsigned long pageoff = (chunk & PAGE_COUNTER_MASK) << COUNTER_BYTE_SHIFT;
sector_t csize;
int err;
err = md_bitmap_checkpage(bitmap, page, create, 0);
if (bitmap->bp[page].hijacked ||
bitmap->bp[page].map == NULL)
csize = ((sector_t)1) << (bitmap->chunkshift +
PAGE_COUNTER_SHIFT - 1);
else
csize = ((sector_t)1) << bitmap->chunkshift;
*blocks = csize - (offset & (csize - 1));
if (err < 0)
return NULL;
/* now locked ... */
if (bitmap->bp[page].hijacked) { /* hijacked pointer */
/* should we use the first or second counter field
* of the hijacked pointer? */
int hi = (pageoff > PAGE_COUNTER_MASK);
return &((bitmap_counter_t *)
&bitmap->bp[page].map)[hi];
} else /* page is allocated */
return (bitmap_counter_t *)
&(bitmap->bp[page].map[pageoff]);
}
int md_bitmap_startwrite(struct bitmap *bitmap, sector_t offset, unsigned long sectors, int behind)
{
if (!bitmap)
return 0;
if (behind) {
int bw;
atomic_inc(&bitmap->behind_writes);
bw = atomic_read(&bitmap->behind_writes);
if (bw > bitmap->behind_writes_used)
bitmap->behind_writes_used = bw;
pr_debug("inc write-behind count %d/%lu\n",
bw, bitmap->mddev->bitmap_info.max_write_behind);
}
while (sectors) {
sector_t blocks;
bitmap_counter_t *bmc;
spin_lock_irq(&bitmap->counts.lock);
bmc = md_bitmap_get_counter(&bitmap->counts, offset, &blocks, 1);
if (!bmc) {
spin_unlock_irq(&bitmap->counts.lock);
return 0;
}
if (unlikely(COUNTER(*bmc) == COUNTER_MAX)) {
DEFINE_WAIT(__wait);
/* note that it is safe to do the prepare_to_wait
* after the test as long as we do it before dropping
* the spinlock.
*/
prepare_to_wait(&bitmap->overflow_wait, &__wait,
TASK_UNINTERRUPTIBLE);
spin_unlock_irq(&bitmap->counts.lock);
schedule();
finish_wait(&bitmap->overflow_wait, &__wait);
continue;
}
switch (*bmc) {
case 0:
md_bitmap_file_set_bit(bitmap, offset);
md_bitmap_count_page(&bitmap->counts, offset, 1);
fallthrough;
case 1:
*bmc = 2;
}
(*bmc)++;
spin_unlock_irq(&bitmap->counts.lock);
offset += blocks;
if (sectors > blocks)
sectors -= blocks;
else
sectors = 0;
}
return 0;
}
EXPORT_SYMBOL(md_bitmap_startwrite);
void md_bitmap_endwrite(struct bitmap *bitmap, sector_t offset,
unsigned long sectors, int success, int behind)
{
if (!bitmap)
return;
if (behind) {
if (atomic_dec_and_test(&bitmap->behind_writes))
wake_up(&bitmap->behind_wait);
pr_debug("dec write-behind count %d/%lu\n",
atomic_read(&bitmap->behind_writes),
bitmap->mddev->bitmap_info.max_write_behind);
}
while (sectors) {
sector_t blocks;
unsigned long flags;
bitmap_counter_t *bmc;
spin_lock_irqsave(&bitmap->counts.lock, flags);
bmc = md_bitmap_get_counter(&bitmap->counts, offset, &blocks, 0);
if (!bmc) {
spin_unlock_irqrestore(&bitmap->counts.lock, flags);
return;
}
if (success && !bitmap->mddev->degraded &&
bitmap->events_cleared < bitmap->mddev->events) {
bitmap->events_cleared = bitmap->mddev->events;
bitmap->need_sync = 1;
sysfs_notify_dirent_safe(bitmap->sysfs_can_clear);
}
if (!success && !NEEDED(*bmc))
*bmc |= NEEDED_MASK;
if (COUNTER(*bmc) == COUNTER_MAX)
wake_up(&bitmap->overflow_wait);
(*bmc)--;
if (*bmc <= 2) {
md_bitmap_set_pending(&bitmap->counts, offset);
bitmap->allclean = 0;
}
spin_unlock_irqrestore(&bitmap->counts.lock, flags);
offset += blocks;
if (sectors > blocks)
sectors -= blocks;
else
sectors = 0;
}
}
EXPORT_SYMBOL(md_bitmap_endwrite);
static int __bitmap_start_sync(struct bitmap *bitmap, sector_t offset, sector_t *blocks,
int degraded)
{
bitmap_counter_t *bmc;
int rv;
if (bitmap == NULL) {/* FIXME or bitmap set as 'failed' */
*blocks = 1024;
return 1; /* always resync if no bitmap */
}
spin_lock_irq(&bitmap->counts.lock);
bmc = md_bitmap_get_counter(&bitmap->counts, offset, blocks, 0);
rv = 0;
if (bmc) {
/* locked */
if (RESYNC(*bmc))
rv = 1;
else if (NEEDED(*bmc)) {
rv = 1;
if (!degraded) { /* don't set/clear bits if degraded */
*bmc |= RESYNC_MASK;
*bmc &= ~NEEDED_MASK;
}
}
}
spin_unlock_irq(&bitmap->counts.lock);
return rv;
}
int md_bitmap_start_sync(struct bitmap *bitmap, sector_t offset, sector_t *blocks,
int degraded)
{
/* bitmap_start_sync must always report on multiples of whole
* pages, otherwise resync (which is very PAGE_SIZE based) will
* get confused.
