2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-01 18:24:23 +08:00
linux-next/kernel/kthread.c
Nishanth Aravamudan 109228389a kernel/kthread.c: partial revert of 81c98869fa ("kthread: ensure locality of task_struct allocations")
After discussions with Tejun, we don't want to spread the use of
cpu_to_mem() (and thus knowledge of allocators/NUMA topology details) into
callers, but would rather ensure the callees correctly handle memoryless
nodes.  With the previous patches ("topology: add support for
node_to_mem_node() to determine the fallback node" and "slub: fallback to
node_to_mem_node() node if allocating on memoryless node") adding and
using node_to_mem_node(), we can safely undo part of the change to the
kthread logic from 81c98869fa.

Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Han Pingtian <hanpt@linux.vnet.ibm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Anton Blanchard <anton@samba.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:51 -04:00

693 lines
19 KiB
C

/* Kernel thread helper functions.
* Copyright (C) 2004 IBM Corporation, Rusty Russell.
*
* Creation is done via kthreadd, so that we get a clean environment
* even if we're invoked from userspace (think modprobe, hotplug cpu,
* etc.).
*/
#include <linux/sched.h>
#include <linux/kthread.h>
#include <linux/completion.h>
#include <linux/err.h>
#include <linux/cpuset.h>
#include <linux/unistd.h>
#include <linux/file.h>
#include <linux/export.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/freezer.h>
#include <linux/ptrace.h>
#include <linux/uaccess.h>
#include <trace/events/sched.h>
static DEFINE_SPINLOCK(kthread_create_lock);
static LIST_HEAD(kthread_create_list);
struct task_struct *kthreadd_task;
struct kthread_create_info
{
/* Information passed to kthread() from kthreadd. */
int (*threadfn)(void *data);
void *data;
int node;
/* Result passed back to kthread_create() from kthreadd. */
struct task_struct *result;
struct completion *done;
struct list_head list;
};
struct kthread {
unsigned long flags;
unsigned int cpu;
void *data;
struct completion parked;
struct completion exited;
};
enum KTHREAD_BITS {
KTHREAD_IS_PER_CPU = 0,
KTHREAD_SHOULD_STOP,
KTHREAD_SHOULD_PARK,
KTHREAD_IS_PARKED,
};
#define __to_kthread(vfork) \
container_of(vfork, struct kthread, exited)
static inline struct kthread *to_kthread(struct task_struct *k)
{
return __to_kthread(k->vfork_done);
}
static struct kthread *to_live_kthread(struct task_struct *k)
{
struct completion *vfork = ACCESS_ONCE(k->vfork_done);
if (likely(vfork))
return __to_kthread(vfork);
return NULL;
}
/**
* kthread_should_stop - should this kthread return now?
*
* When someone calls kthread_stop() on your kthread, it will be woken
* and this will return true. You should then return, and your return
* value will be passed through to kthread_stop().
*/
bool kthread_should_stop(void)
{
return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
}
EXPORT_SYMBOL(kthread_should_stop);
/**
* kthread_should_park - should this kthread park now?
*
* When someone calls kthread_park() on your kthread, it will be woken
* and this will return true. You should then do the necessary
* cleanup and call kthread_parkme()
*
* Similar to kthread_should_stop(), but this keeps the thread alive
* and in a park position. kthread_unpark() "restarts" the thread and
* calls the thread function again.
*/
bool kthread_should_park(void)
{
return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(current)->flags);
}
/**
* kthread_freezable_should_stop - should this freezable kthread return now?
* @was_frozen: optional out parameter, indicates whether %current was frozen
*
* kthread_should_stop() for freezable kthreads, which will enter
* refrigerator if necessary. This function is safe from kthread_stop() /
* freezer deadlock and freezable kthreads should use this function instead
* of calling try_to_freeze() directly.
