2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-01 18:24:23 +08:00
linux-next/drivers/hwmon/adt7462.c
Thomas Gleixner 1a59d1b8e0 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 156
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version this program is distributed in the
  hope that it will be useful but without any warranty without even
  the implied warranty of merchantability or fitness for a particular
  purpose see the gnu general public license for more details you
  should have received a copy of the gnu general public license along
  with this program if not write to the free software foundation inc
  59 temple place suite 330 boston ma 02111 1307 usa

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 1334 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070033.113240726@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:26:35 -07:00

1834 lines
53 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* A hwmon driver for the Analog Devices ADT7462
* Copyright (C) 2008 IBM
*
* Author: Darrick J. Wong <darrick.wong@oracle.com>
*/
#include <linux/module.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/log2.h>
#include <linux/slab.h>
/* Addresses to scan */
static const unsigned short normal_i2c[] = { 0x58, 0x5C, I2C_CLIENT_END };
/* ADT7462 registers */
#define ADT7462_REG_DEVICE 0x3D
#define ADT7462_REG_VENDOR 0x3E
#define ADT7462_REG_REVISION 0x3F
#define ADT7462_REG_MIN_TEMP_BASE_ADDR 0x44
#define ADT7462_REG_MIN_TEMP_MAX_ADDR 0x47
#define ADT7462_REG_MAX_TEMP_BASE_ADDR 0x48
#define ADT7462_REG_MAX_TEMP_MAX_ADDR 0x4B
#define ADT7462_REG_TEMP_BASE_ADDR 0x88
#define ADT7462_REG_TEMP_MAX_ADDR 0x8F
#define ADT7462_REG_FAN_BASE_ADDR 0x98
#define ADT7462_REG_FAN_MAX_ADDR 0x9F
#define ADT7462_REG_FAN2_BASE_ADDR 0xA2
#define ADT7462_REG_FAN2_MAX_ADDR 0xA9
#define ADT7462_REG_FAN_ENABLE 0x07
#define ADT7462_REG_FAN_MIN_BASE_ADDR 0x78
#define ADT7462_REG_FAN_MIN_MAX_ADDR 0x7F
#define ADT7462_REG_CFG2 0x02
#define ADT7462_FSPD_MASK 0x20
#define ADT7462_REG_PWM_BASE_ADDR 0xAA
#define ADT7462_REG_PWM_MAX_ADDR 0xAD
#define ADT7462_REG_PWM_MIN_BASE_ADDR 0x28
#define ADT7462_REG_PWM_MIN_MAX_ADDR 0x2B
#define ADT7462_REG_PWM_MAX 0x2C
#define ADT7462_REG_PWM_TEMP_MIN_BASE_ADDR 0x5C
#define ADT7462_REG_PWM_TEMP_MIN_MAX_ADDR 0x5F
#define ADT7462_REG_PWM_TEMP_RANGE_BASE_ADDR 0x60
#define ADT7462_REG_PWM_TEMP_RANGE_MAX_ADDR 0x63
#define ADT7462_PWM_HYST_MASK 0x0F
#define ADT7462_PWM_RANGE_MASK 0xF0
#define ADT7462_PWM_RANGE_SHIFT 4
#define ADT7462_REG_PWM_CFG_BASE_ADDR 0x21
#define ADT7462_REG_PWM_CFG_MAX_ADDR 0x24
#define ADT7462_PWM_CHANNEL_MASK 0xE0
#define ADT7462_PWM_CHANNEL_SHIFT 5
#define ADT7462_REG_PIN_CFG_BASE_ADDR 0x10
#define ADT7462_REG_PIN_CFG_MAX_ADDR 0x13
#define ADT7462_PIN7_INPUT 0x01 /* cfg0 */
#define ADT7462_DIODE3_INPUT 0x20
#define ADT7462_DIODE1_INPUT 0x40
#define ADT7462_VID_INPUT 0x80
#define ADT7462_PIN22_INPUT 0x04 /* cfg1 */
#define ADT7462_PIN21_INPUT 0x08
#define ADT7462_PIN19_INPUT 0x10
#define ADT7462_PIN15_INPUT 0x20
#define ADT7462_PIN13_INPUT 0x40
#define ADT7462_PIN8_INPUT 0x80
#define ADT7462_PIN23_MASK 0x03
#define ADT7462_PIN23_SHIFT 0
#define ADT7462_PIN26_MASK 0x0C /* cfg2 */
#define ADT7462_PIN26_SHIFT 2
#define ADT7462_PIN25_MASK 0x30
#define ADT7462_PIN25_SHIFT 4
#define ADT7462_PIN24_MASK 0xC0
#define ADT7462_PIN24_SHIFT 6
#define ADT7462_PIN26_VOLT_INPUT 0x08
#define ADT7462_PIN25_VOLT_INPUT 0x20
#define ADT7462_PIN28_SHIFT 4 /* cfg3 */
#define ADT7462_PIN28_VOLT 0x5
#define ADT7462_REG_ALARM1 0xB8
#define ADT7462_LT_ALARM 0x02
#define ADT7462_R1T_ALARM 0x04
#define ADT7462_R2T_ALARM 0x08
#define ADT7462_R3T_ALARM 0x10
#define ADT7462_REG_ALARM2 0xBB
#define ADT7462_V0_ALARM 0x01
#define ADT7462_V1_ALARM 0x02
#define ADT7462_V2_ALARM 0x04
#define ADT7462_V3_ALARM 0x08
#define ADT7462_V4_ALARM 0x10
#define ADT7462_V5_ALARM 0x20
#define ADT7462_V6_ALARM 0x40
#define ADT7462_V7_ALARM 0x80
#define ADT7462_REG_ALARM3 0xBC
#define ADT7462_V8_ALARM 0x08
#define ADT7462_V9_ALARM 0x10
#define ADT7462_V10_ALARM 0x20
#define ADT7462_V11_ALARM 0x40
#define ADT7462_V12_ALARM 0x80
#define ADT7462_REG_ALARM4 0xBD
#define ADT7462_F0_ALARM 0x01
#define ADT7462_F1_ALARM 0x02
#define ADT7462_F2_ALARM 0x04
#define ADT7462_F3_ALARM 0x08
#define ADT7462_F4_ALARM 0x10
#define ADT7462_F5_ALARM 0x20
#define ADT7462_F6_ALARM 0x40
#define ADT7462_F7_ALARM 0x80
#define ADT7462_ALARM1 0x0000
#define ADT7462_ALARM2 0x0100
#define ADT7462_ALARM3 0x0200
#define ADT7462_ALARM4 0x0300
#define ADT7462_ALARM_REG_SHIFT 8
#define ADT7462_ALARM_FLAG_MASK 0x0F
#define ADT7462_TEMP_COUNT 4
#define ADT7462_TEMP_REG(x) (ADT7462_REG_TEMP_BASE_ADDR + ((x) * 2))
#define ADT7462_TEMP_MIN_REG(x) (ADT7462_REG_MIN_TEMP_BASE_ADDR + (x))
#define ADT7462_TEMP_MAX_REG(x) (ADT7462_REG_MAX_TEMP_BASE_ADDR + (x))
#define TEMP_FRAC_OFFSET 6
#define ADT7462_FAN_COUNT 8
#define ADT7462_REG_FAN_MIN(x) (ADT7462_REG_FAN_MIN_BASE_ADDR + (x))
#define ADT7462_PWM_COUNT 4
#define ADT7462_REG_PWM(x) (ADT7462_REG_PWM_BASE_ADDR + (x))
#define ADT7462_REG_PWM_MIN(x) (ADT7462_REG_PWM_MIN_BASE_ADDR + (x))
#define ADT7462_REG_PWM_TMIN(x) \
(ADT7462_REG_PWM_TEMP_MIN_BASE_ADDR + (x))
#define ADT7462_REG_PWM_TRANGE(x) \
(ADT7462_REG_PWM_TEMP_RANGE_BASE_ADDR + (x))
#define ADT7462_PIN_CFG_REG_COUNT 4
#define ADT7462_REG_PIN_CFG(x) (ADT7462_REG_PIN_CFG_BASE_ADDR + (x))
#define ADT7462_REG_PWM_CFG(x) (ADT7462_REG_PWM_CFG_BASE_ADDR + (x))
#define ADT7462_ALARM_REG_COUNT 4
/*
* The chip can measure 13 different voltage sources:
*
* 1. +12V1 (pin 7)
* 2. Vccp1/+2.5V/+1.8V/+1.5V (pin 23)
* 3. +12V3 (pin 22)
* 4. +5V (pin 21)
* 5. +1.25V/+0.9V (pin 19)
* 6. +2.5V/+1.8V (pin 15)
* 7. +3.3v (pin 13)
* 8. +12V2 (pin 8)
* 9. Vbatt/FSB_Vtt (pin 26)
* A. +3.3V/+1.2V1 (pin 25)
* B. Vccp2/+2.5V/+1.8V/+1.5V (pin 24)
* C. +1.5V ICH (only if BOTH pin 28/29 are set to +1.5V)
* D. +1.5V 3GPIO (only if BOTH pin 28/29 are set to +1.5V)
*
* Each of these 13 has a factor to convert raw to voltage. Even better,
* the pins can be connected to other sensors (tach/gpio/hot/etc), which
* makes the bookkeeping tricky.