* So call __bitmap_start_sync repeatedly (if needed) until
* At least PAGE_SIZE>>9 blocks are covered.
* Return the 'or' of the result.
*/
int rv = 0;
sector_t blocks1;
*blocks = 0;
while (*blocks < (PAGE_SIZE>>9)) {
rv |= __bitmap_start_sync(bitmap, offset,
&blocks1, degraded);
offset += blocks1;
*blocks += blocks1;
}
return rv;
}
EXPORT_SYMBOL(md_bitmap_start_sync);
void md_bitmap_end_sync(struct bitmap *bitmap, sector_t offset, sector_t *blocks, int aborted)
{
bitmap_counter_t *bmc;
unsigned long flags;
if (bitmap == NULL) {
*blocks = 1024;
return;
}
spin_lock_irqsave(&bitmap->counts.lock, flags);
bmc = md_bitmap_get_counter(&bitmap->counts, offset, blocks, 0);
if (bmc == NULL)
goto unlock;
/* locked */
if (RESYNC(*bmc)) {
*bmc &= ~RESYNC_MASK;
if (!NEEDED(*bmc) && aborted)
*bmc |= NEEDED_MASK;
else {
if (*bmc <= 2) {
md_bitmap_set_pending(&bitmap->counts, offset);
bitmap->allclean = 0;
}
}
}
unlock:
spin_unlock_irqrestore(&bitmap->counts.lock, flags);
}
EXPORT_SYMBOL(md_bitmap_end_sync);
void md_bitmap_close_sync(struct bitmap *bitmap)
{
/* Sync has finished, and any bitmap chunks that weren't synced
* properly have been aborted. It remains to us to clear the
* RESYNC bit wherever it is still on
*/
sector_t sector = 0;
sector_t blocks;
if (!bitmap)
return;
while (sector < bitmap->mddev->resync_max_sectors) {
md_bitmap_end_sync(bitmap, sector, &blocks, 0);
sector += blocks;
}
}
EXPORT_SYMBOL(md_bitmap_close_sync);
void md_bitmap_cond_end_sync(struct bitmap *bitmap, sector_t sector, bool force)
{
sector_t s = 0;
sector_t blocks;
if (!bitmap)
return;
if (sector == 0) {
bitmap->last_end_sync = jiffies;
return;
}
if (!force && time_before(jiffies, (bitmap->last_end_sync
+ bitmap->mddev->bitmap_info.daemon_sleep)))
return;
wait_event(bitmap->mddev->recovery_wait,
atomic_read(&bitmap->mddev->recovery_active) == 0);
bitmap->mddev->curr_resync_completed = sector;
set_bit(MD_SB_CHANGE_CLEAN, &bitmap->mddev->sb_flags);
sector &= ~((1ULL << bitmap->counts.chunkshift) - 1);
s = 0;
while (s < sector && s < bitmap->mddev->resync_max_sectors) {
md_bitmap_end_sync(bitmap, s, &blocks, 0);
s += blocks;
}
bitmap->last_end_sync = jiffies;
sysfs_notify_dirent_safe(bitmap->mddev->sysfs_completed);
}
EXPORT_SYMBOL(md_bitmap_cond_end_sync);
void md_bitmap_sync_with_cluster(struct mddev *mddev,
sector_t old_lo, sector_t old_hi,
sector_t new_lo, sector_t new_hi)
{
struct bitmap *bitmap = mddev->bitmap;
sector_t sector, blocks = 0;
for (sector = old_lo; sector < new_lo; ) {
md_bitmap_end_sync(bitmap, sector, &blocks, 0);
sector += blocks;
}
WARN((blocks > new_lo) && old_lo, "alignment is not correct for lo\n");
for (sector = old_hi; sector < new_hi; ) {
md_bitmap_start_sync(bitmap, sector, &blocks, 0);
sector += blocks;
}
WARN((blocks > new_hi) && old_hi, "alignment is not correct for hi\n");
}
EXPORT_SYMBOL(md_bitmap_sync_with_cluster);
static void md_bitmap_set_memory_bits(struct bitmap *bitmap, sector_t offset, int needed)
{
/* For each chunk covered by any of these sectors, set the
* counter to 2 and possibly set resync_needed. They should all
* be 0 at this point
*/
sector_t secs;
bitmap_counter_t *bmc;
spin_lock_irq(&bitmap->counts.lock);
bmc = md_bitmap_get_counter(&bitmap->counts, offset, &secs, 1);
if (!bmc) {
spin_unlock_irq(&bitmap->counts.lock);
return;
}
if (!*bmc) {
*bmc = 2;
md_bitmap_count_page(&bitmap->counts, offset, 1);
md_bitmap_set_pending(&bitmap->counts, offset);
bitmap->allclean = 0;
}
if (needed)
*bmc |= NEEDED_MASK;
spin_unlock_irq(&bitmap->counts.lock);
}
/* dirty the memory and file bits for bitmap chunks "s" to "e" */
void md_bitmap_dirty_bits(struct bitmap *bitmap, unsigned long s, unsigned long e)
{
unsigned long chunk;
for (chunk = s; chunk <= e; chunk++) {
sector_t sec = (sector_t)chunk << bitmap->counts.chunkshift;
md_bitmap_set_memory_bits(bitmap, sec, 1);
md_bitmap_file_set_bit(bitmap, sec);