*/
bool kthread_freezable_should_stop(bool *was_frozen)
{
bool frozen = false;
might_sleep();
if (unlikely(freezing(current)))
frozen = __refrigerator(true);
if (was_frozen)
*was_frozen = frozen;
return kthread_should_stop();
}
EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
/**
* kthread_data - return data value specified on kthread creation
* @task: kthread task in question
*
* Return the data value specified when kthread @task was created.
* The caller is responsible for ensuring the validity of @task when
* calling this function.
*/
void *kthread_data(struct task_struct *task)
{
return to_kthread(task)->data;
}
/**
* probe_kthread_data - speculative version of kthread_data()
* @task: possible kthread task in question
*
* @task could be a kthread task. Return the data value specified when it
* was created if accessible. If @task isn't a kthread task or its data is
* inaccessible for any reason, %NULL is returned. This function requires
* that @task itself is safe to dereference.
*/
void *probe_kthread_data(struct task_struct *task)
{
struct kthread *kthread = to_kthread(task);
void *data = NULL;
probe_kernel_read(&data, &kthread->data, sizeof(data));
return data;
}
static void __kthread_parkme(struct kthread *self)
{
__set_current_state(TASK_PARKED);
while (test_bit(KTHREAD_SHOULD_PARK, &self->flags)) {
if (!test_and_set_bit(KTHREAD_IS_PARKED, &self->flags))
complete(&self->parked);
schedule();
__set_current_state(TASK_PARKED);
}
clear_bit(KTHREAD_IS_PARKED, &self->flags);
__set_current_state(TASK_RUNNING);
}
void kthread_parkme(void)
{
__kthread_parkme(to_kthread(current));
}
static int kthread(void *_create)
{
/* Copy data: it's on kthread's stack */
struct kthread_create_info *create = _create;
int (*threadfn)(void *data) = create->threadfn;
void *data = create->data;
struct completion *done;
struct kthread self;
int ret;
self.flags = 0;
self.data = data;
init_completion(&self.exited);
init_completion(&self.parked);
current->vfork_done = &self.exited;
/* If user was SIGKILLed, I release the structure. */
done = xchg(&create->done, NULL);
if (!done) {
kfree(create);
do_exit(-EINTR);
}
/* OK, tell user we're spawned, wait for stop or wakeup */
__set_current_state(TASK_UNINTERRUPTIBLE);
create->result = current;
complete(done);
schedule();
ret = -EINTR;
if (!test_bit(KTHREAD_SHOULD_STOP, &self.flags)) {
__kthread_parkme(&self);
ret = threadfn(data);
}
/* we can't just return, we must preserve "self" on stack */
do_exit(ret);
}
/* called from do_fork() to get node information for about to be created task */
int tsk_fork_get_node(struct task_struct *tsk)
{
#ifdef CONFIG_NUMA
if (tsk == kthreadd_task)
return tsk->pref_node_fork;
#endif
return NUMA_NO_NODE;
}
static void create_kthread(struct kthread_create_info *create)
{
int pid;
#ifdef CONFIG_NUMA
current->pref_node_fork = create->node;
#endif
/* We want our own signal handler (we take no signals by default). */
pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD);
if (pid < 0) {
/* If user was SIGKILLed, I release the structure. */
struct completion *done = xchg(&create->done, NULL);
if (!done) {
kfree(create);
return;
}
create->result = ERR_PTR(pid);
complete(done);
}
}
/**
* kthread_create_on_node - create a kthread.
* @threadfn: the function to run until signal_pending(current).
* @data: data ptr for @threadfn.
* @node: memory node number.
* @namefmt: printf-style name for the thread.
*
* Description: This helper function creates and names a kernel
* thread. The thread will be stopped: use wake_up_process() to start
* it. See also kthread_run().
*
* If thread is going to be bound on a particular cpu, give its node
* in @node, to get NUMA affinity for kthread stack, or else give -1.
* When woken, the thread will run @threadfn() with @data as its
* argument. @threadfn() can either call do_exit() directly if it is a
* standalone thread for which no one will call kthread_stop(), or
* return when 'kthread_should_stop()' is true (which means
* kthread_stop() has been called). The return value should be zero
* or a negative error number; it will be passed to kthread_stop().