*
* Some, but not all, of these voltages have low/high limits.
*/
#define ADT7462_VOLT_COUNT 13
#define ADT7462_VENDOR 0x41
#define ADT7462_DEVICE 0x62
/* datasheet only mentions a revision 4 */
#define ADT7462_REVISION 0x04
/* How often do we reread sensors values? (In jiffies) */
#define SENSOR_REFRESH_INTERVAL (2 * HZ)
/* How often do we reread sensor limit values? (In jiffies) */
#define LIMIT_REFRESH_INTERVAL (60 * HZ)
/* datasheet says to divide this number by the fan reading to get fan rpm */
#define FAN_PERIOD_TO_RPM(x) ((90000 * 60) / (x))
#define FAN_RPM_TO_PERIOD FAN_PERIOD_TO_RPM
#define FAN_PERIOD_INVALID 65535
#define FAN_DATA_VALID(x) ((x) && (x) != FAN_PERIOD_INVALID)
#define MASK_AND_SHIFT(value, prefix) \
(((value) & prefix##_MASK) >> prefix##_SHIFT)
struct adt7462_data {
struct i2c_client *client;
struct mutex lock;
char sensors_valid;
char limits_valid;
unsigned long sensors_last_updated; /* In jiffies */
unsigned long limits_last_updated; /* In jiffies */
u8 temp[ADT7462_TEMP_COUNT];
/* bits 6-7 are quarter pieces of temp */
u8 temp_frac[ADT7462_TEMP_COUNT];
u8 temp_min[ADT7462_TEMP_COUNT];
u8 temp_max[ADT7462_TEMP_COUNT];
u16 fan[ADT7462_FAN_COUNT];
u8 fan_enabled;
u8 fan_min[ADT7462_FAN_COUNT];
u8 cfg2;
u8 pwm[ADT7462_PWM_COUNT];
u8 pin_cfg[ADT7462_PIN_CFG_REG_COUNT];
u8 voltages[ADT7462_VOLT_COUNT];
u8 volt_max[ADT7462_VOLT_COUNT];
u8 volt_min[ADT7462_VOLT_COUNT];
u8 pwm_min[ADT7462_PWM_COUNT];
u8 pwm_tmin[ADT7462_PWM_COUNT];
u8 pwm_trange[ADT7462_PWM_COUNT];
u8 pwm_max; /* only one per chip */
u8 pwm_cfg[ADT7462_PWM_COUNT];
u8 alarms[ADT7462_ALARM_REG_COUNT];
};
/*
* 16-bit registers on the ADT7462 are low-byte first. The data sheet says
* that the low byte must be read before the high byte.
*/
static inline int adt7462_read_word_data(struct i2c_client *client, u8 reg)
{
u16 foo;
foo = i2c_smbus_read_byte_data(client, reg);
foo |= ((u16)i2c_smbus_read_byte_data(client, reg + 1) << 8);
return foo;
}
/* For some reason these registers are not contiguous. */
static int ADT7462_REG_FAN(int fan)
{
if (fan < 4)
return ADT7462_REG_FAN_BASE_ADDR + (2 * fan);
return ADT7462_REG_FAN2_BASE_ADDR + (2 * (fan - 4));
}
/* Voltage registers are scattered everywhere */
static int ADT7462_REG_VOLT_MAX(struct adt7462_data *data, int which)
{
switch (which) {
case 0:
if (!(data->pin_cfg[0] & ADT7462_PIN7_INPUT))
return 0x7C;
break;
case 1:
return 0x69;
case 2:
if (!(data->pin_cfg[1] & ADT7462_PIN22_INPUT))
return 0x7F;
break;
case 3:
if (!(data->pin_cfg[1] & ADT7462_PIN21_INPUT))
return 0x7E;
break;
case 4:
if (!(data->pin_cfg[0] & ADT7462_DIODE3_INPUT))
return 0x4B;
break;
case 5:
if (!(data->pin_cfg[0] & ADT7462_DIODE1_INPUT))
return 0x49;
break;
case 6:
if (!(data->pin_cfg[1] & ADT7462_PIN13_INPUT))
return 0x68;
break;
case 7:
if (!(data->pin_cfg[1] & ADT7462_PIN8_INPUT))
return 0x7D;
break;
case 8:
if (!(data->pin_cfg[2] & ADT7462_PIN26_VOLT_INPUT))
return 0x6C;
break;
case 9:
if (!(data->pin_cfg[2] & ADT7462_PIN25_VOLT_INPUT))
return 0x6B;
break;
case 10:
return 0x6A;
case 11:
if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT ==
ADT7462_PIN28_VOLT &&
!(data->pin_cfg[0] & ADT7462_VID_INPUT))
return 0x50;
break;
case 12:
if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT ==
ADT7462_PIN28_VOLT &&
!(data->pin_cfg[0] & ADT7462_VID_INPUT))
return 0x4C;
break;
}
return 0;
}
static int ADT7462_REG_VOLT_MIN(struct adt7462_data *data, int which)
{
switch (which) {
case 0:
if (!(data->pin_cfg[0] & ADT7462_PIN7_INPUT))
return 0x6D;
break;
case 1:
return 0x72;
case 2:
if (!(data->pin_cfg[1] & ADT7462_PIN22_INPUT))
return 0x6F;
break;
case 3:
if (!(data->pin_cfg[1] & ADT7462_PIN21_INPUT))
return 0x71;
break;
case 4:
if (!(data->pin_cfg[0] & ADT7462_DIODE3_INPUT))
return 0x47;
break;
case 5:
if (!(data->pin_cfg[0] & ADT7462_DIODE1_INPUT))
return 0x45;
break;
case 6:
if (!(data->pin_cfg[1] & ADT7462_PIN13_INPUT))
return 0x70;
break;
case 7:
if (!(data->pin_cfg[1] & ADT7462_PIN8_INPUT))
return 0x6E;
break;
case 8:
if (!(data->pin_cfg[2] & ADT7462_PIN26_VOLT_INPUT))
return 0x75;
break;
case 9:
if (!(data->pin_cfg[2] & ADT7462_PIN25_VOLT_INPUT))
return 0x74;
break;
case 10:
return 0x73;
case 11:
if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT ==
ADT7462_PIN28_VOLT &&
!(data->pin_cfg[0] & ADT7462_VID_INPUT))
return 0x76;
break;
case 12:
if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT ==
ADT7462_PIN28_VOLT &&
!(data->pin_cfg[0] & ADT7462_VID_INPUT))
return 0x77;
break;
}
return 0;
}
static int ADT7462_REG_VOLT(struct adt7462_data *data, int which)
{
switch (which) {
case 0:
if (!(data->pin_cfg[0] & ADT7462_PIN7_INPUT))
return 0xA3;
break;
case 1:
return 0x90;
case 2:
if (!(data->pin_cfg[1] & ADT7462_PIN22_INPUT))
return 0xA9;
break;
case 3:
if (!(data->pin_cfg[1] & ADT7462_PIN21_INPUT))
return 0xA7;
break;
case 4:
if (!(data->pin_cfg[0] & ADT7462_DIODE3_INPUT))
return 0x8F;
break;
case 5:
if (!(data->pin_cfg[0] & ADT7462_DIODE1_INPUT))
return 0x8B;
break;
case 6:
if (!(data->pin_cfg[1] & ADT7462_PIN13_INPUT))
return 0x96;
break;
case 7:
if (!(data->pin_cfg[1] & ADT7462_PIN8_INPUT))
return 0xA5;
break;
case 8:
if (!(data->pin_cfg[2] & ADT7462_PIN26_VOLT_INPUT))
return 0x93;
break;