if (sec < bitmap->mddev->recovery_cp)
/* We are asserting that the array is dirty,
* so move the recovery_cp address back so
* that it is obvious that it is dirty
*/
bitmap->mddev->recovery_cp = sec;
}
}
/*
* flush out any pending updates
*/
void md_bitmap_flush(struct mddev *mddev)
{
struct bitmap *bitmap = mddev->bitmap;
long sleep;
if (!bitmap) /* there was no bitmap */
return;
/* run the daemon_work three time to ensure everything is flushed
* that can be
*/
sleep = mddev->bitmap_info.daemon_sleep * 2;
bitmap->daemon_lastrun -= sleep;
md_bitmap_daemon_work(mddev);
bitmap->daemon_lastrun -= sleep;
md_bitmap_daemon_work(mddev);
bitmap->daemon_lastrun -= sleep;
md_bitmap_daemon_work(mddev);
md_bitmap_update_sb(bitmap);
}
/*
* free memory that was allocated
*/
void md_bitmap_free(struct bitmap *bitmap)
{
unsigned long k, pages;
struct bitmap_page *bp;
if (!bitmap) /* there was no bitmap */
return;
if (bitmap->sysfs_can_clear)
sysfs_put(bitmap->sysfs_can_clear);
if (mddev_is_clustered(bitmap->mddev) && bitmap->mddev->cluster_info &&
bitmap->cluster_slot == md_cluster_ops->slot_number(bitmap->mddev))
md_cluster_stop(bitmap->mddev);
/* Shouldn't be needed - but just in case.... */
wait_event(bitmap->write_wait,
atomic_read(&bitmap->pending_writes) == 0);
/* release the bitmap file */
md_bitmap_file_unmap(&bitmap->storage);
bp = bitmap->counts.bp;
pages = bitmap->counts.pages;
/* free all allocated memory */
if (bp) /* deallocate the page memory */
for (k = 0; k < pages; k++)
if (bp[k].map && !bp[k].hijacked)
kfree(bp[k].map);
kfree(bp);
kfree(bitmap);
}
EXPORT_SYMBOL(md_bitmap_free);
void md_bitmap_wait_behind_writes(struct mddev *mddev)
{
struct bitmap *bitmap = mddev->bitmap;
/* wait for behind writes to complete */
if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
pr_debug("md:%s: behind writes in progress - waiting to stop.\n",
mdname(mddev));
/* need to kick something here to make sure I/O goes? */
wait_event(bitmap->behind_wait,
atomic_read(&bitmap->behind_writes) == 0);
}
}
void md_bitmap_destroy(struct mddev *mddev)
{
struct bitmap *bitmap = mddev->bitmap;
if (!bitmap) /* there was no bitmap */
return;
md_bitmap_wait_behind_writes(mddev);
if (!mddev->serialize_policy)
mddev_destroy_serial_pool(mddev, NULL, true);
mutex_lock(&mddev->bitmap_info.mutex);
spin_lock(&mddev->lock);
mddev->bitmap = NULL; /* disconnect from the md device */
spin_unlock(&mddev->lock);
mutex_unlock(&mddev->bitmap_info.mutex);
if (mddev->thread)
mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
md_bitmap_free(bitmap);
}
/*
* initialize the bitmap structure
* if this returns an error, bitmap_destroy must be called to do clean up
* once mddev->bitmap is set
*/
struct bitmap *md_bitmap_create(struct mddev *mddev, int slot)
{
struct bitmap *bitmap;
sector_t blocks = mddev->resync_max_sectors;
struct file *file = mddev->bitmap_info.file;
int err;
struct kernfs_node *bm = NULL;
BUILD_BUG_ON(sizeof(bitmap_super_t) != 256);
BUG_ON(file && mddev->bitmap_info.offset);
if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
pr_notice("md/raid:%s: array with journal cannot have bitmap\n",
mdname(mddev));
return ERR_PTR(-EBUSY);
}
bitmap = kzalloc(sizeof(*bitmap), GFP_KERNEL);
if (!bitmap)
return ERR_PTR(-ENOMEM);
spin_lock_init(&bitmap->counts.lock);
atomic_set(&bitmap->pending_writes, 0);
init_waitqueue_head(&bitmap->write_wait);
init_waitqueue_head(&bitmap->overflow_wait);
init_waitqueue_head(&bitmap->behind_wait);
bitmap->mddev = mddev;
bitmap->cluster_slot = slot;
if (mddev->kobj.sd)
bm = sysfs_get_dirent(mddev->kobj.sd, "bitmap");
if (bm) {
bitmap->sysfs_can_clear = sysfs_get_dirent(bm, "can_clear");
sysfs_put(bm);
} else
bitmap->sysfs_can_clear = NULL;
bitmap->storage.file = file;
if (file) {
get_file(file);
/* As future accesses to this file will use bmap,
* and bypass the page cache, we must sync the file
* first.
