2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-01 18:24:23 +08:00
linux-next/tools/perf/util/evsel.c
Ingo Molnar 3ce5aceb5d perf/core improvements and fixes:
perf record:
 
   Alexey Budankov:
 
   - Allow mixing --user-regs with --call-graph=dwarf, making sure that
     the minimal set of registers for DWARF unwinding is present in the
     set of user registers requested to be present in each sample, while
     warning the user that this may make callchains unreliable if more
     that the minimal set of registers is needed to unwind.
 
   yuzhoujian:
 
   - Add support to collect callchains from kernel or user space only,
     IOW allow setting the perf_event_attr.exclude_callchain_{kernel,user}
     bits from the command line.
 
 perf trace:
 
   Arnaldo Carvalho de Melo:
 
   - Remove x86_64 specific syscall numbers from the augmented_raw_syscalls
     BPF in-kernel collector of augmented raw_syscalls:sys_{enter,exit}
     payloads, use instead the syscall numbers obtainer either by the
     arch specific syscalltbl generators or from audit-libs.
 
   - Allow 'perf trace' to ask for the number of bytes to collect for
     string arguments, for now ask for PATH_MAX, i.e. the whole
     pathnames, which ends up being just a way to speficy which syscall
     args are pathnames and thus should be read using bpf_probe_read_str().
 
   - Skip unknown syscalls when expanding strace like syscall groups.
     This helps using the 'string' group of syscalls to work in arm64,
     where some of the syscalls present in x86_64 that deal with
     strings, for instance 'access', are deprecated and this should not
     be asked for tracing.
 
   Leo Yan:
 
   - Exit when failing to build eBPF program.
 
 perf config:
 
   Arnaldo Carvalho de Melo:
 
   - Bail out when a handler returns failure for a key-value pair. This
     helps with cases where processing a key-value pair is not just a
     matter of setting some tool specific knob, involving, for instance
     building a BPF program to then attach to the list of events 'perf
     trace' will use, e.g. augmented_raw_syscalls.c.
 
 perf.data:
 
   Kan Liang:
 
   - Read and store die ID information available in new Intel processors
     in CPUID.1F in the CPU topology written in the perf.data header.
 
 perf stat:
 
   Kan Liang:
 
   - Support per-die aggregation.
 
 Documentation:
 
   Arnaldo Carvalho de Melo:
 
   - Update perf.data documentation about the CPU_TOPOLOGY, MEM_TOPOLOGY,
     CLOCKID and DIR_FORMAT headers.
 
   Song Liu:
 
   - Add description of headers HEADER_BPF_PROG_INFO and HEADER_BPF_BTF.
 
   Leo Yan:
 
   - Update default value for llvm.clang-bpf-cmd-template in 'man perf-config'.
 
 JVMTI:
 
   Jiri Olsa:
 
   - Address gcc string overflow warning for strncpy()
 
 core:
 
   - Remove superfluous nthreads system_wide setup in perf_evsel__alloc_fd().
 
 Intel PT:
 
   Adrian Hunter:
 
   - Add support for samples to contain IPC ratio, collecting cycles
     information from CYC packets, showing the IPC info periodically, because
     Intel PT does not update the cycle count on every branch or instruction,
     the incremental values will often be zero.  When there are values, they
     will be the number of instructions and number of cycles since the last
     update, and thus represent the average IPC since the last IPC value.
 
     E.g.:
 
     # perf record --cpu 1 -m200000 -a -e intel_pt/cyc/u sleep 0.0001
     rounding mmap pages size to 1024M (262144 pages)
     [ perf record: Woken up 0 times to write data ]
     [ perf record: Captured and wrote 2.208 MB perf.data ]
     # perf script --insn-trace --xed -F+ipc,-dso,-cpu,-tid
     #
     <SNIP + add line numbering to make sense of IPC counts e.g.: (18/3)>
     1   cc1 63501.650479626: 7f5219ac27bf _int_free+0x3f   jnz 0x7f5219ac2af0       IPC: 0.81 (36/44)
     2   cc1 63501.650479626: 7f5219ac27c5 _int_free+0x45   cmp $0x1f, %rbp
     3   cc1 63501.650479626: 7f5219ac27c9 _int_free+0x49   jbe 0x7f5219ac2b00
     4   cc1 63501.650479626: 7f5219ac27cf _int_free+0x4f   test $0x8, %al
     5   cc1 63501.650479626: 7f5219ac27d1 _int_free+0x51   jnz 0x7f5219ac2b00
     6   cc1 63501.650479626: 7f5219ac27d7 _int_free+0x57   movq  0x13c58a(%rip), %rcx
     7   cc1 63501.650479626: 7f5219ac27de _int_free+0x5e   mov %rdi, %r12
     8   cc1 63501.650479626: 7f5219ac27e1 _int_free+0x61   movq  %fs:(%rcx), %rax
     9   cc1 63501.650479626: 7f5219ac27e5 _int_free+0x65   test %rax, %rax
    10   cc1 63501.650479626: 7f5219ac27e8 _int_free+0x68   jz 0x7f5219ac2821
    11   cc1 63501.650479626: 7f5219ac27ea _int_free+0x6a   leaq  -0x11(%rbp), %rdi
    12   cc1 63501.650479626: 7f5219ac27ee _int_free+0x6e   mov %rdi, %rsi
    13   cc1 63501.650479626: 7f5219ac27f1 _int_free+0x71   shr $0x4, %rsi
    14   cc1 63501.650479626: 7f5219ac27f5 _int_free+0x75   cmpq  %rsi, 0x13caf4(%rip)
    15   cc1 63501.650479626: 7f5219ac27fc _int_free+0x7c   jbe 0x7f5219ac2821
    16   cc1 63501.650479626: 7f5219ac2821 _int_free+0xa1   cmpq  0x13f138(%rip), %rbp
    17   cc1 63501.650479626: 7f5219ac2828 _int_free+0xa8   jnbe 0x7f5219ac28d8
    18   cc1 63501.650479626: 7f5219ac28d8 _int_free+0x158  testb  $0x2, 0x8(%rbx)
    19   cc1 63501.650479628: 7f5219ac28dc _int_free+0x15c  jnz 0x7f5219ac2ab0       IPC: 6.00 (18/3)
     <SNIP>
 
   - Allow using time ranges with Intel PT, i.e. these features, already
     present but not optimially usable with Intel PT, should be now:
 
         Select the second 10% time slice:
 
         $ perf script --time 10%/2
 
         Select from 0% to 10% time slice:
 
         $ perf script --time 0%-10%
 
         Select the first and second 10% time slices:
 
         $ perf script --time 10%/1,10%/2
 
         Select from 0% to 10% and 30% to 40% slices:
 
         $ perf script --time 0%-10%,30%-40%
 
 cs-etm (ARM):
 
   Mathieu Poirier:
 
   - Add support for CPU-wide trace scenarios.
 
 s390:
 
   Thomas Richter:
 
   - Fix missing kvm module load for s390.
 
   - Fix OOM error in TUI mode on s390
 
   - Support s390 diag event display when doing analysis on !s390
     architectures.
 
 Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQR2GiIUctdOfX2qHhGyPKLppCJ+JwUCXP/1xQAKCRCyPKLppCJ+
 J9xcAQCwOITAshE7op7HbKUPtkqiMNu+hpNa3skhxEpGHvKO0AEArpBXtuvEP8EU
 PZsp+8vcVrlZ+dZutttgvkRz25mScg8=
 =kfFb
 -----END PGP SIGNATURE-----

Merge tag 'perf-core-for-mingo-5.3-20190611' of git://git.kernel.org/pub/scm/linux/kernel/git/acme/linux into perf/core

Pull perf/core improvements and fixes from Arnaldo Carvalho de Melo:

perf record:

  Alexey Budankov:

  - Allow mixing --user-regs with --call-graph=dwarf, making sure that
    the minimal set of registers for DWARF unwinding is present in the
    set of user registers requested to be present in each sample, while
    warning the user that this may make callchains unreliable if more
    that the minimal set of registers is needed to unwind.

  yuzhoujian:

  - Add support to collect callchains from kernel or user space only,
    IOW allow setting the perf_event_attr.exclude_callchain_{kernel,user}
    bits from the command line.

perf trace:

  Arnaldo Carvalho de Melo:

  - Remove x86_64 specific syscall numbers from the augmented_raw_syscalls
    BPF in-kernel collector of augmented raw_syscalls:sys_{enter,exit}
    payloads, use instead the syscall numbers obtainer either by the
    arch specific syscalltbl generators or from audit-libs.

  - Allow 'perf trace' to ask for the number of bytes to collect for
    string arguments, for now ask for PATH_MAX, i.e. the whole
    pathnames, which ends up being just a way to speficy which syscall
    args are pathnames and thus should be read using bpf_probe_read_str().