case 9:
if (!(data->pin_cfg[2] & ADT7462_PIN25_VOLT_INPUT))
return 0x92;
break;
case 10:
return 0x91;
case 11:
if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT ==
ADT7462_PIN28_VOLT &&
!(data->pin_cfg[0] & ADT7462_VID_INPUT))
return 0x94;
break;
case 12:
if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT ==
ADT7462_PIN28_VOLT &&
!(data->pin_cfg[0] & ADT7462_VID_INPUT))
return 0x95;
break;
}
return -ENODEV;
}
/* Provide labels for sysfs */
static const char *voltage_label(struct adt7462_data *data, int which)
{
switch (which) {
case 0:
if (!(data->pin_cfg[0] & ADT7462_PIN7_INPUT))
return "+12V1";
break;
case 1:
switch (MASK_AND_SHIFT(data->pin_cfg[1], ADT7462_PIN23)) {
case 0:
return "Vccp1";
case 1:
return "+2.5V";
case 2:
return "+1.8V";
case 3:
return "+1.5V";
}
/* fall through */
case 2:
if (!(data->pin_cfg[1] & ADT7462_PIN22_INPUT))
return "+12V3";
break;
case 3:
if (!(data->pin_cfg[1] & ADT7462_PIN21_INPUT))
return "+5V";
break;
case 4:
if (!(data->pin_cfg[0] & ADT7462_DIODE3_INPUT)) {
if (data->pin_cfg[1] & ADT7462_PIN19_INPUT)
return "+0.9V";
return "+1.25V";
}
break;
case 5:
if (!(data->pin_cfg[0] & ADT7462_DIODE1_INPUT)) {
if (data->pin_cfg[1] & ADT7462_PIN19_INPUT)
return "+1.8V";
return "+2.5V";
}
break;
case 6:
if (!(data->pin_cfg[1] & ADT7462_PIN13_INPUT))
return "+3.3V";
break;
case 7:
if (!(data->pin_cfg[1] & ADT7462_PIN8_INPUT))
return "+12V2";
break;
case 8:
switch (MASK_AND_SHIFT(data->pin_cfg[2], ADT7462_PIN26)) {
case 0:
return "Vbatt";
case 1:
return "FSB_Vtt";
}
break;
case 9:
switch (MASK_AND_SHIFT(data->pin_cfg[2], ADT7462_PIN25)) {
case 0:
return "+3.3V";
case 1:
return "+1.2V1";
}
break;
case 10:
switch (MASK_AND_SHIFT(data->pin_cfg[2], ADT7462_PIN24)) {
case 0:
return "Vccp2";
case 1:
return "+2.5V";
case 2:
return "+1.8V";
case 3:
return "+1.5";
}
/* fall through */
case 11:
if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT ==
ADT7462_PIN28_VOLT &&
!(data->pin_cfg[0] & ADT7462_VID_INPUT))
return "+1.5V ICH";
break;
case 12:
if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT ==
ADT7462_PIN28_VOLT &&
!(data->pin_cfg[0] & ADT7462_VID_INPUT))
return "+1.5V 3GPIO";
break;
}
return "N/A";
}
/* Multipliers are actually in uV, not mV. */
static int voltage_multiplier(struct adt7462_data *data, int which)
{
switch (which) {
case 0:
if (!(data->pin_cfg[0] & ADT7462_PIN7_INPUT))
return 62500;
break;
case 1:
switch (MASK_AND_SHIFT(data->pin_cfg[1], ADT7462_PIN23)) {
case 0:
if (data->pin_cfg[0] & ADT7462_VID_INPUT)
return 12500;
return 6250;
case 1:
return 13000;
case 2:
return 9400;
case 3:
return 7800;
}
/* fall through */
case 2:
if (!(data->pin_cfg[1] & ADT7462_PIN22_INPUT))
return 62500;
break;
case 3:
if (!(data->pin_cfg[1] & ADT7462_PIN21_INPUT))
return 26000;
break;
case 4:
if (!(data->pin_cfg[0] & ADT7462_DIODE3_INPUT)) {
if (data->pin_cfg[1] & ADT7462_PIN19_INPUT)
return 4690;
return 6500;
}
break;
case 5:
if (!(data->pin_cfg[0] & ADT7462_DIODE1_INPUT)) {
if (data->pin_cfg[1] & ADT7462_PIN15_INPUT)
return 9400;
return 13000;
}
break;
case 6:
if (!(data->pin_cfg[1] & ADT7462_PIN13_INPUT))
return 17200;
break;
case 7:
if (!(data->pin_cfg[1] & ADT7462_PIN8_INPUT))
return 62500;
break;
case 8:
switch (MASK_AND_SHIFT(data->pin_cfg[2], ADT7462_PIN26)) {
case 0:
return 15600;
case 1:
return 6250;
}
break;
case 9:
switch (MASK_AND_SHIFT(data->pin_cfg[2], ADT7462_PIN25)) {
case 0:
return 17200;
case 1:
return 6250;
}
break;
case 10:
switch (MASK_AND_SHIFT(data->pin_cfg[2], ADT7462_PIN24)) {
case 0:
return 6250;
case 1:
return 13000;
case 2:
return 9400;
case 3:
return 7800;
}
/* fall through */
case 11:
case 12:
if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT ==
ADT7462_PIN28_VOLT &&
!(data->pin_cfg[0] & ADT7462_VID_INPUT))
return 7800;
}
return 0;
}
static int temp_enabled(struct adt7462_data *data, int which)
{
switch (which) {
case 0:
case 2:
return 1;
case 1:
if (data->pin_cfg[0] & ADT7462_DIODE1_INPUT)
return 1;
break;
case 3:
if (data->pin_cfg[0] & ADT7462_DIODE3_INPUT)
return 1;
break;
}
return 0;
}
static const char *temp_label(struct adt7462_data *data, int which)
{
switch (which) {
case 0:
return "local";
case 1:
if (data->pin_cfg[0] & ADT7462_DIODE1_INPUT)
return "remote1";
break;
case 2:
return "remote2";
case 3:
if (data->pin_cfg[0] & ADT7462_DIODE3_INPUT)
return "remote3";
break;
}
return "N/A";
}
/* Map Trange register values to mC */
#define NUM_TRANGE_VALUES 16
static const int trange_values[NUM_TRANGE_VALUES] = {
2000,
2500,
3300,
4000,
5000,
6700,
8000,
10000,
13300,
16000,
20000,
26700,
32000,
40000,
53300,
80000
};
static int find_trange_value(int trange)
{
int i;
for (i = 0; i < NUM_TRANGE_VALUES; i++)
if (trange_values[i] == trange)
return i;
return -EINVAL;
}
static struct adt7462_data *adt7462_update_device(struct device *dev)
{
struct adt7462_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned long local_jiffies = jiffies;
int i;
mutex_lock(&data->lock);
if (time_before(local_jiffies, data->sensors_last_updated +
SENSOR_REFRESH_INTERVAL)
&& data->sensors_valid)
goto no_sensor_update;
for (i = 0; i < ADT7462_TEMP_COUNT; i++) {
/*
* Reading the fractional register locks the integral
* register until both have been read.