*/
vfs_fsync(file, 1);
}
/* read superblock from bitmap file (this sets mddev->bitmap_info.chunksize) */
if (!mddev->bitmap_info.external) {
/*
* If 'MD_ARRAY_FIRST_USE' is set, then device-mapper is
* instructing us to create a new on-disk bitmap instance.
*/
if (test_and_clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags))
err = md_bitmap_new_disk_sb(bitmap);
else
err = md_bitmap_read_sb(bitmap);
} else {
err = 0;
if (mddev->bitmap_info.chunksize == 0 ||
mddev->bitmap_info.daemon_sleep == 0)
/* chunksize and time_base need to be
* set first. */
err = -EINVAL;
}
if (err)
goto error;
bitmap->daemon_lastrun = jiffies;
err = md_bitmap_resize(bitmap, blocks, mddev->bitmap_info.chunksize, 1);
if (err)
goto error;
pr_debug("created bitmap (%lu pages) for device %s\n",
bitmap->counts.pages, bmname(bitmap));
err = test_bit(BITMAP_WRITE_ERROR, &bitmap->flags) ? -EIO : 0;
if (err)
goto error;
return bitmap;
error:
md_bitmap_free(bitmap);
return ERR_PTR(err);
}
int md_bitmap_load(struct mddev *mddev)
{
int err = 0;
sector_t start = 0;
sector_t sector = 0;
struct bitmap *bitmap = mddev->bitmap;
struct md_rdev *rdev;
if (!bitmap)
goto out;
rdev_for_each(rdev, mddev)
mddev_create_serial_pool(mddev, rdev, true);
if (mddev_is_clustered(mddev))
md_cluster_ops->load_bitmaps(mddev, mddev->bitmap_info.nodes);
/* Clear out old bitmap info first: Either there is none, or we
* are resuming after someone else has possibly changed things,
* so we should forget old cached info.
* All chunks should be clean, but some might need_sync.
*/
while (sector < mddev->resync_max_sectors) {
sector_t blocks;
md_bitmap_start_sync(bitmap, sector, &blocks, 0);
sector += blocks;
}
md_bitmap_close_sync(bitmap);
if (mddev->degraded == 0
|| bitmap->events_cleared == mddev->events)
/* no need to keep dirty bits to optimise a
* re-add of a missing device */
start = mddev->recovery_cp;
mutex_lock(&mddev->bitmap_info.mutex);
err = md_bitmap_init_from_disk(bitmap, start);
mutex_unlock(&mddev->bitmap_info.mutex);
if (err)
goto out;
clear_bit(BITMAP_STALE, &bitmap->flags);
/* Kick recovery in case any bits were set */
set_bit(MD_RECOVERY_NEEDED, &bitmap->mddev->recovery);
mddev->thread->timeout = mddev->bitmap_info.daemon_sleep;
md_wakeup_thread(mddev->thread);
md_bitmap_update_sb(bitmap);
if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags))
err = -EIO;
out:
return err;
}
EXPORT_SYMBOL_GPL(md_bitmap_load);
struct bitmap *get_bitmap_from_slot(struct mddev *mddev, int slot)
{
int rv = 0;
struct bitmap *bitmap;
bitmap = md_bitmap_create(mddev, slot);
if (IS_ERR(bitmap)) {
rv = PTR_ERR(bitmap);
return ERR_PTR(rv);
}
rv = md_bitmap_init_from_disk(bitmap, 0);
if (rv) {
md_bitmap_free(bitmap);
return ERR_PTR(rv);
}
return bitmap;
}
EXPORT_SYMBOL(get_bitmap_from_slot);
/* Loads the bitmap associated with slot and copies the resync information
* to our bitmap
*/
int md_bitmap_copy_from_slot(struct mddev *mddev, int slot,
sector_t *low, sector_t *high, bool clear_bits)
{
int rv = 0, i, j;
sector_t block, lo = 0, hi = 0;
struct bitmap_counts *counts;
struct bitmap *bitmap;
bitmap = get_bitmap_from_slot(mddev, slot);
if (IS_ERR(bitmap)) {
pr_err("%s can't get bitmap from slot %d\n", __func__, slot);