*
* Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
*/
struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
void *data, int node,
const char namefmt[],
...)
{
DECLARE_COMPLETION_ONSTACK(done);
struct task_struct *task;
struct kthread_create_info *create = kmalloc(sizeof(*create),
GFP_KERNEL);
if (!create)
return ERR_PTR(-ENOMEM);
create->threadfn = threadfn;
create->data = data;
create->node = node;
create->done = &done;
spin_lock(&kthread_create_lock);
list_add_tail(&create->list, &kthread_create_list);
spin_unlock(&kthread_create_lock);
wake_up_process(kthreadd_task);
/*
* Wait for completion in killable state, for I might be chosen by
* the OOM killer while kthreadd is trying to allocate memory for
* new kernel thread.
*/
if (unlikely(wait_for_completion_killable(&done))) {
/*
* If I was SIGKILLed before kthreadd (or new kernel thread)
* calls complete(), leave the cleanup of this structure to
* that thread.
*/
if (xchg(&create->done, NULL))
return ERR_PTR(-EINTR);
/*
* kthreadd (or new kernel thread) will call complete()
* shortly.
*/
wait_for_completion(&done);
}
task = create->result;
if (!IS_ERR(task)) {
static const struct sched_param param = { .sched_priority = 0 };
va_list args;
va_start(args, namefmt);
vsnprintf(task->comm, sizeof(task->comm), namefmt, args);
va_end(args);
/*
* root may have changed our (kthreadd's) priority or CPU mask.
* The kernel thread should not inherit these properties.
*/
sched_setscheduler_nocheck(task, SCHED_NORMAL, &param);
set_cpus_allowed_ptr(task, cpu_all_mask);
}
kfree(create);
return task;
}
EXPORT_SYMBOL(kthread_create_on_node);
static void __kthread_bind(struct task_struct *p, unsigned int cpu, long state)
{
/* Must have done schedule() in kthread() before we set_task_cpu */
if (!wait_task_inactive(p, state)) {
WARN_ON(1);
return;
}
/* It's safe because the task is inactive. */
do_set_cpus_allowed(p, cpumask_of(cpu));
p->flags |= PF_NO_SETAFFINITY;
}
/**
* kthread_bind - bind a just-created kthread to a cpu.
* @p: thread created by kthread_create().
* @cpu: cpu (might not be online, must be possible) for @k to run on.
*
* Description: This function is equivalent to set_cpus_allowed(),
* except that @cpu doesn't need to be online, and the thread must be
* stopped (i.e., just returned from kthread_create()).
*/
void kthread_bind(struct task_struct *p, unsigned int cpu)
{
__kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(kthread_bind);
/**
* kthread_create_on_cpu - Create a cpu bound kthread
* @threadfn: the function to run until signal_pending(current).
* @data: data ptr for @threadfn.
* @cpu: The cpu on which the thread should be bound,
* @namefmt: printf-style name for the thread. Format is restricted
* to "name.*%u". Code fills in cpu number.
*
* Description: This helper function creates and names a kernel thread
* The thread will be woken and put into park mode.
*/
struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
void *data, unsigned int cpu,
const char *namefmt)
{
struct task_struct *p;
p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
cpu);
if (IS_ERR(p))
return p;
set_bit(KTHREAD_IS_PER_CPU, &to_kthread(p)->flags);
to_kthread(p)->cpu = cpu;
/* Park the thread to get it out of TASK_UNINTERRUPTIBLE state */
kthread_park(p);
return p;
}
static void __kthread_unpark(struct task_struct *k, struct kthread *kthread)
{
clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
/*
* We clear the IS_PARKED bit here as we don't wait
* until the task has left the park code. So if we'd
* park before that happens we'd see the IS_PARKED bit
* which might be about to be cleared.
*/
if (test_and_clear_bit(KTHREAD_IS_PARKED, &kthread->flags)) {
if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
__kthread_bind(k, kthread->cpu, TASK_PARKED);
wake_up_state(k, TASK_PARKED);
}
}
/**
* kthread_unpark - unpark a thread created by kthread_create().