*/
data->temp_frac[i] = i2c_smbus_read_byte_data(client,
ADT7462_TEMP_REG(i));
data->temp[i] = i2c_smbus_read_byte_data(client,
ADT7462_TEMP_REG(i) + 1);
}
for (i = 0; i < ADT7462_FAN_COUNT; i++)
data->fan[i] = adt7462_read_word_data(client,
ADT7462_REG_FAN(i));
data->fan_enabled = i2c_smbus_read_byte_data(client,
ADT7462_REG_FAN_ENABLE);
for (i = 0; i < ADT7462_PWM_COUNT; i++)
data->pwm[i] = i2c_smbus_read_byte_data(client,
ADT7462_REG_PWM(i));
for (i = 0; i < ADT7462_PIN_CFG_REG_COUNT; i++)
data->pin_cfg[i] = i2c_smbus_read_byte_data(client,
ADT7462_REG_PIN_CFG(i));
for (i = 0; i < ADT7462_VOLT_COUNT; i++) {
int reg = ADT7462_REG_VOLT(data, i);
if (!reg)
data->voltages[i] = 0;
else
data->voltages[i] = i2c_smbus_read_byte_data(client,
reg);
}
data->alarms[0] = i2c_smbus_read_byte_data(client, ADT7462_REG_ALARM1);
data->alarms[1] = i2c_smbus_read_byte_data(client, ADT7462_REG_ALARM2);
data->alarms[2] = i2c_smbus_read_byte_data(client, ADT7462_REG_ALARM3);
data->alarms[3] = i2c_smbus_read_byte_data(client, ADT7462_REG_ALARM4);
data->sensors_last_updated = local_jiffies;
data->sensors_valid = 1;
no_sensor_update:
if (time_before(local_jiffies, data->limits_last_updated +
LIMIT_REFRESH_INTERVAL)
&& data->limits_valid)
goto out;
for (i = 0; i < ADT7462_TEMP_COUNT; i++) {
data->temp_min[i] = i2c_smbus_read_byte_data(client,
ADT7462_TEMP_MIN_REG(i));
data->temp_max[i] = i2c_smbus_read_byte_data(client,
ADT7462_TEMP_MAX_REG(i));
}
for (i = 0; i < ADT7462_FAN_COUNT; i++)
data->fan_min[i] = i2c_smbus_read_byte_data(client,
ADT7462_REG_FAN_MIN(i));
for (i = 0; i < ADT7462_VOLT_COUNT; i++) {
int reg = ADT7462_REG_VOLT_MAX(data, i);
data->volt_max[i] =
(reg ? i2c_smbus_read_byte_data(client, reg) : 0);
reg = ADT7462_REG_VOLT_MIN(data, i);
data->volt_min[i] =
(reg ? i2c_smbus_read_byte_data(client, reg) : 0);
}
for (i = 0; i < ADT7462_PWM_COUNT; i++) {
data->pwm_min[i] = i2c_smbus_read_byte_data(client,
ADT7462_REG_PWM_MIN(i));
data->pwm_tmin[i] = i2c_smbus_read_byte_data(client,
ADT7462_REG_PWM_TMIN(i));
data->pwm_trange[i] = i2c_smbus_read_byte_data(client,
ADT7462_REG_PWM_TRANGE(i));
data->pwm_cfg[i] = i2c_smbus_read_byte_data(client,
ADT7462_REG_PWM_CFG(i));
}
data->pwm_max = i2c_smbus_read_byte_data(client, ADT7462_REG_PWM_MAX);
data->cfg2 = i2c_smbus_read_byte_data(client, ADT7462_REG_CFG2);
data->limits_last_updated = local_jiffies;
data->limits_valid = 1;
out:
mutex_unlock(&data->lock);
return data;
}
static ssize_t temp_min_show(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
if (!temp_enabled(data, attr->index))
return sprintf(buf, "0\n");
return sprintf(buf, "%d\n", 1000 * (data->temp_min[attr->index] - 64));
}
static ssize_t temp_min_store(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long temp;
if (kstrtol(buf, 10, &temp) || !temp_enabled(data, attr->index))
return -EINVAL;
temp = clamp_val(temp, -64000, 191000);
temp = DIV_ROUND_CLOSEST(temp, 1000) + 64;
mutex_lock(&data->lock);
data->temp_min[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7462_TEMP_MIN_REG(attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t temp_max_show(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
if (!temp_enabled(data, attr->index))
return sprintf(buf, "0\n");
return sprintf(buf, "%d\n", 1000 * (data->temp_max[attr->index] - 64));
}
static ssize_t temp_max_store(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long temp;
if (kstrtol(buf, 10, &temp) || !temp_enabled(data, attr->index))
return -EINVAL;
temp = clamp_val(temp, -64000, 191000);
temp = DIV_ROUND_CLOSEST(temp, 1000) + 64;
mutex_lock(&data->lock);
data->temp_max[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7462_TEMP_MAX_REG(attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t temp_show(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
u8 frac = data->temp_frac[attr->index] >> TEMP_FRAC_OFFSET;
if (!temp_enabled(data, attr->index))
return sprintf(buf, "0\n");
return sprintf(buf, "%d\n", 1000 * (data->temp[attr->index] - 64) +
250 * frac);
}
static ssize_t temp_label_show(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
return sprintf(buf, "%s\n", temp_label(data, attr->index));
}
static ssize_t volt_max_show(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
int x = voltage_multiplier(data, attr->index);
x *= data->volt_max[attr->index];
x /= 1000; /* convert from uV to mV */
return sprintf(buf, "%d\n", x);
}
static ssize_t volt_max_store(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int x = voltage_multiplier(data, attr->index);
long temp;
if (kstrtol(buf, 10, &temp) || !x)
return -EINVAL;
temp = clamp_val(temp, 0, 255 * x / 1000);
temp *= 1000; /* convert mV to uV */
temp = DIV_ROUND_CLOSEST(temp, x);
mutex_lock(&data->lock);
data->volt_max[attr->index] = temp;
i2c_smbus_write_byte_data(client,
ADT7462_REG_VOLT_MAX(data, attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t volt_min_show(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
int x = voltage_multiplier(data, attr->index);
x *= data->volt_min[attr->index];
x /= 1000; /* convert from uV to mV */
return sprintf(buf, "%d\n", x);
}
static ssize_t volt_min_store(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int x = voltage_multiplier(data, attr->index);
long temp;
if (kstrtol(buf, 10, &temp) || !x)
return -EINVAL;
temp = clamp_val(temp, 0, 255 * x / 1000);
temp *= 1000; /* convert mV to uV */
temp = DIV_ROUND_CLOSEST(temp, x);
mutex_lock(&data->lock);
data->volt_min[attr->index] = temp;
i2c_smbus_write_byte_data(client,
ADT7462_REG_VOLT_MIN(data, attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t voltage_show(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
int x = voltage_multiplier(data, attr->index);
x *= data->voltages[attr->index];
x /= 1000; /* convert from uV to mV */
return sprintf(buf, "%d\n", x);
}
static ssize_t voltage_label_show(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
return sprintf(buf, "%s\n", voltage_label(data, attr->index));
}
static ssize_t alarm_show(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