return -1;
}
counts = &bitmap->counts;
for (j = 0; j < counts->chunks; j++) {
block = (sector_t)j << counts->chunkshift;
if (md_bitmap_file_test_bit(bitmap, block)) {
if (!lo)
lo = block;
hi = block;
md_bitmap_file_clear_bit(bitmap, block);
md_bitmap_set_memory_bits(mddev->bitmap, block, 1);
md_bitmap_file_set_bit(mddev->bitmap, block);
}
}
if (clear_bits) {
md_bitmap_update_sb(bitmap);
/* BITMAP_PAGE_PENDING is set, but bitmap_unplug needs
* BITMAP_PAGE_DIRTY or _NEEDWRITE to write ... */
for (i = 0; i < bitmap->storage.file_pages; i++)
if (test_page_attr(bitmap, i, BITMAP_PAGE_PENDING))
set_page_attr(bitmap, i, BITMAP_PAGE_NEEDWRITE);
md_bitmap_unplug(bitmap);
}
md_bitmap_unplug(mddev->bitmap);
*low = lo;
*high = hi;
return rv;
}
EXPORT_SYMBOL_GPL(md_bitmap_copy_from_slot);
void md_bitmap_status(struct seq_file *seq, struct bitmap *bitmap)
{
unsigned long chunk_kb;
struct bitmap_counts *counts;
if (!bitmap)
return;
counts = &bitmap->counts;
chunk_kb = bitmap->mddev->bitmap_info.chunksize >> 10;
seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
"%lu%s chunk",
counts->pages - counts->missing_pages,
counts->pages,
(counts->pages - counts->missing_pages)
<< (PAGE_SHIFT - 10),
chunk_kb ? chunk_kb : bitmap->mddev->bitmap_info.chunksize,
chunk_kb ? "KB" : "B");
if (bitmap->storage.file) {
seq_printf(seq, ", file: ");
seq_file_path(seq, bitmap->storage.file, " \t\n");
}
seq_printf(seq, "\n");
}
int md_bitmap_resize(struct bitmap *bitmap, sector_t blocks,
int chunksize, int init)
{
/* If chunk_size is 0, choose an appropriate chunk size.
* Then possibly allocate new storage space.
* Then quiesce, copy bits, replace bitmap, and re-start
*
* This function is called both to set up the initial bitmap
* and to resize the bitmap while the array is active.
* If this happens as a result of the array being resized,
* chunksize will be zero, and we need to choose a suitable
* chunksize, otherwise we use what we are given.
*/
struct bitmap_storage store;
struct bitmap_counts old_counts;
unsigned long chunks;
sector_t block;
sector_t old_blocks, new_blocks;
int chunkshift;
int ret = 0;
long pages;
struct bitmap_page *new_bp;
if (bitmap->storage.file && !init) {
pr_info("md: cannot resize file-based bitmap\n");
return -EINVAL;
}
if (chunksize == 0) {
/* If there is enough space, leave the chunk size unchanged,
* else increase by factor of two until there is enough space.
*/
long bytes;
long space = bitmap->mddev->bitmap_info.space;
if (space == 0) {
/* We don't know how much space there is, so limit
* to current size - in sectors.
*/
bytes = DIV_ROUND_UP(bitmap->counts.chunks, 8);
if (!bitmap->mddev->bitmap_info.external)
bytes += sizeof(bitmap_super_t);
space = DIV_ROUND_UP(bytes, 512);
bitmap->mddev->bitmap_info.space = space;
}
chunkshift = bitmap->counts.chunkshift;
chunkshift--;
do {
/* 'chunkshift' is shift from block size to chunk size */
chunkshift++;
chunks = DIV_ROUND_UP_SECTOR_T(blocks, 1 << chunkshift);
bytes = DIV_ROUND_UP(chunks, 8);
if (!bitmap->mddev->bitmap_info.external)
bytes += sizeof(bitmap_super_t);
} while (bytes > (space << 9));
} else
chunkshift = ffz(~chunksize) - BITMAP_BLOCK_SHIFT;
chunks = DIV_ROUND_UP_SECTOR_T(blocks, 1 << chunkshift);