* @k: thread created by kthread_create().
*
* Sets kthread_should_park() for @k to return false, wakes it, and
* waits for it to return. If the thread is marked percpu then its
* bound to the cpu again.
*/
void kthread_unpark(struct task_struct *k)
{
struct kthread *kthread = to_live_kthread(k);
if (kthread)
__kthread_unpark(k, kthread);
}
/**
* kthread_park - park a thread created by kthread_create().
* @k: thread created by kthread_create().
*
* Sets kthread_should_park() for @k to return true, wakes it, and
* waits for it to return. This can also be called after kthread_create()
* instead of calling wake_up_process(): the thread will park without
* calling threadfn().
*
* Returns 0 if the thread is parked, -ENOSYS if the thread exited.
* If called by the kthread itself just the park bit is set.
*/
int kthread_park(struct task_struct *k)
{
struct kthread *kthread = to_live_kthread(k);
int ret = -ENOSYS;
if (kthread) {
if (!test_bit(KTHREAD_IS_PARKED, &kthread->flags)) {
set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
if (k != current) {
wake_up_process(k);
wait_for_completion(&kthread->parked);
}
}
ret = 0;
}
return ret;
}
/**
* kthread_stop - stop a thread created by kthread_create().
* @k: thread created by kthread_create().
*
* Sets kthread_should_stop() for @k to return true, wakes it, and
* waits for it to exit. This can also be called after kthread_create()
* instead of calling wake_up_process(): the thread will exit without
* calling threadfn().
*
* If threadfn() may call do_exit() itself, the caller must ensure
* task_struct can't go away.
*
* Returns the result of threadfn(), or %-EINTR if wake_up_process()
* was never called.
*/
int kthread_stop(struct task_struct *k)
{
struct kthread *kthread;
int ret;
trace_sched_kthread_stop(k);
get_task_struct(k);
kthread = to_live_kthread(k);
if (kthread) {
set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
__kthread_unpark(k, kthread);
wake_up_process(k);
wait_for_completion(&kthread->exited);
}
ret = k->exit_code;
put_task_struct(k);
trace_sched_kthread_stop_ret(ret);
return ret;
}
EXPORT_SYMBOL(kthread_stop);
int kthreadd(void *unused)
{
struct task_struct *tsk = current;
/* Setup a clean context for our children to inherit. */
set_task_comm(tsk, "kthreadd");
ignore_signals(tsk);
set_cpus_allowed_ptr(tsk, cpu_all_mask);
set_mems_allowed(node_states[N_MEMORY]);
current->flags |= PF_NOFREEZE;
for (;;) {
set_current_state(TASK_INTERRUPTIBLE);
if (list_empty(&kthread_create_list))
schedule();
__set_current_state(TASK_RUNNING);
spin_lock(&kthread_create_lock);
while (!list_empty(&kthread_create_list)) {
struct kthread_create_info *create;
create = list_entry(kthread_create_list.next,
struct kthread_create_info, list);
list_del_init(&create->list);
spin_unlock(&kthread_create_lock);
create_kthread(create);
spin_lock(&kthread_create_lock);
}
spin_unlock(&kthread_create_lock);
}
return 0;
}
void __init_kthread_worker(struct kthread_worker *worker,
const char *name,
struct lock_class_key *key)
{
spin_lock_init(&worker->lock);
lockdep_set_class_and_name(&worker->lock, key, name);
INIT_LIST_HEAD(&worker->work_list);
worker->task = NULL;
}
EXPORT_SYMBOL_GPL(__init_kthread_worker);
/**
* kthread_worker_fn - kthread function to process kthread_worker
* @worker_ptr: pointer to initialized kthread_worker
*
* This function can be used as @threadfn to kthread_create() or
* kthread_run() with @worker_ptr argument pointing to an initialized
* kthread_worker. The started kthread will process work_list until
* the it is stopped with kthread_stop(). A kthread can also call
* this function directly after extra initialization.