  - Skip unknown syscalls when expanding strace like syscall groups.
    This helps using the 'string' group of syscalls to work in arm64,
    where some of the syscalls present in x86_64 that deal with
    strings, for instance 'access', are deprecated and this should not
    be asked for tracing.

  Leo Yan:

  - Exit when failing to build eBPF program.

perf config:

  Arnaldo Carvalho de Melo:

  - Bail out when a handler returns failure for a key-value pair. This
    helps with cases where processing a key-value pair is not just a
    matter of setting some tool specific knob, involving, for instance
    building a BPF program to then attach to the list of events 'perf
    trace' will use, e.g. augmented_raw_syscalls.c.

perf.data:

  Kan Liang:

  - Read and store die ID information available in new Intel processors
    in CPUID.1F in the CPU topology written in the perf.data header.

perf stat:

  Kan Liang:

  - Support per-die aggregation.

Documentation:

  Arnaldo Carvalho de Melo:

  - Update perf.data documentation about the CPU_TOPOLOGY, MEM_TOPOLOGY,
    CLOCKID and DIR_FORMAT headers.

  Song Liu:

  - Add description of headers HEADER_BPF_PROG_INFO and HEADER_BPF_BTF.

  Leo Yan:

  - Update default value for llvm.clang-bpf-cmd-template in 'man perf-config'.

JVMTI:

  Jiri Olsa:

  - Address gcc string overflow warning for strncpy()

core:

  - Remove superfluous nthreads system_wide setup in perf_evsel__alloc_fd().

Intel PT:

  Adrian Hunter:

  - Add support for samples to contain IPC ratio, collecting cycles
    information from CYC packets, showing the IPC info periodically, because
    Intel PT does not update the cycle count on every branch or instruction,
    the incremental values will often be zero.  When there are values, they
    will be the number of instructions and number of cycles since the last
    update, and thus represent the average IPC since the last IPC value.

    E.g.:

    # perf record --cpu 1 -m200000 -a -e intel_pt/cyc/u sleep 0.0001
    rounding mmap pages size to 1024M (262144 pages)
    [ perf record: Woken up 0 times to write data ]
    [ perf record: Captured and wrote 2.208 MB perf.data ]
    # perf script --insn-trace --xed -F+ipc,-dso,-cpu,-tid
    #
    <SNIP + add line numbering to make sense of IPC counts e.g.: (18/3)>
    1   cc1 63501.650479626: 7f5219ac27bf _int_free+0x3f   jnz 0x7f5219ac2af0       IPC: 0.81 (36/44)
    2   cc1 63501.650479626: 7f5219ac27c5 _int_free+0x45   cmp $0x1f, %rbp
    3   cc1 63501.650479626: 7f5219ac27c9 _int_free+0x49   jbe 0x7f5219ac2b00
    4   cc1 63501.650479626: 7f5219ac27cf _int_free+0x4f   test $0x8, %al
    5   cc1 63501.650479626: 7f5219ac27d1 _int_free+0x51   jnz 0x7f5219ac2b00
    6   cc1 63501.650479626: 7f5219ac27d7 _int_free+0x57   movq  0x13c58a(%rip), %rcx
    7   cc1 63501.650479626: 7f5219ac27de _int_free+0x5e   mov %rdi, %r12
    8   cc1 63501.650479626: 7f5219ac27e1 _int_free+0x61   movq  %fs:(%rcx), %rax
    9   cc1 63501.650479626: 7f5219ac27e5 _int_free+0x65   test %rax, %rax
   10   cc1 63501.650479626: 7f5219ac27e8 _int_free+0x68   jz 0x7f5219ac2821
   11   cc1 63501.650479626: 7f5219ac27ea _int_free+0x6a   leaq  -0x11(%rbp), %rdi
   12   cc1 63501.650479626: 7f5219ac27ee _int_free+0x6e   mov %rdi, %rsi
   13   cc1 63501.650479626: 7f5219ac27f1 _int_free+0x71   shr $0x4, %rsi
   14   cc1 63501.650479626: 7f5219ac27f5 _int_free+0x75   cmpq  %rsi, 0x13caf4(%rip)
   15   cc1 63501.650479626: 7f5219ac27fc _int_free+0x7c   jbe 0x7f5219ac2821
   16   cc1 63501.650479626: 7f5219ac2821 _int_free+0xa1   cmpq  0x13f138(%rip), %rbp
   17   cc1 63501.650479626: 7f5219ac2828 _int_free+0xa8   jnbe 0x7f5219ac28d8
   18   cc1 63501.650479626: 7f5219ac28d8 _int_free+0x158  testb  $0x2, 0x8(%rbx)
   19   cc1 63501.650479628: 7f5219ac28dc _int_free+0x15c  jnz 0x7f5219ac2ab0       IPC: 6.00 (18/3)
    <SNIP>

  - Allow using time ranges with Intel PT, i.e. these features, already
    present but not optimially usable with Intel PT, should be now:

        Select the second 10% time slice:

        $ perf script --time 10%/2

        Select from 0% to 10% time slice:

        $ perf script --time 0%-10%

        Select the first and second 10% time slices:

        $ perf script --time 10%/1,10%/2

        Select from 0% to 10% and 30% to 40% slices:

        $ perf script --time 0%-10%,30%-40%

cs-etm (ARM):

  Mathieu Poirier:

  - Add support for CPU-wide trace scenarios.

s390:

  Thomas Richter:

  - Fix missing kvm module load for s390.

  - Fix OOM error in TUI mode on s390

  - Support s390 diag event display when doing analysis on !s390
    architectures.

Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-17 20:48:14 +02:00

3070 lines
75 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
*
* Parts came from builtin-{top,stat,record}.c, see those files for further
* copyright notes.
*/
#include <byteswap.h>
#include <errno.h>
#include <inttypes.h>
#include <linux/bitops.h>
#include <api/fs/fs.h>
#include <api/fs/tracing_path.h>
#include <traceevent/event-parse.h>
#include <linux/hw_breakpoint.h>
#include <linux/perf_event.h>
#include <linux/compiler.h>
#include <linux/err.h>
#include <sys/ioctl.h>
#include <sys/resource.h>
#include <sys/types.h>
#include <dirent.h>
#include "asm/bug.h"
#include "callchain.h"
#include "cgroup.h"
#include "event.h"
#include "evsel.h"
#include "evlist.h"
#include "util.h"
#include "cpumap.h"
#include "thread_map.h"
#include "target.h"
#include "perf_regs.h"
#include "debug.h"
#include "trace-event.h"
#include "stat.h"
#include "memswap.h"
#include "util/parse-branch-options.h"
#include "sane_ctype.h"
struct perf_missing_features perf_missing_features;
static clockid_t clockid;
static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
{
return 0;
}
void __weak test_attr__ready(void) { }
static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
{
}
static struct {
size_t size;
int (*init)(struct perf_evsel *evsel);
void (*fini)(struct perf_evsel *evsel);
} perf_evsel__object = {
.size = sizeof(struct perf_evsel),
.init = perf_evsel__no_extra_init,
.fini = perf_evsel__no_extra_fini,
};
int perf_evsel__object_config(size_t object_size,
int (*init)(struct perf_evsel *evsel),
void (*fini)(struct perf_evsel *evsel))
{
if (object_size == 0)
goto set_methods;
if (perf_evsel__object.size > object_size)
return -EINVAL;
perf_evsel__object.size = object_size;
set_methods:
if (init != NULL)
perf_evsel__object.init = init;
if (fini != NULL)
perf_evsel__object.fini = fini;
return 0;
}
#define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
int __perf_evsel__sample_size(u64 sample_type)
{
u64 mask = sample_type & PERF_SAMPLE_MASK;
int size = 0;
int i;
for (i = 0; i < 64; i++) {
if (mask & (1ULL << i))
size++;
}
size *= sizeof(u64);
return size;
}
/**
* __perf_evsel__calc_id_pos - calculate id_pos.
* @sample_type: sample type
*
* This function returns the position of the event id (PERF_SAMPLE_ID or
* PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
* sample_event.
*/
static int __perf_evsel__calc_id_pos(u64 sample_type)
{
int idx = 0;
if (sample_type & PERF_SAMPLE_IDENTIFIER)
return 0;
if (!(sample_type & PERF_SAMPLE_ID))
return -1;
if (sample_type & PERF_SAMPLE_IP)
idx += 1;
if (sample_type & PERF_SAMPLE_TID)
idx += 1;
if (sample_type & PERF_SAMPLE_TIME)
idx += 1;
if (sample_type & PERF_SAMPLE_ADDR)
idx += 1;
return idx;
}
/**
* __perf_evsel__calc_is_pos - calculate is_pos.
* @sample_type: sample type
*
* This function returns the position (counting backwards) of the event id
* (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
* sample_id_all is used there is an id sample appended to non-sample events.
*/
static int __perf_evsel__calc_is_pos(u64 sample_type)
{
int idx = 1;
if (sample_type & PERF_SAMPLE_IDENTIFIER)
return 1;
if (!(sample_type & PERF_SAMPLE_ID))
return -1;
if (sample_type & PERF_SAMPLE_CPU)
idx += 1;
if (sample_type & PERF_SAMPLE_STREAM_ID)
idx += 1;
return idx;
}
void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
{
evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
}
void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
enum perf_event_sample_format bit)
{
if (!(evsel->attr.sample_type & bit)) {
evsel->attr.sample_type |= bit;
evsel->sample_size += sizeof(u64);
perf_evsel__calc_id_pos(evsel);
}
}
void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
enum perf_event_sample_format bit)
{
if (evsel->attr.sample_type & bit) {
evsel->attr.sample_type &= ~bit;
evsel->sample_size -= sizeof(u64);
perf_evsel__calc_id_pos(evsel);
}
}
void perf_evsel__set_sample_id(struct perf_evsel *evsel,
bool can_sample_identifier)
{
if (can_sample_identifier) {
perf_evsel__reset_sample_bit(evsel, ID);
perf_evsel__set_sample_bit(evsel, IDENTIFIER);
} else {
perf_evsel__set_sample_bit(evsel, ID);
}
evsel->attr.read_format |= PERF_FORMAT_ID;
}
/**
* perf_evsel__is_function_event - Return whether given evsel is a function
* trace event
*
* @evsel - evsel selector to be tested
*
* Return %true if event is function trace event
*/
bool perf_evsel__is_function_event(struct perf_evsel *evsel)
{
#define FUNCTION_EVENT "ftrace:function"
return evsel->name &&
!strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
#undef FUNCTION_EVENT
}
void perf_evsel__init(struct perf_evsel *evsel,
struct perf_event_attr *attr, int idx)
{
evsel->idx = idx;
evsel->tracking = !idx;
evsel->attr = *attr;
evsel->leader = evsel;
evsel->unit = "";
evsel->scale = 1.0;
evsel->max_events = ULONG_MAX;
evsel->evlist = NULL;
evsel->bpf_fd = -1;
INIT_LIST_HEAD(&evsel->node);
INIT_LIST_HEAD(&evsel->config_terms);
perf_evsel__object.init(evsel);
evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
perf_evsel__calc_id_pos(evsel);
evsel->cmdline_group_boundary = false;
evsel->metric_expr = NULL;
evsel->metric_name = NULL;
evsel->metric_events = NULL;
evsel->collect_stat = false;
evsel->pmu_name = NULL;
}
struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
{
struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
if (!evsel)
return NULL;
perf_evsel__init(evsel, attr, idx);
if (perf_evsel__is_bpf_output(evsel)) {
evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
evsel->attr.sample_period = 1;
}
if (perf_evsel__is_clock(evsel)) {
/*
* The evsel->unit points to static alias->unit
* so it's ok to use static string in here.
*/
static const char *unit = "msec";
evsel->unit = unit;
evsel->scale = 1e-6;
}
return evsel;
}
static bool perf_event_can_profile_kernel(void)
{
return geteuid() == 0 || perf_event_paranoid() == -1;
}
struct perf_evsel *perf_evsel__new_cycles(bool precise)
{
struct perf_event_attr attr = {
.type = PERF_TYPE_HARDWARE,
.config = PERF_COUNT_HW_CPU_CYCLES,
.exclude_kernel = !perf_event_can_profile_kernel(),
};
struct perf_evsel *evsel;
event_attr_init(&attr);
if (!precise)
goto new_event;
/*
* Now let the usual logic to set up the perf_event_attr defaults
* to kick in when we return and before perf_evsel__open() is called.
*/
new_event:
evsel = perf_evsel__new(&attr);
if (evsel == NULL)
goto out;
evsel->precise_max = true;
/* use asprintf() because free(evsel) assumes name is allocated */
if (asprintf(&evsel->name, "cycles%s%s%.*s",
(attr.precise_ip || attr.exclude_kernel) ? ":" : "",
attr.exclude_kernel ? "u" : "",
attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
goto error_free;
out:
return evsel;
error_free:
perf_evsel__delete(evsel);
evsel = NULL;
goto out;
}
/*
* Returns pointer with encoded error via <linux/err.h> interface.
*/
struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
{
struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
int err = -ENOMEM;
if (evsel == NULL) {
goto out_err;
} else {
struct perf_event_attr attr = {
.type = PERF_TYPE_TRACEPOINT,
.sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
};
if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
goto out_free;
evsel->tp_format = trace_event__tp_format(sys, name);
if (IS_ERR(evsel->tp_format)) {
err = PTR_ERR(evsel->tp_format);
goto out_free;
}
event_attr_init(&attr);
attr.config = evsel->tp_format->id;
attr.sample_period = 1;
perf_evsel__init(evsel, &attr, idx);
}
return evsel;
out_free:
zfree(&evsel->name);
free(evsel);
out_err:
return ERR_PTR(err);
}
const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
"cycles",
"instructions",
"cache-references",
"cache-misses",
"branches",
"branch-misses",
"bus-cycles",
"stalled-cycles-frontend",
"stalled-cycles-backend",
"ref-cycles",
};
static const char *__perf_evsel__hw_name(u64 config)
{
if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
return perf_evsel__hw_names[config];
return "unknown-hardware";
}
static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
{
int colon = 0, r = 0;
struct perf_event_attr *attr = &evsel->attr;
bool exclude_guest_default = false;
#define MOD_PRINT(context, mod) do { \
if (!attr->exclude_##context) { \
if (!colon) colon = ++r; \
r += scnprintf(bf + r, size - r, "%c", mod); \
} } while(0)
if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
MOD_PRINT(kernel, 'k');
MOD_PRINT(user, 'u');
MOD_PRINT(hv, 'h');
exclude_guest_default = true;
}
if (attr->precise_ip) {
if (!colon)
colon = ++r;
r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
exclude_guest_default = true;
}
if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
MOD_PRINT(host, 'H');
MOD_PRINT(guest, 'G');
}
#undef MOD_PRINT
if (colon)
bf[colon - 1] = ':';
return r;
}
static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
{
int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