memset(&store, 0, sizeof(store));
if (bitmap->mddev->bitmap_info.offset || bitmap->mddev->bitmap_info.file)
ret = md_bitmap_storage_alloc(&store, chunks,
!bitmap->mddev->bitmap_info.external,
mddev_is_clustered(bitmap->mddev)
? bitmap->cluster_slot : 0);
if (ret) {
md_bitmap_file_unmap(&store);
goto err;
}
pages = DIV_ROUND_UP(chunks, PAGE_COUNTER_RATIO);
new_bp = kcalloc(pages, sizeof(*new_bp), GFP_KERNEL);
ret = -ENOMEM;
if (!new_bp) {
md_bitmap_file_unmap(&store);
goto err;
}
if (!init)
bitmap->mddev->pers->quiesce(bitmap->mddev, 1);
store.file = bitmap->storage.file;
bitmap->storage.file = NULL;
if (store.sb_page && bitmap->storage.sb_page)
memcpy(page_address(store.sb_page),
page_address(bitmap->storage.sb_page),
sizeof(bitmap_super_t));
spin_lock_irq(&bitmap->counts.lock);
md_bitmap_file_unmap(&bitmap->storage);
bitmap->storage = store;
old_counts = bitmap->counts;
bitmap->counts.bp = new_bp;
bitmap->counts.pages = pages;
bitmap->counts.missing_pages = pages;
bitmap->counts.chunkshift = chunkshift;
bitmap->counts.chunks = chunks;
bitmap->mddev->bitmap_info.chunksize = 1 << (chunkshift +
BITMAP_BLOCK_SHIFT);
blocks = min(old_counts.chunks << old_counts.chunkshift,
chunks << chunkshift);
/* For cluster raid, need to pre-allocate bitmap */
if (mddev_is_clustered(bitmap->mddev)) {
unsigned long page;
for (page = 0; page < pages; page++) {
ret = md_bitmap_checkpage(&bitmap->counts, page, 1, 1);
if (ret) {
unsigned long k;
/* deallocate the page memory */
for (k = 0; k < page; k++) {
kfree(new_bp[k].map);
}
kfree(new_bp);
/* restore some fields from old_counts */
bitmap->counts.bp = old_counts.bp;
bitmap->counts.pages = old_counts.pages;
bitmap->counts.missing_pages = old_counts.pages;
bitmap->counts.chunkshift = old_counts.chunkshift;
bitmap->counts.chunks = old_counts.chunks;
bitmap->mddev->bitmap_info.chunksize = 1 << (old_counts.chunkshift +
BITMAP_BLOCK_SHIFT);
blocks = old_counts.chunks << old_counts.chunkshift;
pr_warn("Could not pre-allocate in-memory bitmap for cluster raid\n");
break;
} else
bitmap->counts.bp[page].count += 1;
}
}
for (block = 0; block < blocks; ) {
bitmap_counter_t *bmc_old, *bmc_new;
int set;
bmc_old = md_bitmap_get_counter(&old_counts, block, &old_blocks, 0);
set = bmc_old && NEEDED(*bmc_old);
if (set) {
bmc_new = md_bitmap_get_counter(&bitmap->counts, block, &new_blocks, 1);
if (*bmc_new == 0) {
/* need to set on-disk bits too. */
sector_t end = block + new_blocks;
sector_t start = block >> chunkshift;
start <<= chunkshift;
while (start < end) {
md_bitmap_file_set_bit(bitmap, block);
start += 1 << chunkshift;
}
*bmc_new = 2;
md_bitmap_count_page(&bitmap->counts, block, 1);
md_bitmap_set_pending(&bitmap->counts, block);
}
*bmc_new |= NEEDED_MASK;
if (new_blocks < old_blocks)
old_blocks = new_blocks;
}
block += old_blocks;
}
if (bitmap->counts.bp != old_counts.bp) {
unsigned long k;
for (k = 0; k < old_counts.pages; k++)
if (!old_counts.bp[k].hijacked)
kfree(old_counts.bp[k].map);
kfree(old_counts.bp);
}
if (!init) {
int i;
while (block < (chunks << chunkshift)) {
bitmap_counter_t *bmc;
bmc = md_bitmap_get_counter(&bitmap->counts, block, &new_blocks, 1);
if (bmc) {
/* new space. It needs to be resynced, so
* we set NEEDED_MASK.