int reg = attr->index >> ADT7462_ALARM_REG_SHIFT;
int mask = attr->index & ADT7462_ALARM_FLAG_MASK;
if (data->alarms[reg] & mask)
return sprintf(buf, "1\n");
else
return sprintf(buf, "0\n");
}
static int fan_enabled(struct adt7462_data *data, int fan)
{
return data->fan_enabled & (1 << fan);
}
static ssize_t fan_min_show(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
u16 temp;
/* Only the MSB of the min fan period is stored... */
temp = data->fan_min[attr->index];
temp <<= 8;
if (!fan_enabled(data, attr->index) ||
!FAN_DATA_VALID(temp))
return sprintf(buf, "0\n");
return sprintf(buf, "%d\n", FAN_PERIOD_TO_RPM(temp));
}
static ssize_t fan_min_store(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long temp;
if (kstrtol(buf, 10, &temp) || !temp ||
!fan_enabled(data, attr->index))
return -EINVAL;
temp = FAN_RPM_TO_PERIOD(temp);
temp >>= 8;
temp = clamp_val(temp, 1, 255);
mutex_lock(&data->lock);
data->fan_min[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7462_REG_FAN_MIN(attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t fan_show(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
if (!fan_enabled(data, attr->index) ||
!FAN_DATA_VALID(data->fan[attr->index]))
return sprintf(buf, "0\n");
return sprintf(buf, "%d\n",
FAN_PERIOD_TO_RPM(data->fan[attr->index]));
}
static ssize_t force_pwm_max_show(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct adt7462_data *data = adt7462_update_device(dev);
return sprintf(buf, "%d\n", (data->cfg2 & ADT7462_FSPD_MASK ? 1 : 0));
}
static ssize_t force_pwm_max_store(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
struct adt7462_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long temp;
u8 reg;
if (kstrtol(buf, 10, &temp))
return -EINVAL;
mutex_lock(&data->lock);
reg = i2c_smbus_read_byte_data(client, ADT7462_REG_CFG2);
if (temp)
reg |= ADT7462_FSPD_MASK;
else
reg &= ~ADT7462_FSPD_MASK;
data->cfg2 = reg;
i2c_smbus_write_byte_data(client, ADT7462_REG_CFG2, reg);
mutex_unlock(&data->lock);
return count;
}
static ssize_t pwm_show(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
return sprintf(buf, "%d\n", data->pwm[attr->index]);
}
static ssize_t pwm_store(struct device *dev, struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long temp;
if (kstrtol(buf, 10, &temp))
return -EINVAL;
temp = clamp_val(temp, 0, 255);
mutex_lock(&data->lock);
data->pwm[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7462_REG_PWM(attr->index), temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t pwm_max_show(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct adt7462_data *data = adt7462_update_device(dev);
return sprintf(buf, "%d\n", data->pwm_max);
}
static ssize_t pwm_max_store(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
struct adt7462_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long temp;
if (kstrtol(buf, 10, &temp))
return -EINVAL;
temp = clamp_val(temp, 0, 255);
mutex_lock(&data->lock);
data->pwm_max = temp;
i2c_smbus_write_byte_data(client, ADT7462_REG_PWM_MAX, temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t pwm_min_show(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
return sprintf(buf, "%d\n", data->pwm_min[attr->index]);
}
static ssize_t pwm_min_store(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long temp;
if (kstrtol(buf, 10, &temp))
return -EINVAL;
temp = clamp_val(temp, 0, 255);
mutex_lock(&data->lock);
data->pwm_min[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7462_REG_PWM_MIN(attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t pwm_hyst_show(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
return sprintf(buf, "%d\n", 1000 *
(data->pwm_trange[attr->index] & ADT7462_PWM_HYST_MASK));
}
static ssize_t pwm_hyst_store(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long temp;
if (kstrtol(buf, 10, &temp))
return -EINVAL;
temp = clamp_val(temp, 0, 15000);
temp = DIV_ROUND_CLOSEST(temp, 1000);
/* package things up */
temp &= ADT7462_PWM_HYST_MASK;
temp |= data->pwm_trange[attr->index] & ADT7462_PWM_RANGE_MASK;
mutex_lock(&data->lock);
data->pwm_trange[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7462_REG_PWM_TRANGE(attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t pwm_tmax_show(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
/* tmax = tmin + trange */
int trange = trange_values[data->pwm_trange[attr->index] >>
ADT7462_PWM_RANGE_SHIFT];
int tmin = (data->pwm_tmin[attr->index] - 64) * 1000;
return sprintf(buf, "%d\n", tmin + trange);
}
static ssize_t pwm_tmax_store(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
int temp;
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int tmin, trange_value;
long trange;
if (kstrtol(buf, 10, &trange))
return -EINVAL;
/* trange = tmax - tmin */
tmin = (data->pwm_tmin[attr->index] - 64) * 1000;
trange_value = find_trange_value(trange - tmin);
if (trange_value < 0)
return trange_value;
temp = trange_value << ADT7462_PWM_RANGE_SHIFT;
temp |= data->pwm_trange[attr->index] & ADT7462_PWM_HYST_MASK;
mutex_lock(&data->lock);
data->pwm_trange[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7462_REG_PWM_TRANGE(attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t pwm_tmin_show(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
return sprintf(buf, "%d\n", 1000 * (data->pwm_tmin[attr->index] - 64));
}
static ssize_t pwm_tmin_store(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long temp;
if (kstrtol(buf, 10, &temp))
return -EINVAL;
temp = clamp_val(temp, -64000, 191000);
temp = DIV_ROUND_CLOSEST(temp, 1000) + 64;
mutex_lock(&data->lock);
data->pwm_tmin[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7462_REG_PWM_TMIN(attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t pwm_auto_show(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
int cfg = data->pwm_cfg[attr->index] >> ADT7462_PWM_CHANNEL_SHIFT;
switch (cfg) {
case 4: /* off */
return sprintf(buf, "0\n");
case 7: /* manual */
return sprintf(buf, "1\n");
default: /* automatic */
return sprintf(buf, "2\n");