}
const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
"cpu-clock",
"task-clock",
"page-faults",
"context-switches",
"cpu-migrations",
"minor-faults",
"major-faults",
"alignment-faults",
"emulation-faults",
"dummy",
};
static const char *__perf_evsel__sw_name(u64 config)
{
if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
return perf_evsel__sw_names[config];
return "unknown-software";
}
static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
{
int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
}
static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
{
int r;
r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
if (type & HW_BREAKPOINT_R)
r += scnprintf(bf + r, size - r, "r");
if (type & HW_BREAKPOINT_W)
r += scnprintf(bf + r, size - r, "w");
if (type & HW_BREAKPOINT_X)
r += scnprintf(bf + r, size - r, "x");
return r;
}
static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
{
struct perf_event_attr *attr = &evsel->attr;
int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
}
const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
[PERF_EVSEL__MAX_ALIASES] = {
{ "L1-dcache", "l1-d", "l1d", "L1-data", },
{ "L1-icache", "l1-i", "l1i", "L1-instruction", },
{ "LLC", "L2", },
{ "dTLB", "d-tlb", "Data-TLB", },
{ "iTLB", "i-tlb", "Instruction-TLB", },
{ "branch", "branches", "bpu", "btb", "bpc", },
{ "node", },
};
const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_EVSEL__MAX_ALIASES] = {
{ "load", "loads", "read", },
{ "store", "stores", "write", },
{ "prefetch", "prefetches", "speculative-read", "speculative-load", },
};
const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
[PERF_EVSEL__MAX_ALIASES] = {
{ "refs", "Reference", "ops", "access", },
{ "misses", "miss", },
};
#define C(x) PERF_COUNT_HW_CACHE_##x
#define CACHE_READ (1 << C(OP_READ))
#define CACHE_WRITE (1 << C(OP_WRITE))
#define CACHE_PREFETCH (1 << C(OP_PREFETCH))
#define COP(x) (1 << x)
/*
* cache operartion stat
* L1I : Read and prefetch only
* ITLB and BPU : Read-only
*/
static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
[C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
[C(L1I)] = (CACHE_READ | CACHE_PREFETCH),
[C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
[C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
[C(ITLB)] = (CACHE_READ),
[C(BPU)] = (CACHE_READ),
[C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
};
bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
{
if (perf_evsel__hw_cache_stat[type] & COP(op))
return true; /* valid */
else
return false; /* invalid */
}
int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
char *bf, size_t size)
{
if (result) {
return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
perf_evsel__hw_cache_op[op][0],
perf_evsel__hw_cache_result[result][0]);
}
return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
perf_evsel__hw_cache_op[op][1]);
}
static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
{
u8 op, result, type = (config >> 0) & 0xff;
const char *err = "unknown-ext-hardware-cache-type";
if (type >= PERF_COUNT_HW_CACHE_MAX)
goto out_err;
op = (config >> 8) & 0xff;
err = "unknown-ext-hardware-cache-op";
if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
goto out_err;
result = (config >> 16) & 0xff;
err = "unknown-ext-hardware-cache-result";
if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
goto out_err;
err = "invalid-cache";
if (!perf_evsel__is_cache_op_valid(type, op))
goto out_err;
return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
out_err:
return scnprintf(bf, size, "%s", err);
}
static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
{
int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
}
static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
{
int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
}
static int perf_evsel__tool_name(char *bf, size_t size)
{
int ret = scnprintf(bf, size, "duration_time");
return ret;
}
const char *perf_evsel__name(struct perf_evsel *evsel)
{
char bf[128];
if (evsel->name)
return evsel->name;
switch (evsel->attr.type) {
case PERF_TYPE_RAW:
perf_evsel__raw_name(evsel, bf, sizeof(bf));
break;
case PERF_TYPE_HARDWARE:
perf_evsel__hw_name(evsel, bf, sizeof(bf));
break;
case PERF_TYPE_HW_CACHE:
perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
break;
case PERF_TYPE_SOFTWARE:
if (evsel->tool_event)
perf_evsel__tool_name(bf, sizeof(bf));
else
perf_evsel__sw_name(evsel, bf, sizeof(bf));
break;
case PERF_TYPE_TRACEPOINT:
scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
break;
case PERF_TYPE_BREAKPOINT:
perf_evsel__bp_name(evsel, bf, sizeof(bf));
break;
default:
scnprintf(bf, sizeof(bf), "unknown attr type: %d",
evsel->attr.type);
break;
}
evsel->name = strdup(bf);
return evsel->name ?: "unknown";
}
const char *perf_evsel__group_name(struct perf_evsel *evsel)
{
return evsel->group_name ?: "anon group";
}
/*
* Returns the group details for the specified leader,
* with following rules.
*
* For record -e '{cycles,instructions}'
* 'anon group { cycles:u, instructions:u }'
*
* For record -e 'cycles,instructions' and report --group
* 'cycles:u, instructions:u'
*/
int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
{
int ret = 0;
struct perf_evsel *pos;
const char *group_name = perf_evsel__group_name(evsel);
if (!evsel->forced_leader)
ret = scnprintf(buf, size, "%s { ", group_name);
ret += scnprintf(buf + ret, size - ret, "%s",
perf_evsel__name(evsel));
for_each_group_member(pos, evsel)
ret += scnprintf(buf + ret, size - ret, ", %s",
perf_evsel__name(pos));
if (!evsel->forced_leader)
ret += scnprintf(buf + ret, size - ret, " }");
return ret;
}
static void __perf_evsel__config_callchain(struct perf_evsel *evsel,
struct record_opts *opts,
struct callchain_param *param)
{
bool function = perf_evsel__is_function_event(evsel);
struct perf_event_attr *attr = &evsel->attr;
perf_evsel__set_sample_bit(evsel, CALLCHAIN);
attr->sample_max_stack = param->max_stack;
if (opts->kernel_callchains)
attr->exclude_callchain_user = 1;
if (opts->user_callchains)
attr->exclude_callchain_kernel = 1;
if (param->record_mode == CALLCHAIN_LBR) {
if (!opts->branch_stack) {
if (attr->exclude_user) {
pr_warning("LBR callstack option is only available "
"to get user callchain information. "
"Falling back to framepointers.\n");
} else {
perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
PERF_SAMPLE_BRANCH_CALL_STACK |
PERF_SAMPLE_BRANCH_NO_CYCLES |
PERF_SAMPLE_BRANCH_NO_FLAGS;
}
} else
pr_warning("Cannot use LBR callstack with branch stack. "
"Falling back to framepointers.\n");
}
if (param->record_mode == CALLCHAIN_DWARF) {
if (!function) {
perf_evsel__set_sample_bit(evsel, REGS_USER);
perf_evsel__set_sample_bit(evsel, STACK_USER);
if (opts->sample_user_regs && DWARF_MINIMAL_REGS != PERF_REGS_MASK) {
attr->sample_regs_user |= DWARF_MINIMAL_REGS;
pr_warning("WARNING: The use of --call-graph=dwarf may require all the user registers, "
"specifying a subset with --user-regs may render DWARF unwinding unreliable, "
"so the minimal registers set (IP, SP) is explicitly forced.\n");
} else {
attr->sample_regs_user |= PERF_REGS_MASK;
}
attr->sample_stack_user = param->dump_size;
attr->exclude_callchain_user = 1;
} else {
pr_info("Cannot use DWARF unwind for function trace event,"
" falling back to framepointers.\n");
}
}
if (function) {
pr_info("Disabling user space callchains for function trace event.\n");
attr->exclude_callchain_user = 1;
}
}
void perf_evsel__config_callchain(struct perf_evsel *evsel,
struct record_opts *opts,
struct callchain_param *param)
{
if (param->enabled)
return __perf_evsel__config_callchain(evsel, opts, param);
}
static void
perf_evsel__reset_callgraph(struct perf_evsel *evsel,
struct callchain_param *param)
{
struct perf_event_attr *attr = &evsel->attr;
perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
if (param->record_mode == CALLCHAIN_LBR) {
perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
PERF_SAMPLE_BRANCH_CALL_STACK);
}
if (param->record_mode == CALLCHAIN_DWARF) {
perf_evsel__reset_sample_bit(evsel, REGS_USER);
perf_evsel__reset_sample_bit(evsel, STACK_USER);
}
}
static void apply_config_terms(struct perf_evsel *evsel,
struct record_opts *opts, bool track)
{
struct perf_evsel_config_term *term;
struct list_head *config_terms = &evsel->config_terms;
struct perf_event_attr *attr = &evsel->attr;
/* callgraph default */
struct callchain_param param = {
.record_mode = callchain_param.record_mode,
};
u32 dump_size = 0;
int max_stack = 0;
const char *callgraph_buf = NULL;
list_for_each_entry(term, config_terms, list) {
switch (term->type) {
case PERF_EVSEL__CONFIG_TERM_PERIOD:
if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
attr->sample_period = term->val.period;
attr->freq = 0;
perf_evsel__reset_sample_bit(evsel, PERIOD);
}
break;
case PERF_EVSEL__CONFIG_TERM_FREQ:
if (!(term->weak && opts->user_freq != UINT_MAX)) {
attr->sample_freq = term->val.freq;
attr->freq = 1;
perf_evsel__set_sample_bit(evsel, PERIOD);
}
break;
case PERF_EVSEL__CONFIG_TERM_TIME:
if (term->val.time)
perf_evsel__set_sample_bit(evsel, TIME);
else
perf_evsel__reset_sample_bit(evsel, TIME);
break;
case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
callgraph_buf = term->val.callgraph;
break;
case PERF_EVSEL__CONFIG_TERM_BRANCH:
if (term->val.branch && strcmp(term->val.branch, "no")) {
perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
parse_branch_str(term->val.branch,
&attr->branch_sample_type);
} else
perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
break;
case PERF_EVSEL__CONFIG_TERM_STACK_USER:
dump_size = term->val.stack_user;
break;
case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
max_stack = term->val.max_stack;
break;
case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS:
evsel->max_events = term->val.max_events;
break;
case PERF_EVSEL__CONFIG_TERM_INHERIT:
/*
* attr->inherit should has already been set by
* perf_evsel__config. If user explicitly set
* inherit using config terms, override global
* opt->no_inherit setting.
*/
attr->inherit = term->val.inherit ? 1 : 0;
break;
case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
attr->write_backward = term->val.overwrite ? 1 : 0;
break;
case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
break;
case PERF_EVSEL__CONFIG_TERM_PERCORE:
break;
default:
break;
}
}
/* User explicitly set per-event callgraph, clear the old setting and reset. */
if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
bool sample_address = false;
if (max_stack) {
param.max_stack = max_stack;
if (callgraph_buf == NULL)
callgraph_buf = "fp";
}
/* parse callgraph parameters */
if (callgraph_buf != NULL) {
if (!strcmp(callgraph_buf, "no")) {
param.enabled = false;
param.record_mode = CALLCHAIN_NONE;
} else {
param.enabled = true;
if (parse_callchain_record(callgraph_buf, &param)) {
pr_err("per-event callgraph setting for %s failed. "
"Apply callgraph global setting for it\n",
evsel->name);
return;
}
if (param.record_mode == CALLCHAIN_DWARF)
sample_address = true;
}
}
if (dump_size > 0) {
dump_size = round_up(dump_size, sizeof(u64));
param.dump_size = dump_size;
}
/* If global callgraph set, clear it */
if (callchain_param.enabled)
perf_evsel__reset_callgraph(evsel, &callchain_param);
/* set perf-event callgraph */
if (param.enabled) {
if (sample_address) {
perf_evsel__set_sample_bit(evsel, ADDR);
perf_evsel__set_sample_bit(evsel, DATA_SRC);
evsel->attr.mmap_data = track;
}
perf_evsel__config_callchain(evsel, opts, &param);
}
}
}
static bool is_dummy_event(struct perf_evsel *evsel)
{
return (evsel->attr.type == PERF_TYPE_SOFTWARE) &&
(evsel->attr.config == PERF_COUNT_SW_DUMMY);
}
/*
* The enable_on_exec/disabled value strategy:
*
* 1) For any type of traced program:
* - all independent events and group leaders are disabled
* - all group members are enabled
*
* Group members are ruled by group leaders. They need to
* be enabled, because the group scheduling relies on that.
*
* 2) For traced programs executed by perf:
* - all independent events and group leaders have
* enable_on_exec set
* - we don't specifically enable or disable any event during
* the record command
*
* Independent events and group leaders are initially disabled
* and get enabled by exec. Group members are ruled by group
* leaders as stated in 1).
*
* 3) For traced programs attached by perf (pid/tid):
* - we specifically enable or disable all events during
* the record command
*
* When attaching events to already running traced we
* enable/disable events specifically, as there's no
* initial traced exec call.
*/
void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
struct callchain_param *callchain)
{
struct perf_evsel *leader = evsel->leader;
struct perf_event_attr *attr = &evsel->attr;
int track = evsel->tracking;
bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
attr->inherit = !opts->no_inherit;
attr->write_backward = opts->overwrite ? 1 : 0;
perf_evsel__set_sample_bit(evsel, IP);
perf_evsel__set_sample_bit(evsel, TID);
if (evsel->sample_read) {
perf_evsel__set_sample_bit(evsel, READ);
/*
* We need ID even in case of single event, because
* PERF_SAMPLE_READ process ID specific data.
*/
perf_evsel__set_sample_id(evsel, false);
/*
* Apply group format only if we belong to group
* with more than one members.
*/
if (leader->nr_members > 1) {
attr->read_format |= PERF_FORMAT_GROUP;
attr->inherit = 0;
}
}
/*
* We default some events to have a default interval. But keep
* it a weak assumption overridable by the user.
*/
if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
opts->user_interval != ULLONG_MAX)) {
if (opts->freq) {
perf_evsel__set_sample_bit(evsel, PERIOD);
attr->freq = 1;
attr->sample_freq = opts->freq;
} else {
attr->sample_period = opts->default_interval;
}
}
/*
* Disable sampling for all group members other
* than leader in case leader 'leads' the sampling.
*/
if ((leader != evsel) && leader->sample_read) {
attr->freq = 0;
attr->sample_freq = 0;
attr->sample_period = 0;
attr->write_backward = 0;
/*
* We don't get sample for slave events, we make them
* when delivering group leader sample. Set the slave
* event to follow the master sample_type to ease up
* report.
*/
attr->sample_type = leader->attr.sample_type;
}
if (opts->no_samples)
attr->sample_freq = 0;
if (opts->inherit_stat) {
evsel->attr.read_format |=
PERF_FORMAT_TOTAL_TIME_ENABLED |
PERF_FORMAT_TOTAL_TIME_RUNNING |
PERF_FORMAT_ID;
attr->inherit_stat = 1;
}
if (opts->sample_address) {
perf_evsel__set_sample_bit(evsel, ADDR);
attr->mmap_data = track;
}
/*
* We don't allow user space callchains for function trace
* event, due to issues with page faults while tracing page
* fault handler and its overall trickiness nature.
*/
if (perf_evsel__is_function_event(evsel))
evsel->attr.exclude_callchain_user = 1;
if (callchain && callchain->enabled && !evsel->no_aux_samples)
perf_evsel__config_callchain(evsel, opts, callchain);
if (opts->sample_intr_regs) {
attr->sample_regs_intr = opts->sample_intr_regs;
perf_evsel__set_sample_bit(evsel, REGS_INTR);
}
if (opts->sample_user_regs) {
attr->sample_regs_user |= opts->sample_user_regs;
perf_evsel__set_sample_bit(evsel, REGS_USER);
}
if (target__has_cpu(&opts->target) || opts->sample_cpu)
perf_evsel__set_sample_bit(evsel, CPU);
/*
* When the user explicitly disabled time don't force it here.
*/
if (opts->sample_time &&
(!perf_missing_features.sample_id_all &&
(!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
opts->sample_time_set)))
perf_evsel__set_sample_bit(evsel, TIME);
if (opts->raw_samples && !evsel->no_aux_samples) {
perf_evsel__set_sample_bit(evsel, TIME);
perf_evsel__set_sample_bit(evsel, RAW);
perf_evsel__set_sample_bit(evsel, CPU);
}
if (opts->sample_address)
perf_evsel__set_sample_bit(evsel, DATA_SRC);
if (opts->sample_phys_addr)
perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
if (opts->no_buffering) {
attr->watermark = 0;
attr->wakeup_events = 1;
}
if (opts->branch_stack && !evsel->no_aux_samples) {
perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
attr->branch_sample_type = opts->branch_stack;
}
if (opts->sample_weight)
perf_evsel__set_sample_bit(evsel, WEIGHT);
attr->task = track;
attr->mmap = track;
attr->mmap2 = track && !perf_missing_features.mmap2;
attr->comm = track;
attr->ksymbol = track && !perf_missing_features.ksymbol;
attr->bpf_event = track && !opts->no_bpf_event &&
!perf_missing_features.bpf_event;
if (opts->record_namespaces)
attr->namespaces = track;
if (opts->record_switch_events)
attr->context_switch = track;
if (opts->sample_transaction)
perf_evsel__set_sample_bit(evsel, TRANSACTION);
if (opts->running_time) {
evsel->attr.read_format |=
PERF_FORMAT_TOTAL_TIME_ENABLED |
PERF_FORMAT_TOTAL_TIME_RUNNING;
}
/*
* XXX see the function comment above
*
* Disabling only independent events or group leaders,
* keeping group members enabled.
*/
if (perf_evsel__is_group_leader(evsel))
attr->disabled = 1;
/*
* Setting enable_on_exec for independent events and
* group leaders for traced executed by perf.
*/
if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
!opts->initial_delay)
attr->enable_on_exec = 1;
if (evsel->immediate) {
attr->disabled = 0;
attr->enable_on_exec = 0;
}
clockid = opts->clockid;
if (opts->use_clockid) {
attr->use_clockid = 1;
attr->clockid = opts->clockid;
}
if (evsel->precise_max)
attr->precise_ip = 3;
if (opts->all_user) {
attr->exclude_kernel = 1;
attr->exclude_user = 0;
}
if (opts->all_kernel) {
attr->exclude_kernel = 0;
attr->exclude_user = 1;
}
if (evsel->own_cpus || evsel->unit)
evsel->attr.read_format |= PERF_FORMAT_ID;
/*
* Apply event specific term settings,
* it overloads any global configuration.
*/
apply_config_terms(evsel, opts, track);
evsel->ignore_missing_thread = opts->ignore_missing_thread;