*/
if (*bmc == 0) {
*bmc = NEEDED_MASK | 2;
md_bitmap_count_page(&bitmap->counts, block, 1);
md_bitmap_set_pending(&bitmap->counts, block);
}
}
block += new_blocks;
}
for (i = 0; i < bitmap->storage.file_pages; i++)
set_page_attr(bitmap, i, BITMAP_PAGE_DIRTY);
}
spin_unlock_irq(&bitmap->counts.lock);
if (!init) {
md_bitmap_unplug(bitmap);
bitmap->mddev->pers->quiesce(bitmap->mddev, 0);
}
ret = 0;
err:
return ret;
}
EXPORT_SYMBOL_GPL(md_bitmap_resize);
static ssize_t
location_show(struct mddev *mddev, char *page)
{
ssize_t len;
if (mddev->bitmap_info.file)
len = sprintf(page, "file");
else if (mddev->bitmap_info.offset)
len = sprintf(page, "%+lld", (long long)mddev->bitmap_info.offset);
else
len = sprintf(page, "none");
len += sprintf(page+len, "\n");
return len;
}
static ssize_t
location_store(struct mddev *mddev, const char *buf, size_t len)
{
int rv;
rv = mddev_lock(mddev);
if (rv)
return rv;
if (mddev->pers) {
if (!mddev->pers->quiesce) {
rv = -EBUSY;
goto out;
}
if (mddev->recovery || mddev->sync_thread) {
rv = -EBUSY;
goto out;
}
}
if (mddev->bitmap || mddev->bitmap_info.file ||
mddev->bitmap_info.offset) {
/* bitmap already configured. Only option is to clear it */
if (strncmp(buf, "none", 4) != 0) {
rv = -EBUSY;
goto out;
}
if (mddev->pers) {
mddev_suspend(mddev);
md_bitmap_destroy(mddev);
mddev_resume(mddev);
}
mddev->bitmap_info.offset = 0;
if (mddev->bitmap_info.file) {
struct file *f = mddev->bitmap_info.file;
mddev->bitmap_info.file = NULL;
fput(f);
}
} else {
/* No bitmap, OK to set a location */
long long offset;
if (strncmp(buf, "none", 4) == 0)
/* nothing to be done */;
else if (strncmp(buf, "file:", 5) == 0) {
/* Not supported yet */
rv = -EINVAL;
goto out;
} else {
if (buf[0] == '+')
rv = kstrtoll(buf+1, 10, &offset);
else
rv = kstrtoll(buf, 10, &offset);
if (rv)
goto out;
if (offset == 0) {
rv = -EINVAL;
goto out;
}
if (mddev->bitmap_info.external == 0 &&
mddev->major_version == 0 &&
offset != mddev->bitmap_info.default_offset) {
rv = -EINVAL;
goto out;
}
mddev->bitmap_info.offset = offset;
if (mddev->pers) {
struct bitmap *bitmap;
bitmap = md_bitmap_create(mddev, -1);
mddev_suspend(mddev);
if (IS_ERR(bitmap))
rv = PTR_ERR(bitmap);
else {
mddev->bitmap = bitmap;
rv = md_bitmap_load(mddev);
if (rv)
mddev->bitmap_info.offset = 0;
}
if (rv) {
md_bitmap_destroy(mddev);
mddev_resume(mddev);
goto out;
}
mddev_resume(mddev);
}
}
}
if (!mddev->external) {
/* Ensure new bitmap info is stored in
* metadata promptly.
*/
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
md_wakeup_thread(mddev->thread);
}
rv = 0;
out:
mddev_unlock(mddev);
if (rv)
return rv;
return len;
}
static struct md_sysfs_entry bitmap_location =
__ATTR(location, S_IRUGO|S_IWUSR, location_show, location_store);
/* 'bitmap/space' is the space available at 'location' for the
* bitmap. This allows the kernel to know when it is safe to
* resize the bitmap to match a resized array.
*/
static ssize_t
space_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%lu\n", mddev->bitmap_info.space);
}
static ssize_t
space_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned long sectors;
int rv;
rv = kstrtoul(buf, 10, &sectors);
if (rv)
return rv;
if (sectors == 0)
return -EINVAL;
if (mddev->bitmap &&
sectors < (mddev->bitmap->storage.bytes + 511) >> 9)
return -EFBIG; /* Bitmap is too big for this small space */
/* could make sure it isn't too big, but that isn't really
* needed - user-space should be careful.
*/
mddev->bitmap_info.space = sectors;
return len;
}
static struct md_sysfs_entry bitmap_space =
__ATTR(space, S_IRUGO|S_IWUSR, space_show, space_store);
static ssize_t
timeout_show(struct mddev *mddev, char *page)
{
ssize_t len;
unsigned long secs = mddev->bitmap_info.daemon_sleep / HZ;
unsigned long jifs = mddev->bitmap_info.daemon_sleep % HZ;
len = sprintf(page, "%lu", secs);
if (jifs)
len += sprintf(page+len, ".%03u", jiffies_to_msecs(jifs));
len += sprintf(page+len, "\n");
return len;
}
static ssize_t
timeout_store(struct mddev *mddev, const char *buf, size_t len)
{
/* timeout can be set at any time */
unsigned long timeout;
int rv = strict_strtoul_scaled(buf, &timeout, 4);
if (rv)
return rv;
/* just to make sure we don't overflow... */
if (timeout >= LONG_MAX / HZ)
return -EINVAL;
timeout = timeout * HZ / 10000;
if (timeout >= MAX_SCHEDULE_TIMEOUT)
timeout = MAX_SCHEDULE_TIMEOUT-1;
if (timeout < 1)
timeout = 1;