}
}
static void set_pwm_channel(struct i2c_client *client,
struct adt7462_data *data,
int which,
int value)
{
int temp = data->pwm_cfg[which] & ~ADT7462_PWM_CHANNEL_MASK;
temp |= value << ADT7462_PWM_CHANNEL_SHIFT;
mutex_lock(&data->lock);
data->pwm_cfg[which] = temp;
i2c_smbus_write_byte_data(client, ADT7462_REG_PWM_CFG(which), temp);
mutex_unlock(&data->lock);
}
static ssize_t pwm_auto_store(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long temp;
if (kstrtol(buf, 10, &temp))
return -EINVAL;
switch (temp) {
case 0: /* off */
set_pwm_channel(client, data, attr->index, 4);
return count;
case 1: /* manual */
set_pwm_channel(client, data, attr->index, 7);
return count;
default:
return -EINVAL;
}
}
static ssize_t pwm_auto_temp_show(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = adt7462_update_device(dev);
int channel = data->pwm_cfg[attr->index] >> ADT7462_PWM_CHANNEL_SHIFT;
switch (channel) {
case 0: /* temp[1234] only */
case 1:
case 2:
case 3:
return sprintf(buf, "%d\n", (1 << channel));
case 5: /* temp1 & temp4 */
return sprintf(buf, "9\n");
case 6:
return sprintf(buf, "15\n");
default:
return sprintf(buf, "0\n");
}
}
static int cvt_auto_temp(int input)
{
if (input == 0xF)
return 6;
if (input == 0x9)
return 5;
if (input < 1 || !is_power_of_2(input))
return -EINVAL;
return ilog2(input);
}
static ssize_t pwm_auto_temp_store(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7462_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long temp;
if (kstrtol(buf, 10, &temp))
return -EINVAL;
temp = cvt_auto_temp(temp);
if (temp < 0)
return temp;
set_pwm_channel(client, data, attr->index, temp);
return count;
}
static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
static SENSOR_DEVICE_ATTR_RW(temp4_max, temp_max, 3);
static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
static SENSOR_DEVICE_ATTR_RW(temp4_min, temp_min, 3);
static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
static SENSOR_DEVICE_ATTR_RO(temp4_input, temp, 3);
static SENSOR_DEVICE_ATTR_RO(temp1_label, temp_label, 0);
static SENSOR_DEVICE_ATTR_RO(temp2_label, temp_label, 1);
static SENSOR_DEVICE_ATTR_RO(temp3_label, temp_label, 2);
static SENSOR_DEVICE_ATTR_RO(temp4_label, temp_label, 3);
static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm,
ADT7462_ALARM1 | ADT7462_LT_ALARM);
static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm,
ADT7462_ALARM1 | ADT7462_R1T_ALARM);
static SENSOR_DEVICE_ATTR_RO(temp3_alarm, alarm,
ADT7462_ALARM1 | ADT7462_R2T_ALARM);
static SENSOR_DEVICE_ATTR_RO(temp4_alarm, alarm,
ADT7462_ALARM1 | ADT7462_R3T_ALARM);
static SENSOR_DEVICE_ATTR_RW(in1_max, volt_max, 0);
static SENSOR_DEVICE_ATTR_RW(in2_max, volt_max, 1);
static SENSOR_DEVICE_ATTR_RW(in3_max, volt_max, 2);
static SENSOR_DEVICE_ATTR_RW(in4_max, volt_max, 3);
static SENSOR_DEVICE_ATTR_RW(in5_max, volt_max, 4);
static SENSOR_DEVICE_ATTR_RW(in6_max, volt_max, 5);
static SENSOR_DEVICE_ATTR_RW(in7_max, volt_max, 6);
static SENSOR_DEVICE_ATTR_RW(in8_max, volt_max, 7);
static SENSOR_DEVICE_ATTR_RW(in9_max, volt_max, 8);
static SENSOR_DEVICE_ATTR_RW(in10_max, volt_max, 9);
static SENSOR_DEVICE_ATTR_RW(in11_max, volt_max, 10);
static SENSOR_DEVICE_ATTR_RW(in12_max, volt_max, 11);
static SENSOR_DEVICE_ATTR_RW(in13_max, volt_max, 12);
static SENSOR_DEVICE_ATTR_RW(in1_min, volt_min, 0);
static SENSOR_DEVICE_ATTR_RW(in2_min, volt_min, 1);
static SENSOR_DEVICE_ATTR_RW(in3_min, volt_min, 2);
static SENSOR_DEVICE_ATTR_RW(in4_min, volt_min, 3);
static SENSOR_DEVICE_ATTR_RW(in5_min, volt_min, 4);
static SENSOR_DEVICE_ATTR_RW(in6_min, volt_min, 5);
static SENSOR_DEVICE_ATTR_RW(in7_min, volt_min, 6);
static SENSOR_DEVICE_ATTR_RW(in8_min, volt_min, 7);
static SENSOR_DEVICE_ATTR_RW(in9_min, volt_min, 8);
static SENSOR_DEVICE_ATTR_RW(in10_min, volt_min, 9);
static SENSOR_DEVICE_ATTR_RW(in11_min, volt_min, 10);
static SENSOR_DEVICE_ATTR_RW(in12_min, volt_min, 11);
static SENSOR_DEVICE_ATTR_RW(in13_min, volt_min, 12);
static SENSOR_DEVICE_ATTR_RO(in1_input, voltage, 0);
static SENSOR_DEVICE_ATTR_RO(in2_input, voltage, 1);
static SENSOR_DEVICE_ATTR_RO(in3_input, voltage, 2);
static SENSOR_DEVICE_ATTR_RO(in4_input, voltage, 3);
static SENSOR_DEVICE_ATTR_RO(in5_input, voltage, 4);
static SENSOR_DEVICE_ATTR_RO(in6_input, voltage, 5);
static SENSOR_DEVICE_ATTR_RO(in7_input, voltage, 6);
static SENSOR_DEVICE_ATTR_RO(in8_input, voltage, 7);
static SENSOR_DEVICE_ATTR_RO(in9_input, voltage, 8);
static SENSOR_DEVICE_ATTR_RO(in10_input, voltage, 9);
static SENSOR_DEVICE_ATTR_RO(in11_input, voltage, 10);
static SENSOR_DEVICE_ATTR_RO(in12_input, voltage, 11);
static SENSOR_DEVICE_ATTR_RO(in13_input, voltage, 12);
static SENSOR_DEVICE_ATTR_RO(in1_label, voltage_label, 0);
static SENSOR_DEVICE_ATTR_RO(in2_label, voltage_label, 1);
static SENSOR_DEVICE_ATTR_RO(in3_label, voltage_label, 2);
static SENSOR_DEVICE_ATTR_RO(in4_label, voltage_label, 3);
static SENSOR_DEVICE_ATTR_RO(in5_label, voltage_label, 4);
static SENSOR_DEVICE_ATTR_RO(in6_label, voltage_label, 5);
static SENSOR_DEVICE_ATTR_RO(in7_label, voltage_label, 6);
static SENSOR_DEVICE_ATTR_RO(in8_label, voltage_label, 7);
static SENSOR_DEVICE_ATTR_RO(in9_label, voltage_label, 8);
static SENSOR_DEVICE_ATTR_RO(in10_label, voltage_label, 9);
static SENSOR_DEVICE_ATTR_RO(in11_label, voltage_label, 10);
static SENSOR_DEVICE_ATTR_RO(in12_label, voltage_label, 11);
static SENSOR_DEVICE_ATTR_RO(in13_label, voltage_label, 12);
static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm,
ADT7462_ALARM2 | ADT7462_V0_ALARM);
static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm,
ADT7462_ALARM2 | ADT7462_V7_ALARM);
static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm,
ADT7462_ALARM2 | ADT7462_V2_ALARM);
static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm,
ADT7462_ALARM2 | ADT7462_V6_ALARM);
static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm,
ADT7462_ALARM2 | ADT7462_V5_ALARM);
static SENSOR_DEVICE_ATTR_RO(in6_alarm, alarm,
ADT7462_ALARM2 | ADT7462_V4_ALARM);
