2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-21 03:33:59 +08:00
linux-next/include/scsi/sas.h
Linus Torvalds ba6d10ab80 SCSI misc on 20190709
This is mostly update of the usual drivers: qla2xxx, hpsa, lpfc, ufs,
 mpt3sas, ibmvscsi, megaraid_sas, bnx2fc and hisi_sas as well as the
 removal of the osst driver (I heard from Willem privately that he
 would like the driver removed because all his test hardware has
 failed).  Plus number of minor changes, spelling fixes and other
 trivia.
 
 Signed-off-by: James E.J. Bottomley <jejb@linux.ibm.com>
 -----BEGIN PGP SIGNATURE-----
 
 iJwEABMIAEQWIQTnYEDbdso9F2cI+arnQslM7pishQUCXSTl4yYcamFtZXMuYm90
 dG9tbGV5QGhhbnNlbnBhcnRuZXJzaGlwLmNvbQAKCRDnQslM7pishdcxAQDCJVbd
 fPUX76/V1ldupunF97+3DTharxxbst+VnkOnCwD8D4c0KFFFOI9+F36cnMGCPegE
 fjy17dQLvsJ4GsidHy8=
 =aS5B
 -----END PGP SIGNATURE-----

Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi

Pull SCSI updates from James Bottomley:
 "This is mostly update of the usual drivers: qla2xxx, hpsa, lpfc, ufs,
  mpt3sas, ibmvscsi, megaraid_sas, bnx2fc and hisi_sas as well as the
  removal of the osst driver (I heard from Willem privately that he
  would like the driver removed because all his test hardware has
  failed). Plus number of minor changes, spelling fixes and other
  trivia.

  The big merge conflict this time around is the SPDX licence tags.
  Following discussion on linux-next, we believe our version to be more
  accurate than the one in the tree, so the resolution is to take our
  version for all the SPDX conflicts"

Note on the SPDX license tag conversion conflicts: the SCSI tree had
done its own SPDX conversion, which in some cases conflicted with the
treewide ones done by Thomas & co.

In almost all cases, the conflicts were purely syntactic: the SCSI tree
used the old-style SPDX tags ("GPL-2.0" and "GPL-2.0+") while the
treewide conversion had used the new-style ones ("GPL-2.0-only" and
"GPL-2.0-or-later").

In these cases I picked the new-style one.

In a few cases, the SPDX conversion was actually different, though.  As
explained by James above, and in more detail in a pre-pull-request
thread:

 "The other problem is actually substantive: In the libsas code Luben
  Tuikov originally specified gpl 2.0 only by dint of stating:

  * This file is licensed under GPLv2.

  In all the libsas files, but then muddied the water by quoting GPLv2
  verbatim (which includes the or later than language). So for these
  files Christoph did the conversion to v2 only SPDX tags and Thomas
  converted to v2 or later tags"

So in those cases, where the spdx tag substantially mattered, I took the
SCSI tree conversion of it, but then also took the opportunity to turn
the old-style "GPL-2.0" into a new-style "GPL-2.0-only" tag.

Similarly, when there were whitespace differences or other differences
to the comments around the copyright notices, I took the version from
the SCSI tree as being the more specific conversion.

Finally, in the spdx conversions that had no conflicts (because the
treewide ones hadn't been done for those files), I just took the SCSI
tree version as-is, even if it was old-style.  The old-style conversions
are perfectly valid, even if the "-only" and "-or-later" versions are
perhaps more descriptive.

* tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi: (185 commits)
  scsi: qla2xxx: move IO flush to the front of NVME rport unregistration
  scsi: qla2xxx: Fix NVME cmd and LS cmd timeout race condition
  scsi: qla2xxx: on session delete, return nvme cmd
  scsi: qla2xxx: Fix kernel crash after disconnecting NVMe devices
  scsi: megaraid_sas: Update driver version to 07.710.06.00-rc1
  scsi: megaraid_sas: Introduce various Aero performance modes
  scsi: megaraid_sas: Use high IOPS queues based on IO workload
  scsi: megaraid_sas: Set affinity for high IOPS reply queues
  scsi: megaraid_sas: Enable coalescing for high IOPS queues
  scsi: megaraid_sas: Add support for High IOPS queues
  scsi: megaraid_sas: Add support for MPI toolbox commands
  scsi: megaraid_sas: Offload Aero RAID5/6 division calculations to driver
  scsi: megaraid_sas: RAID1 PCI bandwidth limit algorithm is applicable for only Ventura
  scsi: megaraid_sas: megaraid_sas: Add check for count returned by HOST_DEVICE_LIST DCMD
  scsi: megaraid_sas: Handle sequence JBOD map failure at driver level
  scsi: megaraid_sas: Don't send FPIO to RL Bypass queue
  scsi: megaraid_sas: In probe context, retry IOC INIT once if firmware is in fault
  scsi: megaraid_sas: Release Mutex lock before OCR in case of DCMD timeout
  scsi: megaraid_sas: Call disable_irq from process IRQ poll
  scsi: megaraid_sas: Remove few debug counters from IO path
  ...
2019-07-11 15:14:01 -07:00