mddev->bitmap_info.daemon_sleep = timeout;
if (mddev->thread) {
/* if thread->timeout is MAX_SCHEDULE_TIMEOUT, then
* the bitmap is all clean and we don't need to
* adjust the timeout right now
*/
if (mddev->thread->timeout < MAX_SCHEDULE_TIMEOUT) {
mddev->thread->timeout = timeout;
md_wakeup_thread(mddev->thread);
}
}
return len;
}
static struct md_sysfs_entry bitmap_timeout =
__ATTR(time_base, S_IRUGO|S_IWUSR, timeout_show, timeout_store);
static ssize_t
backlog_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%lu\n", mddev->bitmap_info.max_write_behind);
}
static ssize_t
backlog_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned long backlog;
unsigned long old_mwb = mddev->bitmap_info.max_write_behind;
int rv = kstrtoul(buf, 10, &backlog);
if (rv)
return rv;
if (backlog > COUNTER_MAX)
return -EINVAL;
mddev->bitmap_info.max_write_behind = backlog;
if (!backlog && mddev->serial_info_pool) {
/* serial_info_pool is not needed if backlog is zero */
if (!mddev->serialize_policy)
mddev_destroy_serial_pool(mddev, NULL, false);
} else if (backlog && !mddev->serial_info_pool) {
/* serial_info_pool is needed since backlog is not zero */
struct md_rdev *rdev;
rdev_for_each(rdev, mddev)
mddev_create_serial_pool(mddev, rdev, false);
}
if (old_mwb != backlog)
md_bitmap_update_sb(mddev->bitmap);
return len;
}
static struct md_sysfs_entry bitmap_backlog =
__ATTR(backlog, S_IRUGO|S_IWUSR, backlog_show, backlog_store);
static ssize_t
chunksize_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%lu\n", mddev->bitmap_info.chunksize);
}
static ssize_t
chunksize_store(struct mddev *mddev, const char *buf, size_t len)
{
/* Can only be changed when no bitmap is active */
int rv;
unsigned long csize;
if (mddev->bitmap)
return -EBUSY;
rv = kstrtoul(buf, 10, &csize);
if (rv)
return rv;
if (csize < 512 ||
!is_power_of_2(csize))
return -EINVAL;
mddev->bitmap_info.chunksize = csize;
return len;
}
static struct md_sysfs_entry bitmap_chunksize =
__ATTR(chunksize, S_IRUGO|S_IWUSR, chunksize_show, chunksize_store);
static ssize_t metadata_show(struct mddev *mddev, char *page)
{
if (mddev_is_clustered(mddev))
return sprintf(page, "clustered\n");
return sprintf(page, "%s\n", (mddev->bitmap_info.external
? "external" : "internal"));
}
static ssize_t metadata_store(struct mddev *mddev, const char *buf, size_t len)
{
if (mddev->bitmap ||
mddev->bitmap_info.file ||
mddev->bitmap_info.offset)
return -EBUSY;
if (strncmp(buf, "external", 8) == 0)
mddev->bitmap_info.external = 1;
else if ((strncmp(buf, "internal", 8) == 0) ||
(strncmp(buf, "clustered", 9) == 0))
mddev->bitmap_info.external = 0;
else
return -EINVAL;
return len;
}
static struct md_sysfs_entry bitmap_metadata =
__ATTR(metadata, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
static ssize_t can_clear_show(struct mddev *mddev, char *page)
{
int len;
spin_lock(&mddev->lock);
if (mddev->bitmap)
len = sprintf(page, "%s\n", (mddev->bitmap->need_sync ?
"false" : "true"));
else
len = sprintf(page, "\n");
spin_unlock(&mddev->lock);
return len;
}
static ssize_t can_clear_store(struct mddev *mddev, const char *buf, size_t len)
{
if (mddev->bitmap == NULL)
return -ENOENT;
if (strncmp(buf, "false", 5) == 0)
mddev->bitmap->need_sync = 1;
else if (strncmp(buf, "true", 4) == 0) {
if (mddev->degraded)
return -EBUSY;
mddev->bitmap->need_sync = 0;
} else
return -EINVAL;
return len;
}
static struct md_sysfs_entry bitmap_can_clear =
__ATTR(can_clear, S_IRUGO|S_IWUSR, can_clear_show, can_clear_store);
static ssize_t
behind_writes_used_show(struct mddev *mddev, char *page)
{
ssize_t ret;
spin_lock(&mddev->lock);
if (mddev->bitmap == NULL)
ret = sprintf(page, "0\n");
else
ret = sprintf(page, "%lu\n",
mddev->bitmap->behind_writes_used);
spin_unlock(&mddev->lock);
return ret;
}
static ssize_t
behind_writes_used_reset(struct mddev *mddev, const char *buf, size_t len)
{
if (mddev->bitmap)
mddev->bitmap->behind_writes_used = 0;
return len;
}
static struct md_sysfs_entry max_backlog_used =
__ATTR(max_backlog_used, S_IRUGO | S_IWUSR,
behind_writes_used_show, behind_writes_used_reset);
static struct attribute *md_bitmap_attrs[] = {
&bitmap_location.attr,
&bitmap_space.attr,
&bitmap_timeout.attr,
&bitmap_backlog.attr,
&bitmap_chunksize.attr,
&bitmap_metadata.attr,
&bitmap_can_clear.attr,
&max_backlog_used.attr,
NULL
};
struct attribute_group md_bitmap_group = {
.name = "bitmap",
.attrs = md_bitmap_attrs,
};