*
* Different kthreads can be used for the same kthread_worker as long
* as there's only one kthread attached to it at any given time. A
* kthread_worker without an attached kthread simply collects queued
* kthread_works.
*/
int kthread_worker_fn(void *worker_ptr)
{
struct kthread_worker *worker = worker_ptr;
struct kthread_work *work;
WARN_ON(worker->task);
worker->task = current;
repeat:
set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */
if (kthread_should_stop()) {
__set_current_state(TASK_RUNNING);
spin_lock_irq(&worker->lock);
worker->task = NULL;
spin_unlock_irq(&worker->lock);
return 0;
}
work = NULL;
spin_lock_irq(&worker->lock);
if (!list_empty(&worker->work_list)) {
work = list_first_entry(&worker->work_list,
struct kthread_work, node);
list_del_init(&work->node);
}
worker->current_work = work;
spin_unlock_irq(&worker->lock);
if (work) {
__set_current_state(TASK_RUNNING);
work->func(work);
} else if (!freezing(current))
schedule();
try_to_freeze();
goto repeat;
}
EXPORT_SYMBOL_GPL(kthread_worker_fn);
/* insert @work before @pos in @worker */
static void insert_kthread_work(struct kthread_worker *worker,
struct kthread_work *work,
struct list_head *pos)
{
lockdep_assert_held(&worker->lock);
list_add_tail(&work->node, pos);
work->worker = worker;
if (!worker->current_work && likely(worker->task))
wake_up_process(worker->task);
}
/**
* queue_kthread_work - queue a kthread_work
* @worker: target kthread_worker
* @work: kthread_work to queue
*
* Queue @work to work processor @task for async execution. @task
* must have been created with kthread_worker_create(). Returns %true
* if @work was successfully queued, %false if it was already pending.
*/
bool queue_kthread_work(struct kthread_worker *worker,
struct kthread_work *work)
{
bool ret = false;
unsigned long flags;
spin_lock_irqsave(&worker->lock, flags);
if (list_empty(&work->node)) {
insert_kthread_work(worker, work, &worker->work_list);
ret = true;
}
spin_unlock_irqrestore(&worker->lock, flags);
return ret;
}
EXPORT_SYMBOL_GPL(queue_kthread_work);
struct kthread_flush_work {
struct kthread_work work;
struct completion done;
};
static void kthread_flush_work_fn(struct kthread_work *work)
{
struct kthread_flush_work *fwork =
container_of(work, struct kthread_flush_work, work);
complete(&fwork->done);
}
/**
* flush_kthread_work - flush a kthread_work
* @work: work to flush
*
* If @work is queued or executing, wait for it to finish execution.
*/
void flush_kthread_work(struct kthread_work *work)
{
struct kthread_flush_work fwork = {
KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
COMPLETION_INITIALIZER_ONSTACK(fwork.done),
};
struct kthread_worker *worker;
bool noop = false;
retry:
worker = work->worker;
if (!worker)
return;
spin_lock_irq(&worker->lock);
if (work->worker != worker) {
spin_unlock_irq(&worker->lock);
goto retry;
}
if (!list_empty(&work->node))
insert_kthread_work(worker, &fwork.work, work->node.next);
else if (worker->current_work == work)
insert_kthread_work(worker, &fwork.work, worker->work_list.next);
else
noop = true;
spin_unlock_irq(&worker->lock);
if (!noop)
wait_for_completion(&fwork.done);
}
EXPORT_SYMBOL_GPL(flush_kthread_work);
/**
* flush_kthread_worker - flush all current works on a kthread_worker
* @worker: worker to flush
*
* Wait until all currently executing or pending works on @worker are
* finished.
*/
void flush_kthread_worker(struct kthread_worker *worker)
{
struct kthread_flush_work fwork = {
KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
COMPLETION_INITIALIZER_ONSTACK(fwork.done),
};
queue_kthread_work(worker, &fwork.work);
wait_for_completion(&fwork.done);
}
EXPORT_SYMBOL_GPL(flush_kthread_worker);