711 lines
12 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* SAS structures and definitions header file
*
* Copyright (C) 2005 Adaptec, Inc. All rights reserved.
* Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
*/
#ifndef _SAS_H_
#define _SAS_H_
#include <linux/types.h>
#include <asm/byteorder.h>
#define SAS_ADDR_SIZE 8
#define HASHED_SAS_ADDR_SIZE 3
#define SAS_ADDR(_sa) ((unsigned long long) be64_to_cpu(*(__be64 *)(_sa)))
#define SMP_REQUEST 0x40
#define SMP_RESPONSE 0x41
#define SSP_DATA 0x01
#define SSP_XFER_RDY 0x05
#define SSP_COMMAND 0x06
#define SSP_RESPONSE 0x07
#define SSP_TASK 0x16
#define SMP_REPORT_GENERAL 0x00
#define SMP_REPORT_MANUF_INFO 0x01
#define SMP_READ_GPIO_REG 0x02
#define SMP_DISCOVER 0x10
#define SMP_REPORT_PHY_ERR_LOG 0x11
#define SMP_REPORT_PHY_SATA 0x12
#define SMP_REPORT_ROUTE_INFO 0x13
#define SMP_WRITE_GPIO_REG 0x82
#define SMP_CONF_ROUTE_INFO 0x90
#define SMP_PHY_CONTROL 0x91
#define SMP_PHY_TEST_FUNCTION 0x92
#define SMP_RESP_FUNC_ACC 0x00
#define SMP_RESP_FUNC_UNK 0x01
#define SMP_RESP_FUNC_FAILED 0x02
#define SMP_RESP_INV_FRM_LEN 0x03
#define SMP_RESP_NO_PHY 0x10
#define SMP_RESP_NO_INDEX 0x11
#define SMP_RESP_PHY_NO_SATA 0x12
#define SMP_RESP_PHY_UNK_OP 0x13
#define SMP_RESP_PHY_UNK_TESTF 0x14
#define SMP_RESP_PHY_TEST_INPROG 0x15
#define SMP_RESP_PHY_VACANT 0x16
/* SAM TMFs */
#define TMF_ABORT_TASK 0x01
#define TMF_ABORT_TASK_SET 0x02
#define TMF_CLEAR_TASK_SET 0x04
#define TMF_LU_RESET 0x08
#define TMF_CLEAR_ACA 0x40
#define TMF_QUERY_TASK 0x80
/* SAS TMF responses */
#define TMF_RESP_FUNC_COMPLETE 0x00
#define TMF_RESP_INVALID_FRAME 0x02
#define TMF_RESP_FUNC_ESUPP 0x04
#define TMF_RESP_FUNC_FAILED 0x05
#define TMF_RESP_FUNC_SUCC 0x08
#define TMF_RESP_NO_LUN 0x09
#define TMF_RESP_OVERLAPPED_TAG 0x0A
enum sas_oob_mode {
OOB_NOT_CONNECTED,
SATA_OOB_MODE,
SAS_OOB_MODE
};
/* See sas_discover.c if you plan on changing these */
enum sas_device_type {
/* these are SAS protocol defined (attached device type field) */
SAS_PHY_UNUSED = 0,
SAS_END_DEVICE = 1,
SAS_EDGE_EXPANDER_DEVICE = 2,
SAS_FANOUT_EXPANDER_DEVICE = 3,
/* these are internal to libsas */
SAS_HA = 4,
SAS_SATA_DEV = 5,
SAS_SATA_PM = 7,
SAS_SATA_PM_PORT = 8,
SAS_SATA_PENDING = 9,
};
enum sas_protocol {
SAS_PROTOCOL_NONE = 0,
SAS_PROTOCOL_SATA = 0x01,
SAS_PROTOCOL_SMP = 0x02,
SAS_PROTOCOL_STP = 0x04,
SAS_PROTOCOL_SSP = 0x08,
SAS_PROTOCOL_ALL = 0x0E,
SAS_PROTOCOL_STP_ALL = SAS_PROTOCOL_STP|SAS_PROTOCOL_SATA,
};
/* From the spec; local phys only */
enum phy_func {
PHY_FUNC_NOP,
PHY_FUNC_LINK_RESET, /* Enables the phy */
PHY_FUNC_HARD_RESET,
PHY_FUNC_DISABLE,
PHY_FUNC_CLEAR_ERROR_LOG = 5,
PHY_FUNC_CLEAR_AFFIL,
PHY_FUNC_TX_SATA_PS_SIGNAL,
PHY_FUNC_RELEASE_SPINUP_HOLD = 0x10, /* LOCAL PORT ONLY! */