static SENSOR_DEVICE_ATTR_RO(in7_alarm, alarm,
ADT7462_ALARM2 | ADT7462_V3_ALARM);
static SENSOR_DEVICE_ATTR_RO(in8_alarm, alarm,
ADT7462_ALARM2 | ADT7462_V1_ALARM);
static SENSOR_DEVICE_ATTR_RO(in9_alarm, alarm,
ADT7462_ALARM3 | ADT7462_V10_ALARM);
static SENSOR_DEVICE_ATTR_RO(in10_alarm, alarm,
ADT7462_ALARM3 | ADT7462_V9_ALARM);
static SENSOR_DEVICE_ATTR_RO(in11_alarm, alarm,
ADT7462_ALARM3 | ADT7462_V8_ALARM);
static SENSOR_DEVICE_ATTR_RO(in12_alarm, alarm,
ADT7462_ALARM3 | ADT7462_V11_ALARM);
static SENSOR_DEVICE_ATTR_RO(in13_alarm, alarm,
ADT7462_ALARM3 | ADT7462_V12_ALARM);
static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
static SENSOR_DEVICE_ATTR_RW(fan3_min, fan_min, 2);
static SENSOR_DEVICE_ATTR_RW(fan4_min, fan_min, 3);
static SENSOR_DEVICE_ATTR_RW(fan5_min, fan_min, 4);
static SENSOR_DEVICE_ATTR_RW(fan6_min, fan_min, 5);
static SENSOR_DEVICE_ATTR_RW(fan7_min, fan_min, 6);
static SENSOR_DEVICE_ATTR_RW(fan8_min, fan_min, 7);
static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
static SENSOR_DEVICE_ATTR_RO(fan3_input, fan, 2);
static SENSOR_DEVICE_ATTR_RO(fan4_input, fan, 3);
static SENSOR_DEVICE_ATTR_RO(fan5_input, fan, 4);
static SENSOR_DEVICE_ATTR_RO(fan6_input, fan, 5);
static SENSOR_DEVICE_ATTR_RO(fan7_input, fan, 6);
static SENSOR_DEVICE_ATTR_RO(fan8_input, fan, 7);
static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm,
ADT7462_ALARM4 | ADT7462_F0_ALARM);
static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm,
ADT7462_ALARM4 | ADT7462_F1_ALARM);
static SENSOR_DEVICE_ATTR_RO(fan3_alarm, alarm,
ADT7462_ALARM4 | ADT7462_F2_ALARM);
static SENSOR_DEVICE_ATTR_RO(fan4_alarm, alarm,
ADT7462_ALARM4 | ADT7462_F3_ALARM);
static SENSOR_DEVICE_ATTR_RO(fan5_alarm, alarm,
ADT7462_ALARM4 | ADT7462_F4_ALARM);
static SENSOR_DEVICE_ATTR_RO(fan6_alarm, alarm,
ADT7462_ALARM4 | ADT7462_F5_ALARM);
static SENSOR_DEVICE_ATTR_RO(fan7_alarm, alarm,
ADT7462_ALARM4 | ADT7462_F6_ALARM);
static SENSOR_DEVICE_ATTR_RO(fan8_alarm, alarm,
ADT7462_ALARM4 | ADT7462_F7_ALARM);
static SENSOR_DEVICE_ATTR_RW(force_pwm_max, force_pwm_max, 0);
static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
static SENSOR_DEVICE_ATTR_RW(pwm3, pwm, 2);
static SENSOR_DEVICE_ATTR_RW(pwm4, pwm, 3);
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point1_pwm, pwm_min, 0);
static SENSOR_DEVICE_ATTR_RW(pwm2_auto_point1_pwm, pwm_min, 1);
static SENSOR_DEVICE_ATTR_RW(pwm3_auto_point1_pwm, pwm_min, 2);
static SENSOR_DEVICE_ATTR_RW(pwm4_auto_point1_pwm, pwm_min, 3);
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point2_pwm, pwm_max, 0);
static SENSOR_DEVICE_ATTR_RW(pwm2_auto_point2_pwm, pwm_max, 1);
static SENSOR_DEVICE_ATTR_RW(pwm3_auto_point2_pwm, pwm_max, 2);
static SENSOR_DEVICE_ATTR_RW(pwm4_auto_point2_pwm, pwm_max, 3);
static SENSOR_DEVICE_ATTR_RW(temp1_auto_point1_hyst, pwm_hyst, 0);
static SENSOR_DEVICE_ATTR_RW(temp2_auto_point1_hyst, pwm_hyst, 1);
static SENSOR_DEVICE_ATTR_RW(temp3_auto_point1_hyst, pwm_hyst, 2);
static SENSOR_DEVICE_ATTR_RW(temp4_auto_point1_hyst, pwm_hyst, 3);
static SENSOR_DEVICE_ATTR_RW(temp1_auto_point2_hyst, pwm_hyst, 0);
static SENSOR_DEVICE_ATTR_RW(temp2_auto_point2_hyst, pwm_hyst, 1);
static SENSOR_DEVICE_ATTR_RW(temp3_auto_point2_hyst, pwm_hyst, 2);
static SENSOR_DEVICE_ATTR_RW(temp4_auto_point2_hyst, pwm_hyst, 3);
static SENSOR_DEVICE_ATTR_RW(temp1_auto_point1_temp, pwm_tmin, 0);
static SENSOR_DEVICE_ATTR_RW(temp2_auto_point1_temp, pwm_tmin, 1);
static SENSOR_DEVICE_ATTR_RW(temp3_auto_point1_temp, pwm_tmin, 2);
static SENSOR_DEVICE_ATTR_RW(temp4_auto_point1_temp, pwm_tmin, 3);
static SENSOR_DEVICE_ATTR_RW(temp1_auto_point2_temp, pwm_tmax, 0);
static SENSOR_DEVICE_ATTR_RW(temp2_auto_point2_temp, pwm_tmax, 1);
static SENSOR_DEVICE_ATTR_RW(temp3_auto_point2_temp, pwm_tmax, 2);
static SENSOR_DEVICE_ATTR_RW(temp4_auto_point2_temp, pwm_tmax, 3);
static SENSOR_DEVICE_ATTR_RW(pwm1_enable, pwm_auto, 0);
static SENSOR_DEVICE_ATTR_RW(pwm2_enable, pwm_auto, 1);
static SENSOR_DEVICE_ATTR_RW(pwm3_enable, pwm_auto, 2);
static SENSOR_DEVICE_ATTR_RW(pwm4_enable, pwm_auto, 3);
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_channels_temp, pwm_auto_temp, 0);
static SENSOR_DEVICE_ATTR_RW(pwm2_auto_channels_temp, pwm_auto_temp, 1);
static SENSOR_DEVICE_ATTR_RW(pwm3_auto_channels_temp, pwm_auto_temp, 2);
static SENSOR_DEVICE_ATTR_RW(pwm4_auto_channels_temp, pwm_auto_temp, 3);
static struct attribute *adt7462_attrs[] = {
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp2_max.dev_attr.attr,
&sensor_dev_attr_temp3_max.dev_attr.attr,
&sensor_dev_attr_temp4_max.dev_attr.attr,
&sensor_dev_attr_temp1_min.dev_attr.attr,
&sensor_dev_attr_temp2_min.dev_attr.attr,
&sensor_dev_attr_temp3_min.dev_attr.attr,
&sensor_dev_attr_temp4_min.dev_attr.attr,
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp3_input.dev_attr.attr,
&sensor_dev_attr_temp4_input.dev_attr.attr,
&sensor_dev_attr_temp1_label.dev_attr.attr,
&sensor_dev_attr_temp2_label.dev_attr.attr,
&sensor_dev_attr_temp3_label.dev_attr.attr,
&sensor_dev_attr_temp4_label.dev_attr.attr,
&sensor_dev_attr_temp1_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_alarm.dev_attr.attr,
&sensor_dev_attr_temp4_alarm.dev_attr.attr,
&sensor_dev_attr_in1_max.dev_attr.attr,
&sensor_dev_attr_in2_max.dev_attr.attr,
&sensor_dev_attr_in3_max.dev_attr.attr,
&sensor_dev_attr_in4_max.dev_attr.attr,
&sensor_dev_attr_in5_max.dev_attr.attr,
&sensor_dev_attr_in6_max.dev_attr.attr,
&sensor_dev_attr_in7_max.dev_attr.attr,
&sensor_dev_attr_in8_max.dev_attr.attr,
&sensor_dev_attr_in9_max.dev_attr.attr,
&sensor_dev_attr_in10_max.dev_attr.attr,
&sensor_dev_attr_in11_max.dev_attr.attr,
&sensor_dev_attr_in12_max.dev_attr.attr,
&sensor_dev_attr_in13_max.dev_attr.attr,
&sensor_dev_attr_in1_min.dev_attr.attr,
&sensor_dev_attr_in2_min.dev_attr.attr,
&sensor_dev_attr_in3_min.dev_attr.attr,
&sensor_dev_attr_in4_min.dev_attr.attr,
&sensor_dev_attr_in5_min.dev_attr.attr,
&sensor_dev_attr_in6_min.dev_attr.attr,
&sensor_dev_attr_in7_min.dev_attr.attr,
&sensor_dev_attr_in8_min.dev_attr.attr,