/* The --period option takes the precedence. */
if (opts->period_set) {
if (opts->period)
perf_evsel__set_sample_bit(evsel, PERIOD);
else
perf_evsel__reset_sample_bit(evsel, PERIOD);
}
/*
* For initial_delay, a dummy event is added implicitly.
* The software event will trigger -EOPNOTSUPP error out,
* if BRANCH_STACK bit is set.
*/
if (opts->initial_delay && is_dummy_event(evsel))
perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
}
static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
{
evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
if (evsel->fd) {
int cpu, thread;
for (cpu = 0; cpu < ncpus; cpu++) {
for (thread = 0; thread < nthreads; thread++) {
FD(evsel, cpu, thread) = -1;
}
}
}
return evsel->fd != NULL ? 0 : -ENOMEM;
}
static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
int ioc, void *arg)
{
int cpu, thread;
for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
int fd = FD(evsel, cpu, thread),
err = ioctl(fd, ioc, arg);
if (err)
return err;
}
}
return 0;
}
int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
{
return perf_evsel__run_ioctl(evsel,
PERF_EVENT_IOC_SET_FILTER,
(void *)filter);
}
int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
{
char *new_filter = strdup(filter);
if (new_filter != NULL) {
free(evsel->filter);
evsel->filter = new_filter;
return 0;
}
return -1;
}
static int perf_evsel__append_filter(struct perf_evsel *evsel,
const char *fmt, const char *filter)
{
char *new_filter;
if (evsel->filter == NULL)
return perf_evsel__set_filter(evsel, filter);
if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
free(evsel->filter);
evsel->filter = new_filter;
return 0;
}
return -1;
}
int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
{
return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
}
int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
{
return perf_evsel__append_filter(evsel, "%s,%s", filter);
}
int perf_evsel__enable(struct perf_evsel *evsel)
{
int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_ENABLE, 0);
if (!err)
evsel->disabled = false;
return err;
}
int perf_evsel__disable(struct perf_evsel *evsel)
{
int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_DISABLE, 0);
/*
* We mark it disabled here so that tools that disable a event can
* ignore events after they disable it. I.e. the ring buffer may have
* already a few more events queued up before the kernel got the stop
* request.
*/
if (!err)
evsel->disabled = true;
return err;
}
int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
{
if (ncpus == 0 || nthreads == 0)
return 0;
if (evsel->system_wide)
nthreads = 1;
evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
if (evsel->sample_id == NULL)
return -ENOMEM;
evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
if (evsel->id == NULL) {
xyarray__delete(evsel->sample_id);
evsel->sample_id = NULL;
return -ENOMEM;
}
return 0;
}
static void perf_evsel__free_fd(struct perf_evsel *evsel)
{
xyarray__delete(evsel->fd);
evsel->fd = NULL;
}
static void perf_evsel__free_id(struct perf_evsel *evsel)
{
xyarray__delete(evsel->sample_id);
evsel->sample_id = NULL;
zfree(&evsel->id);
}
static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
{
struct perf_evsel_config_term *term, *h;
list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
list_del(&term->list);
free(term);
}
}
void perf_evsel__close_fd(struct perf_evsel *evsel)
{
int cpu, thread;
for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
close(FD(evsel, cpu, thread));
FD(evsel, cpu, thread) = -1;
}
}
void perf_evsel__exit(struct perf_evsel *evsel)
{
assert(list_empty(&evsel->node));
assert(evsel->evlist == NULL);
perf_evsel__free_counts(evsel);
perf_evsel__free_fd(evsel);
perf_evsel__free_id(evsel);
perf_evsel__free_config_terms(evsel);
cgroup__put(evsel->cgrp);
cpu_map__put(evsel->cpus);
cpu_map__put(evsel->own_cpus);
thread_map__put(evsel->threads);
zfree(&evsel->group_name);
zfree(&evsel->name);
perf_evsel__object.fini(evsel);
}
void perf_evsel__delete(struct perf_evsel *evsel)
{
perf_evsel__exit(evsel);
free(evsel);
}
void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
struct perf_counts_values *count)
{
struct perf_counts_values tmp;
if (!evsel->prev_raw_counts)
return;
if (cpu == -1) {
tmp = evsel->prev_raw_counts->aggr;
evsel->prev_raw_counts->aggr = *count;
} else {
tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
}
count->val = count->val - tmp.val;
count->ena = count->ena - tmp.ena;
count->run = count->run - tmp.run;
}
void perf_counts_values__scale(struct perf_counts_values *count,
bool scale, s8 *pscaled)
{
s8 scaled = 0;
if (scale) {
if (count->run == 0) {
scaled = -1;
count->val = 0;
} else if (count->run < count->ena) {
scaled = 1;
count->val = (u64)((double) count->val * count->ena / count->run);
}
}
if (pscaled)
*pscaled = scaled;
}
static int perf_evsel__read_size(struct perf_evsel *evsel)
{
u64 read_format = evsel->attr.read_format;
int entry = sizeof(u64); /* value */
int size = 0;
int nr = 1;
if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
size += sizeof(u64);
if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
size += sizeof(u64);
if (read_format & PERF_FORMAT_ID)
entry += sizeof(u64);
if (read_format & PERF_FORMAT_GROUP) {
nr = evsel->nr_members;
size += sizeof(u64);
}
size += entry * nr;
return size;
}
int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
struct perf_counts_values *count)
{
size_t size = perf_evsel__read_size(evsel);
memset(count, 0, sizeof(*count));
if (FD(evsel, cpu, thread) < 0)
return -EINVAL;
if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
return -errno;
return 0;
}
static int
perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
{
struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
return perf_evsel__read(evsel, cpu, thread, count);
}
static void
perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
u64 val, u64 ena, u64 run)
{
struct perf_counts_values *count;
count = perf_counts(counter->counts, cpu, thread);
count->val = val;
count->ena = ena;
count->run = run;
count->loaded = true;
}
static int
perf_evsel__process_group_data(struct perf_evsel *leader,
int cpu, int thread, u64 *data)
{
u64 read_format = leader->attr.read_format;
struct sample_read_value *v;
u64 nr, ena = 0, run = 0, i;
nr = *data++;
if (nr != (u64) leader->nr_members)
return -EINVAL;
if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
ena = *data++;
if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
run = *data++;
v = (struct sample_read_value *) data;
perf_evsel__set_count(leader, cpu, thread,
v[0].value, ena, run);
for (i = 1; i < nr; i++) {
struct perf_evsel *counter;
counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
if (!counter)
return -EINVAL;
perf_evsel__set_count(counter, cpu, thread,
v[i].value, ena, run);
}
return 0;
}
static int
perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
{
struct perf_stat_evsel *ps = leader->stats;
u64 read_format = leader->attr.read_format;
int size = perf_evsel__read_size(leader);
u64 *data = ps->group_data;
if (!(read_format & PERF_FORMAT_ID))
return -EINVAL;
if (!perf_evsel__is_group_leader(leader))
return -EINVAL;
if (!data) {
data = zalloc(size);
if (!data)
return -ENOMEM;
ps->group_data = data;
}
if (FD(leader, cpu, thread) < 0)
return -EINVAL;
if (readn(FD(leader, cpu, thread), data, size) <= 0)
return -errno;
return perf_evsel__process_group_data(leader, cpu, thread, data);
}
int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
{
u64 read_format = evsel->attr.read_format;
if (read_format & PERF_FORMAT_GROUP)
return perf_evsel__read_group(evsel, cpu, thread);
else
return perf_evsel__read_one(evsel, cpu, thread);
}
int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
int cpu, int thread, bool scale)
{
struct perf_counts_values count;
size_t nv = scale ? 3 : 1;
if (FD(evsel, cpu, thread) < 0)
return -EINVAL;
if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
return -ENOMEM;
if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
return -errno;
perf_evsel__compute_deltas(evsel, cpu, thread, &count);
perf_counts_values__scale(&count, scale, NULL);
*perf_counts(evsel->counts, cpu, thread) = count;
return 0;
}
static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
{
struct perf_evsel *leader = evsel->leader;
int fd;
if (perf_evsel__is_group_leader(evsel))
return -1;
/*
* Leader must be already processed/open,
* if not it's a bug.
*/
BUG_ON(!leader->fd);
fd = FD(leader, cpu, thread);
BUG_ON(fd == -1);
return fd;
}
struct bit_names {
int bit;
const char *name;
};
static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
{
bool first_bit = true;
int i = 0;
do {
if (value & bits[i].bit) {
buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
first_bit = false;
}
} while (bits[++i].name != NULL);
}
static void __p_sample_type(char *buf, size_t size, u64 value)
{