PHY_FUNC_SET_LINK_RATE,
PHY_FUNC_GET_EVENTS,
};
/* SAS LLDD would need to report only _very_few_ of those, like BROADCAST.
* Most of those are here for completeness.
*/
enum sas_prim {
SAS_PRIM_AIP_NORMAL = 1,
SAS_PRIM_AIP_R0 = 2,
SAS_PRIM_AIP_R1 = 3,
SAS_PRIM_AIP_R2 = 4,
SAS_PRIM_AIP_WC = 5,
SAS_PRIM_AIP_WD = 6,
SAS_PRIM_AIP_WP = 7,
SAS_PRIM_AIP_RWP = 8,
SAS_PRIM_BC_CH = 9,
SAS_PRIM_BC_RCH0 = 10,
SAS_PRIM_BC_RCH1 = 11,
SAS_PRIM_BC_R0 = 12,
SAS_PRIM_BC_R1 = 13,
SAS_PRIM_BC_R2 = 14,
SAS_PRIM_BC_R3 = 15,
SAS_PRIM_BC_R4 = 16,
SAS_PRIM_NOTIFY_ENSP= 17,
SAS_PRIM_NOTIFY_R0 = 18,
SAS_PRIM_NOTIFY_R1 = 19,
SAS_PRIM_NOTIFY_R2 = 20,
SAS_PRIM_CLOSE_CLAF = 21,
SAS_PRIM_CLOSE_NORM = 22,
SAS_PRIM_CLOSE_R0 = 23,
SAS_PRIM_CLOSE_R1 = 24,
SAS_PRIM_OPEN_RTRY = 25,
SAS_PRIM_OPEN_RJCT = 26,
SAS_PRIM_OPEN_ACPT = 27,
SAS_PRIM_DONE = 28,
SAS_PRIM_BREAK = 29,
SATA_PRIM_DMAT = 33,
SATA_PRIM_PMNAK = 34,
SATA_PRIM_PMACK = 35,
SATA_PRIM_PMREQ_S = 36,
SATA_PRIM_PMREQ_P = 37,
SATA_SATA_R_ERR = 38,
};
enum sas_open_rej_reason {
/* Abandon open */
SAS_OREJ_UNKNOWN = 0,
SAS_OREJ_BAD_DEST = 1,
SAS_OREJ_CONN_RATE = 2,
SAS_OREJ_EPROTO = 3,
SAS_OREJ_RESV_AB0 = 4,
SAS_OREJ_RESV_AB1 = 5,
SAS_OREJ_RESV_AB2 = 6,
SAS_OREJ_RESV_AB3 = 7,
SAS_OREJ_WRONG_DEST= 8,
SAS_OREJ_STP_NORES = 9,
/* Retry open */
SAS_OREJ_NO_DEST = 10,
SAS_OREJ_PATH_BLOCKED = 11,
SAS_OREJ_RSVD_CONT0 = 12,
SAS_OREJ_RSVD_CONT1 = 13,
SAS_OREJ_RSVD_INIT0 = 14,
SAS_OREJ_RSVD_INIT1 = 15,
SAS_OREJ_RSVD_STOP0 = 16,
SAS_OREJ_RSVD_STOP1 = 17,
SAS_OREJ_RSVD_RETRY = 18,
};
enum sas_gpio_reg_type {
SAS_GPIO_REG_CFG = 0,
SAS_GPIO_REG_RX = 1,
SAS_GPIO_REG_RX_GP = 2,
SAS_GPIO_REG_TX = 3,
SAS_GPIO_REG_TX_GP = 4,
};
struct dev_to_host_fis {
u8 fis_type; /* 0x34 */
u8 flags;
u8 status;
u8 error;
u8 lbal;
union { u8 lbam; u8 byte_count_low; };
union { u8 lbah; u8 byte_count_high; };
u8 device;
u8 lbal_exp;
u8 lbam_exp;
u8 lbah_exp;
u8 _r_a;
union { u8 sector_count; u8 interrupt_reason; };
u8 sector_count_exp;
u8 _r_b;
u8 _r_c;
u32 _r_d;
} __attribute__ ((packed));
struct host_to_dev_fis {
u8 fis_type; /* 0x27 */
u8 flags;
u8 command;
u8 features;
u8 lbal;
union { u8 lbam; u8 byte_count_low; };
union { u8 lbah; u8 byte_count_high; };
u8 device;
u8 lbal_exp;
u8 lbam_exp;
u8 lbah_exp;
u8 features_exp;
union { u8 sector_count; u8 interrupt_reason; };
u8 sector_count_exp;
u8 _r_a;
u8 control;
u32 _r_b;
} __attribute__ ((packed));
/* Prefer to have code clarity over header file clarity.
*/
#ifdef __LITTLE_ENDIAN_BITFIELD
struct sas_identify_frame {
/* Byte 0 */
u8 frame_type:4;
u8 dev_type:3;
u8 _un0:1;
/* Byte 1 */
u8 _un1;
/* Byte 2 */
union {
struct {
u8 _un20:1;
u8 smp_iport:1;
u8 stp_iport:1;
u8 ssp_iport:1;
u8 _un247:4;
};
u8 initiator_bits;
};
/* Byte 3 */
union {
struct {
u8 _un30:1;
u8 smp_tport:1;
u8 stp_tport:1;