&sensor_dev_attr_in9_min.dev_attr.attr,
&sensor_dev_attr_in10_min.dev_attr.attr,
&sensor_dev_attr_in11_min.dev_attr.attr,
&sensor_dev_attr_in12_min.dev_attr.attr,
&sensor_dev_attr_in13_min.dev_attr.attr,
&sensor_dev_attr_in1_input.dev_attr.attr,
&sensor_dev_attr_in2_input.dev_attr.attr,
&sensor_dev_attr_in3_input.dev_attr.attr,
&sensor_dev_attr_in4_input.dev_attr.attr,
&sensor_dev_attr_in5_input.dev_attr.attr,
&sensor_dev_attr_in6_input.dev_attr.attr,
&sensor_dev_attr_in7_input.dev_attr.attr,
&sensor_dev_attr_in8_input.dev_attr.attr,
&sensor_dev_attr_in9_input.dev_attr.attr,
&sensor_dev_attr_in10_input.dev_attr.attr,
&sensor_dev_attr_in11_input.dev_attr.attr,
&sensor_dev_attr_in12_input.dev_attr.attr,
&sensor_dev_attr_in13_input.dev_attr.attr,
&sensor_dev_attr_in1_label.dev_attr.attr,
&sensor_dev_attr_in2_label.dev_attr.attr,
&sensor_dev_attr_in3_label.dev_attr.attr,
&sensor_dev_attr_in4_label.dev_attr.attr,
&sensor_dev_attr_in5_label.dev_attr.attr,
&sensor_dev_attr_in6_label.dev_attr.attr,
&sensor_dev_attr_in7_label.dev_attr.attr,
&sensor_dev_attr_in8_label.dev_attr.attr,
&sensor_dev_attr_in9_label.dev_attr.attr,
&sensor_dev_attr_in10_label.dev_attr.attr,
&sensor_dev_attr_in11_label.dev_attr.attr,
&sensor_dev_attr_in12_label.dev_attr.attr,
&sensor_dev_attr_in13_label.dev_attr.attr,
&sensor_dev_attr_in1_alarm.dev_attr.attr,
&sensor_dev_attr_in2_alarm.dev_attr.attr,
&sensor_dev_attr_in3_alarm.dev_attr.attr,
&sensor_dev_attr_in4_alarm.dev_attr.attr,
&sensor_dev_attr_in5_alarm.dev_attr.attr,
&sensor_dev_attr_in6_alarm.dev_attr.attr,
&sensor_dev_attr_in7_alarm.dev_attr.attr,
&sensor_dev_attr_in8_alarm.dev_attr.attr,
&sensor_dev_attr_in9_alarm.dev_attr.attr,
&sensor_dev_attr_in10_alarm.dev_attr.attr,
&sensor_dev_attr_in11_alarm.dev_attr.attr,
&sensor_dev_attr_in12_alarm.dev_attr.attr,
&sensor_dev_attr_in13_alarm.dev_attr.attr,
&sensor_dev_attr_fan1_min.dev_attr.attr,
&sensor_dev_attr_fan2_min.dev_attr.attr,
&sensor_dev_attr_fan3_min.dev_attr.attr,
&sensor_dev_attr_fan4_min.dev_attr.attr,
&sensor_dev_attr_fan5_min.dev_attr.attr,
&sensor_dev_attr_fan6_min.dev_attr.attr,
&sensor_dev_attr_fan7_min.dev_attr.attr,
&sensor_dev_attr_fan8_min.dev_attr.attr,
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan2_input.dev_attr.attr,
&sensor_dev_attr_fan3_input.dev_attr.attr,
&sensor_dev_attr_fan4_input.dev_attr.attr,
&sensor_dev_attr_fan5_input.dev_attr.attr,
&sensor_dev_attr_fan6_input.dev_attr.attr,
&sensor_dev_attr_fan7_input.dev_attr.attr,
&sensor_dev_attr_fan8_input.dev_attr.attr,
&sensor_dev_attr_fan1_alarm.dev_attr.attr,
&sensor_dev_attr_fan2_alarm.dev_attr.attr,
&sensor_dev_attr_fan3_alarm.dev_attr.attr,
&sensor_dev_attr_fan4_alarm.dev_attr.attr,
&sensor_dev_attr_fan5_alarm.dev_attr.attr,
&sensor_dev_attr_fan6_alarm.dev_attr.attr,
&sensor_dev_attr_fan7_alarm.dev_attr.attr,
&sensor_dev_attr_fan8_alarm.dev_attr.attr,
&sensor_dev_attr_force_pwm_max.dev_attr.attr,
&sensor_dev_attr_pwm1.dev_attr.attr,
&sensor_dev_attr_pwm2.dev_attr.attr,
&sensor_dev_attr_pwm3.dev_attr.attr,
&sensor_dev_attr_pwm4.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm4_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_pwm4_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point1_hyst.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point1_hyst.dev_attr.attr,
&sensor_dev_attr_temp3_auto_point1_hyst.dev_attr.attr,
&sensor_dev_attr_temp4_auto_point1_hyst.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point2_hyst.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point2_hyst.dev_attr.attr,
&sensor_dev_attr_temp3_auto_point2_hyst.dev_attr.attr,
&sensor_dev_attr_temp4_auto_point2_hyst.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_temp3_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_temp4_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_temp3_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_temp4_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_enable.dev_attr.attr,
&sensor_dev_attr_pwm2_enable.dev_attr.attr,
&sensor_dev_attr_pwm3_enable.dev_attr.attr,
&sensor_dev_attr_pwm4_enable.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_channels_temp.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_channels_temp.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_channels_temp.dev_attr.attr,
&sensor_dev_attr_pwm4_auto_channels_temp.dev_attr.attr,
NULL
};
ATTRIBUTE_GROUPS(adt7462);
/* Return 0 if detection is successful, -ENODEV otherwise */
static int adt7462_detect(struct i2c_client *client,
struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
int vendor, device, revision;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
vendor = i2c_smbus_read_byte_data(client, ADT7462_REG_VENDOR);
if (vendor != ADT7462_VENDOR)
return -ENODEV;
device = i2c_smbus_read_byte_data(client, ADT7462_REG_DEVICE);
if (device != ADT7462_DEVICE)
return -ENODEV;
revision = i2c_smbus_read_byte_data(client, ADT7462_REG_REVISION);
if (revision != ADT7462_REVISION)
return -ENODEV;
strlcpy(info->type, "adt7462", I2C_NAME_SIZE);
return 0;
}
static int adt7462_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct device *dev = &client->dev;
struct adt7462_data *data;
struct device *hwmon_dev;
data = devm_kzalloc(dev, sizeof(struct adt7462_data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->client = client;
mutex_init(&data->lock);
dev_info(&client->dev, "%s chip found\n", client->name);
hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
data,
adt7462_groups);
return PTR_ERR_OR_ZERO(hwmon_dev);
}
static const struct i2c_device_id adt7462_id[] = {
{ "adt7462", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, adt7462_id);
static struct i2c_driver adt7462_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "adt7462",
},
.probe = adt7462_probe,
.id_table = adt7462_id,
.detect = adt7462_detect,
.address_list = normal_i2c,
};
module_i2c_driver(adt7462_driver);
MODULE_AUTHOR("Darrick J. Wong <darrick.wong@oracle.com>");
MODULE_DESCRIPTION("ADT7462 driver");
MODULE_LICENSE("GPL");