#define bit_name(n) { PERF_SAMPLE_##n, #n }
struct bit_names bits[] = {
bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
bit_name(WEIGHT), bit_name(PHYS_ADDR),
{ .name = NULL, }
};
#undef bit_name
__p_bits(buf, size, value, bits);
}
static void __p_branch_sample_type(char *buf, size_t size, u64 value)
{
#define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
struct bit_names bits[] = {
bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
{ .name = NULL, }
};
#undef bit_name
__p_bits(buf, size, value, bits);
}
static void __p_read_format(char *buf, size_t size, u64 value)
{
#define bit_name(n) { PERF_FORMAT_##n, #n }
struct bit_names bits[] = {
bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
bit_name(ID), bit_name(GROUP),
{ .name = NULL, }
};
#undef bit_name
__p_bits(buf, size, value, bits);
}
#define BUF_SIZE 1024
#define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
#define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
#define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
#define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val)
#define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
#define p_read_format(val) __p_read_format(buf, BUF_SIZE, val)
#define PRINT_ATTRn(_n, _f, _p) \
do { \
if (attr->_f) { \
_p(attr->_f); \
ret += attr__fprintf(fp, _n, buf, priv);\
} \
} while (0)
#define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p)
int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
attr__fprintf_f attr__fprintf, void *priv)
{
char buf[BUF_SIZE];
int ret = 0;
PRINT_ATTRf(type, p_unsigned);
PRINT_ATTRf(size, p_unsigned);
PRINT_ATTRf(config, p_hex);
PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
PRINT_ATTRf(sample_type, p_sample_type);
PRINT_ATTRf(read_format, p_read_format);
PRINT_ATTRf(disabled, p_unsigned);
PRINT_ATTRf(inherit, p_unsigned);
PRINT_ATTRf(pinned, p_unsigned);
PRINT_ATTRf(exclusive, p_unsigned);
PRINT_ATTRf(exclude_user, p_unsigned);
PRINT_ATTRf(exclude_kernel, p_unsigned);
PRINT_ATTRf(exclude_hv, p_unsigned);
PRINT_ATTRf(exclude_idle, p_unsigned);
PRINT_ATTRf(mmap, p_unsigned);
PRINT_ATTRf(comm, p_unsigned);
PRINT_ATTRf(freq, p_unsigned);
PRINT_ATTRf(inherit_stat, p_unsigned);
PRINT_ATTRf(enable_on_exec, p_unsigned);
PRINT_ATTRf(task, p_unsigned);
PRINT_ATTRf(watermark, p_unsigned);
PRINT_ATTRf(precise_ip, p_unsigned);
PRINT_ATTRf(mmap_data, p_unsigned);
PRINT_ATTRf(sample_id_all, p_unsigned);
PRINT_ATTRf(exclude_host, p_unsigned);
PRINT_ATTRf(exclude_guest, p_unsigned);
PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
PRINT_ATTRf(exclude_callchain_user, p_unsigned);
PRINT_ATTRf(mmap2, p_unsigned);
PRINT_ATTRf(comm_exec, p_unsigned);
PRINT_ATTRf(use_clockid, p_unsigned);
PRINT_ATTRf(context_switch, p_unsigned);
PRINT_ATTRf(write_backward, p_unsigned);
PRINT_ATTRf(namespaces, p_unsigned);
PRINT_ATTRf(ksymbol, p_unsigned);
PRINT_ATTRf(bpf_event, p_unsigned);
PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
PRINT_ATTRf(bp_type, p_unsigned);
PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
PRINT_ATTRf(sample_regs_user, p_hex);
PRINT_ATTRf(sample_stack_user, p_unsigned);
PRINT_ATTRf(clockid, p_signed);
PRINT_ATTRf(sample_regs_intr, p_hex);
PRINT_ATTRf(aux_watermark, p_unsigned);
PRINT_ATTRf(sample_max_stack, p_unsigned);
return ret;
}
static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
void *priv __maybe_unused)
{
return fprintf(fp, " %-32s %s\n", name, val);
}
static void perf_evsel__remove_fd(struct perf_evsel *pos,
int nr_cpus, int nr_threads,
int thread_idx)
{
for (int cpu = 0; cpu < nr_cpus; cpu++)
for (int thread = thread_idx; thread < nr_threads - 1; thread++)
FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
}
static int update_fds(struct perf_evsel *evsel,
int nr_cpus, int cpu_idx,
int nr_threads, int thread_idx)
{
struct perf_evsel *pos;
if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
return -EINVAL;
evlist__for_each_entry(evsel->evlist, pos) {
nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
/*
* Since fds for next evsel has not been created,
* there is no need to iterate whole event list.
*/
if (pos == evsel)
break;
}
return 0;
}
static bool ignore_missing_thread(struct perf_evsel *evsel,
int nr_cpus, int cpu,
struct thread_map *threads,
int thread, int err)
{
pid_t ignore_pid = thread_map__pid(threads, thread);
if (!evsel->ignore_missing_thread)
return false;
/* The system wide setup does not work with threads. */
if (evsel->system_wide)
return false;
/* The -ESRCH is perf event syscall errno for pid's not found. */
if (err != -ESRCH)
return false;
/* If there's only one thread, let it fail. */
if (threads->nr == 1)
return false;
/*
* We should remove fd for missing_thread first
* because thread_map__remove() will decrease threads->nr.
*/
if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
return false;
if (thread_map__remove(threads, thread))
return false;
pr_warning("WARNING: Ignored open failure for pid %d\n",
ignore_pid);
return true;
}
static void display_attr(struct perf_event_attr *attr)
{
if (verbose >= 2) {
fprintf(stderr, "%.60s\n", graph_dotted_line);
fprintf(stderr, "perf_event_attr:\n");
perf_event_attr__fprintf(stderr, attr, __open_attr__fprintf, NULL);
fprintf(stderr, "%.60s\n", graph_dotted_line);
}
}
static int perf_event_open(struct perf_evsel *evsel,
pid_t pid, int cpu, int group_fd,
unsigned long flags)
{
int precise_ip = evsel->attr.precise_ip;
int fd;
while (1) {
pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx",
pid, cpu, group_fd, flags);
fd = sys_perf_event_open(&evsel->attr, pid, cpu, group_fd, flags);
if (fd >= 0)
break;
/*
* Do quick precise_ip fallback if:
* - there is precise_ip set in perf_event_attr
* - maximum precise is requested
* - sys_perf_event_open failed with ENOTSUP error,
* which is associated with wrong precise_ip
*/
if (!precise_ip || !evsel->precise_max || (errno != ENOTSUP))
break;
/*
* We tried all the precise_ip values, and it's
* still failing, so leave it to standard fallback.
*/
if (!evsel->attr.precise_ip) {
evsel->attr.precise_ip = precise_ip;
break;
}
pr_debug2("\nsys_perf_event_open failed, error %d\n", -ENOTSUP);
evsel->attr.precise_ip--;
pr_debug2("decreasing precise_ip by one (%d)\n", evsel->attr.precise_ip);
display_attr(&evsel->attr);
}
return fd;
}
int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
struct thread_map *threads)
{
int cpu, thread, nthreads;
unsigned long flags = PERF_FLAG_FD_CLOEXEC;
int pid = -1, err;
enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
if (perf_missing_features.write_backward && evsel->attr.write_backward)
return -EINVAL;
if (cpus == NULL) {
static struct cpu_map *empty_cpu_map;
if (empty_cpu_map == NULL) {
empty_cpu_map = cpu_map__dummy_new();
if (empty_cpu_map == NULL)
return -ENOMEM;
}
cpus = empty_cpu_map;
}
if (threads == NULL) {
static struct thread_map *empty_thread_map;
if (empty_thread_map == NULL) {
empty_thread_map = thread_map__new_by_tid(-1);
if (empty_thread_map == NULL)
return -ENOMEM;
}
threads = empty_thread_map;
}
if (evsel->system_wide)
nthreads = 1;
else
nthreads = threads->nr;
if (evsel->fd == NULL &&
perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
return -ENOMEM;
if (evsel->cgrp) {
flags |= PERF_FLAG_PID_CGROUP;
pid = evsel->cgrp->fd;
}
fallback_missing_features:
if (perf_missing_features.clockid_wrong)
evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
if (perf_missing_features.clockid) {
evsel->attr.use_clockid = 0;
evsel->attr.clockid = 0;
}
if (perf_missing_features.cloexec)
flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
if (perf_missing_features.mmap2)
evsel->attr.mmap2 = 0;
if (perf_missing_features.exclude_guest)
evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
if (perf_missing_features.lbr_flags)
evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
PERF_SAMPLE_BRANCH_NO_CYCLES);
if (perf_missing_features.group_read && evsel->attr.inherit)
evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
if (perf_missing_features.ksymbol)
evsel->attr.ksymbol = 0;
if (perf_missing_features.bpf_event)
evsel->attr.bpf_event = 0;
retry_sample_id:
if (perf_missing_features.sample_id_all)
evsel->attr.sample_id_all = 0;
display_attr(&evsel->attr);
for (cpu = 0; cpu < cpus->nr; cpu++) {
for (thread = 0; thread < nthreads; thread++) {
int fd, group_fd;
if (!evsel->cgrp && !evsel->system_wide)
pid = thread_map__pid(threads, thread);
group_fd = get_group_fd(evsel, cpu, thread);
retry_open:
test_attr__ready();
fd = perf_event_open(evsel, pid, cpus->map[cpu],
group_fd, flags);
FD(evsel, cpu, thread) = fd;
if (fd < 0) {
err = -errno;
if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
/*
* We just removed 1 thread, so take a step
* back on thread index and lower the upper
* nthreads limit.
*/
nthreads--;
thread--;
/* ... and pretend like nothing have happened. */
err = 0;
continue;
}
pr_debug2("\nsys_perf_event_open failed, error %d\n",