u8 ssp_tport:1;
u8 _un347:4;
};
u8 target_bits;
};
/* Byte 4 - 11 */
u8 _un4_11[8];
/* Byte 12 - 19 */
u8 sas_addr[SAS_ADDR_SIZE];
/* Byte 20 */
u8 phy_id;
u8 _un21_27[7];
__be32 crc;
} __attribute__ ((packed));
struct ssp_frame_hdr {
u8 frame_type;
u8 hashed_dest_addr[HASHED_SAS_ADDR_SIZE];
u8 _r_a;
u8 hashed_src_addr[HASHED_SAS_ADDR_SIZE];
__be16 _r_b;
u8 changing_data_ptr:1;
u8 retransmit:1;
u8 retry_data_frames:1;
u8 _r_c:5;
u8 num_fill_bytes:2;
u8 _r_d:6;
u32 _r_e;
__be16 tag;
__be16 tptt;
__be32 data_offs;
} __attribute__ ((packed));
struct ssp_response_iu {
u8 _r_a[10];
u8 datapres:2;
u8 _r_b:6;
u8 status;
u32 _r_c;
__be32 sense_data_len;
__be32 response_data_len;
u8 resp_data[0];
u8 sense_data[0];
} __attribute__ ((packed));
struct ssp_command_iu {
u8 lun[8];
u8 _r_a;
union {
struct {
u8 attr:3;
u8 prio:4;
u8 efb:1;
};
u8 efb_prio_attr;
};
u8 _r_b;
u8 _r_c:2;
u8 add_cdb_len:6;
u8 cdb[16];
u8 add_cdb[0];
} __attribute__ ((packed));
struct xfer_rdy_iu {
__be32 requested_offset;
__be32 write_data_len;
__be32 _r_a;
} __attribute__ ((packed));
struct ssp_tmf_iu {
u8 lun[8];
u16 _r_a;
u8 tmf;
u8 _r_b;
__be16 tag;
u8 _r_c[14];
} __attribute__ ((packed));
/* ---------- SMP ---------- */
struct report_general_resp {
__be16 change_count;
__be16 route_indexes;
u8 _r_a;
u8 num_phys;
u8 conf_route_table:1;
u8 configuring:1;
u8 config_others:1;
u8 orej_retry_supp:1;
u8 stp_cont_awt:1;
u8 self_config:1;
u8 zone_config:1;
u8 t2t_supp:1;
u8 _r_c;
u8 enclosure_logical_id[8];
u8 _r_d[12];
} __attribute__ ((packed));
struct discover_resp {
u8 _r_a[5];
u8 phy_id;
__be16 _r_b;
u8 _r_c:4;
u8 attached_dev_type:3;
u8 _r_d:1;
u8 linkrate:4;
u8 _r_e:4;
u8 attached_sata_host:1;
u8 iproto:3;
u8 _r_f:4;
u8 attached_sata_dev:1;
u8 tproto:3;
u8 _r_g:3;
u8 attached_sata_ps:1;
u8 sas_addr[8];
u8 attached_sas_addr[8];
u8 attached_phy_id;
u8 _r_h[7];
u8 hmin_linkrate:4;
u8 pmin_linkrate:4;
u8 hmax_linkrate:4;
u8 pmax_linkrate:4;
u8 change_count;
u8 pptv:4;
u8 _r_i:3;
u8 virtual:1;
u8 routing_attr:4;
u8 _r_j:4;
u8 conn_type;
u8 conn_el_index;
u8 conn_phy_link;
u8 _r_k[8];
} __attribute__ ((packed));
struct report_phy_sata_resp {
u8 _r_a[5];
u8 phy_id;
u8 _r_b;
u8 affil_valid:1;
u8 affil_supp:1;
u8 _r_c:6;
u32 _r_d;
u8 stp_sas_addr[8];
struct dev_to_host_fis fis;
u32 _r_e;
u8 affil_stp_ini_addr[8];
__be32 crc;
} __attribute__ ((packed));
struct smp_resp {
u8 frame_type;
u8 function;
u8 result;
u8 reserved;
union {
struct report_general_resp rg;
struct discover_resp disc;
struct report_phy_sata_resp rps;
};
} __attribute__ ((packed));
#elif defined(__BIG_ENDIAN_BITFIELD)
struct sas_identify_frame {
/* Byte 0 */
u8 _un0:1;
u8 dev_type:3;
u8 frame_type:4;
/* Byte 1 */
u8 _un1;
/* Byte 2 */
union {
struct {
u8 _un247:4;
u8 ssp_iport:1;
u8 stp_iport:1;
u8 smp_iport:1;
u8 _un20:1;
};
u8 initiator_bits;
};
/* Byte 3 */
union {
struct {
u8 _un347:4;
u8 ssp_tport:1;
u8 stp_tport:1;
u8 smp_tport:1;
u8 _un30:1;
};
u8 target_bits;
};
/* Byte 4 - 11 */
u8 _un4_11[8];
/* Byte 12 - 19 */
u8 sas_addr[SAS_ADDR_SIZE];
/* Byte 20 */
u8 phy_id;
u8 _un21_27[7];
__be32 crc;
} __attribute__ ((packed));
struct ssp_frame_hdr {
u8 frame_type;
u8 hashed_dest_addr[HASHED_SAS_ADDR_SIZE];
u8 _r_a;
u8 hashed_src_addr[HASHED_SAS_ADDR_SIZE];
__be16 _r_b;
u8 _r_c:5;
u8 retry_data_frames:1;
u8 retransmit:1;
u8 changing_data_ptr:1;
u8 _r_d:6;
u8 num_fill_bytes:2;
u32 _r_e;
__be16 tag;
__be16 tptt;
__be32 data_offs;
} __attribute__ ((packed));
struct ssp_response_iu {
u8 _r_a[10];
u8 _r_b:6;
u8 datapres:2;
u8 status;
u32 _r_c;
__be32 sense_data_len;
__be32 response_data_len;
u8 resp_data[0];
u8 sense_data[0];
} __attribute__ ((packed));
struct ssp_command_iu {
u8 lun[8];
u8 _r_a;
union {
struct {
u8 efb:1;
u8 prio:4;
u8 attr:3;
};
u8 efb_prio_attr;
};
u8 _r_b;
u8 add_cdb_len:6;
u8 _r_c:2;
u8 cdb[16];
u8 add_cdb[0];
} __attribute__ ((packed));
struct xfer_rdy_iu {
__be32 requested_offset;
__be32 write_data_len;
__be32 _r_a;
} __attribute__ ((packed));
struct ssp_tmf_iu {
u8 lun[8];
u16 _r_a;
u8 tmf;
u8 _r_b;
__be16 tag;
u8 _r_c[14];
} __attribute__ ((packed));
/* ---------- SMP ---------- */
struct report_general_resp {
__be16 change_count;
__be16 route_indexes;
u8 _r_a;
u8 num_phys;
u8 t2t_supp:1;
u8 zone_config:1;
u8 self_config:1;
u8 stp_cont_awt:1;
u8 orej_retry_supp:1;
u8 config_others:1;
u8 configuring:1;
u8 conf_route_table:1;
u8 _r_c;
u8 enclosure_logical_id[8];
u8 _r_d[12];
} __attribute__ ((packed));
struct discover_resp {
u8 _r_a[5];
u8 phy_id;
__be16 _r_b;
u8 _r_d:1;
u8 attached_dev_type:3;
u8 _r_c:4;
u8 _r_e:4;
u8 linkrate:4;
u8 _r_f:4;
u8 iproto:3;
u8 attached_sata_host:1;
u8 attached_sata_ps:1;
u8 _r_g:3;
u8 tproto:3;
u8 attached_sata_dev:1;
u8 sas_addr[8];
u8 attached_sas_addr[8];
u8 attached_phy_id;
u8 _r_h[7];
u8 pmin_linkrate:4;
u8 hmin_linkrate:4;
u8 pmax_linkrate:4;
u8 hmax_linkrate:4;
u8 change_count;
u8 virtual:1;
u8 _r_i:3;
u8 pptv:4;
u8 _r_j:4;
u8 routing_attr:4;
u8 conn_type;
u8 conn_el_index;
u8 conn_phy_link;
u8 _r_k[8];
} __attribute__ ((packed));
struct report_phy_sata_resp {
u8 _r_a[5];
u8 phy_id;
u8 _r_b;
u8 _r_c:6;
u8 affil_supp:1;
u8 affil_valid:1;
u32 _r_d;
u8 stp_sas_addr[8];
struct dev_to_host_fis fis;
u32 _r_e;
u8 affil_stp_ini_addr[8];
__be32 crc;
} __attribute__ ((packed));
struct smp_resp {
u8 frame_type;
u8 function;
u8 result;
u8 reserved;
union {
struct report_general_resp rg;
struct discover_resp disc;
struct report_phy_sata_resp rps;
};
} __attribute__ ((packed));
#else
#error "Bitfield order not defined!"
#endif
#endif /* _SAS_H_ */