err);
goto try_fallback;
}
pr_debug2(" = %d\n", fd);
if (evsel->bpf_fd >= 0) {
int evt_fd = fd;
int bpf_fd = evsel->bpf_fd;
err = ioctl(evt_fd,
PERF_EVENT_IOC_SET_BPF,
bpf_fd);
if (err && errno != EEXIST) {
pr_err("failed to attach bpf fd %d: %s\n",
bpf_fd, strerror(errno));
err = -EINVAL;
goto out_close;
}
}
set_rlimit = NO_CHANGE;
/*
* If we succeeded but had to kill clockid, fail and
* have perf_evsel__open_strerror() print us a nice
* error.
*/
if (perf_missing_features.clockid ||
perf_missing_features.clockid_wrong) {
err = -EINVAL;
goto out_close;
}
}
}
return 0;
try_fallback:
/*
* perf stat needs between 5 and 22 fds per CPU. When we run out
* of them try to increase the limits.
*/
if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
struct rlimit l;
int old_errno = errno;
if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
if (set_rlimit == NO_CHANGE)
l.rlim_cur = l.rlim_max;
else {
l.rlim_cur = l.rlim_max + 1000;
l.rlim_max = l.rlim_cur;
}
if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
set_rlimit++;
errno = old_errno;
goto retry_open;
}
}
errno = old_errno;
}
if (err != -EINVAL || cpu > 0 || thread > 0)
goto out_close;
/*
* Must probe features in the order they were added to the
* perf_event_attr interface.
*/
if (!perf_missing_features.bpf_event && evsel->attr.bpf_event) {
perf_missing_features.bpf_event = true;
pr_debug2("switching off bpf_event\n");
goto fallback_missing_features;
} else if (!perf_missing_features.ksymbol && evsel->attr.ksymbol) {
perf_missing_features.ksymbol = true;
pr_debug2("switching off ksymbol\n");
goto fallback_missing_features;
} else if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
perf_missing_features.write_backward = true;
pr_debug2("switching off write_backward\n");
goto out_close;
} else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
perf_missing_features.clockid_wrong = true;
pr_debug2("switching off clockid\n");
goto fallback_missing_features;
} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
perf_missing_features.clockid = true;
pr_debug2("switching off use_clockid\n");
goto fallback_missing_features;
} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
perf_missing_features.cloexec = true;
pr_debug2("switching off cloexec flag\n");
goto fallback_missing_features;
} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
perf_missing_features.mmap2 = true;
pr_debug2("switching off mmap2\n");
goto fallback_missing_features;
} else if (!perf_missing_features.exclude_guest &&
(evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
perf_missing_features.exclude_guest = true;
pr_debug2("switching off exclude_guest, exclude_host\n");
goto fallback_missing_features;
} else if (!perf_missing_features.sample_id_all) {
perf_missing_features.sample_id_all = true;
pr_debug2("switching off sample_id_all\n");
goto retry_sample_id;
} else if (!perf_missing_features.lbr_flags &&
(evsel->attr.branch_sample_type &
(PERF_SAMPLE_BRANCH_NO_CYCLES |
PERF_SAMPLE_BRANCH_NO_FLAGS))) {
perf_missing_features.lbr_flags = true;
pr_debug2("switching off branch sample type no (cycles/flags)\n");
goto fallback_missing_features;
} else if (!perf_missing_features.group_read &&
evsel->attr.inherit &&
(evsel->attr.read_format & PERF_FORMAT_GROUP) &&
perf_evsel__is_group_leader(evsel)) {
perf_missing_features.group_read = true;
pr_debug2("switching off group read\n");
goto fallback_missing_features;
}
out_close:
if (err)
threads->err_thread = thread;
do {
while (--thread >= 0) {
close(FD(evsel, cpu, thread));
FD(evsel, cpu, thread) = -1;
}
thread = nthreads;
} while (--cpu >= 0);
return err;
}
void perf_evsel__close(struct perf_evsel *evsel)
{
if (evsel->fd == NULL)
return;
perf_evsel__close_fd(evsel);
perf_evsel__free_fd(evsel);
}
int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
struct cpu_map *cpus)
{
return perf_evsel__open(evsel, cpus, NULL);
}
int perf_evsel__open_per_thread(struct perf_evsel *evsel,
struct thread_map *threads)
{
return perf_evsel__open(evsel, NULL, threads);
}
static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
const union perf_event *event,
struct perf_sample *sample)
{
u64 type = evsel->attr.sample_type;
const u64 *array = event->sample.array;
bool swapped = evsel->needs_swap;
union u64_swap u;
array += ((event->header.size -
sizeof(event->header)) / sizeof(u64)) - 1;
if (type & PERF_SAMPLE_IDENTIFIER) {
sample->id = *array;
array--;
}
if (type & PERF_SAMPLE_CPU) {
u.val64 = *array;
if (swapped) {
/* undo swap of u64, then swap on individual u32s */
u.val64 = bswap_64(u.val64);
u.val32[0] = bswap_32(u.val32[0]);
}
sample->cpu = u.val32[0];
array--;
}
if (type & PERF_SAMPLE_STREAM_ID) {
sample->stream_id = *array;
array--;
}
if (type & PERF_SAMPLE_ID) {
sample->id = *array;
array--;
}
if (type & PERF_SAMPLE_TIME) {
sample->time = *array;
array--;
}
if (type & PERF_SAMPLE_TID) {
u.val64 = *array;
if (swapped) {
/* undo swap of u64, then swap on individual u32s */
u.val64 = bswap_64(u.val64);
u.val32[0] = bswap_32(u.val32[0]);
u.val32[1] = bswap_32(u.val32[1]);
}
sample->pid = u.val32[0];
sample->tid = u.val32[1];
array--;
}
return 0;
}
static inline bool overflow(const void *endp, u16 max_size, const void *offset,
u64 size)
{
return size > max_size || offset + size > endp;
}
#define OVERFLOW_CHECK(offset, size, max_size) \
do { \
if (overflow(endp, (max_size), (offset), (size))) \
return -EFAULT; \
} while (0)
#define OVERFLOW_CHECK_u64(offset) \
OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
static int
perf_event__check_size(union perf_event *event, unsigned int sample_size)
{
/*
* The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
* up to PERF_SAMPLE_PERIOD. After that overflow() must be used to
* check the format does not go past the end of the event.
*/
if (sample_size + sizeof(event->header) > event->header.size)
return -EFAULT;
return 0;
}
int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
struct perf_sample *data)
{
u64 type = evsel->attr.sample_type;
bool swapped = evsel->needs_swap;
const u64 *array;
u16 max_size = event->header.size;
const void *endp = (void *)event + max_size;
u64 sz;
/*
* used for cross-endian analysis. See git commit 65014ab3
* for why this goofiness is needed.
*/
union u64_swap u;
memset(data, 0, sizeof(*data));
data->cpu = data->pid = data->tid = -1;
data->stream_id = data->id = data->time = -1ULL;
data->period = evsel->attr.sample_period;
data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
data->misc = event->header.misc;
data->id = -1ULL;
data->data_src = PERF_MEM_DATA_SRC_NONE;
if (event->header.type != PERF_RECORD_SAMPLE) {
if (!evsel->attr.sample_id_all)
return 0;
return perf_evsel__parse_id_sample(evsel, event, data);
}
array = event->sample.array;
if (perf_event__check_size(event, evsel->sample_size))
return -EFAULT;
if (type & PERF_SAMPLE_IDENTIFIER) {
data->id = *array;
array++;
}
if (type & PERF_SAMPLE_IP) {
data->ip = *array;
array++;
}
if (type & PERF_SAMPLE_TID) {
u.val64 = *array;
if (swapped) {
/* undo swap of u64, then swap on individual u32s */
u.val64 = bswap_64(u.val64);
u.val32[0] = bswap_32(u.val32[0]);
u.val32[1] = bswap_32(u.val32[1]);
}
data->pid = u.val32[0];
data->tid = u.val32[1];
array++;
}
if (type & PERF_SAMPLE_TIME) {
data->time = *array;
array++;
}
if (type & PERF_SAMPLE_ADDR) {
data->addr = *array;
array++;
}
if (type & PERF_SAMPLE_ID) {
data->id = *array;
array++;
}
if (type & PERF_SAMPLE_STREAM_ID) {
data->stream_id = *array;
array++;
}
if (type & PERF_SAMPLE_CPU) {
u.val64 = *array;
if (swapped) {
/* undo swap of u64, then swap on individual u32s */
u.val64 = bswap_64(u.val64);
u.val32[0] = bswap_32(u.val32[0]);
}
data->cpu = u.val32[0];
array++;
}
if (type & PERF_SAMPLE_PERIOD) {
data->period = *array;
array++;
}
if (type & PERF_SAMPLE_READ) {
u64 read_format = evsel->attr.read_format;
OVERFLOW_CHECK_u64(array);
if (read_format & PERF_FORMAT_GROUP)
data->read.group.nr = *array;
else
data->read.one.value = *array;
array++;
if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
OVERFLOW_CHECK_u64(array);
data->read.time_enabled = *array;
array++;
}
if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
OVERFLOW_CHECK_u64(array);
data->read.time_running = *array;
array++;
}
/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
if (read_format & PERF_FORMAT_GROUP) {
const u64 max_group_nr = UINT64_MAX /
sizeof(struct sample_read_value);
if (data->read.group.nr > max_group_nr)
return -EFAULT;
sz = data->read.group.nr *
sizeof(struct sample_read_value);
OVERFLOW_CHECK(array, sz, max_size);
data->read.group.values =
(struct sample_read_value *)array;
array = (void *)array + sz;
} else {
OVERFLOW_CHECK_u64(array);
data->read.one.id = *array;
array++;
}
}
if (evsel__has_callchain(evsel)) {
const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
OVERFLOW_CHECK_u64(array);
data->callchain = (struct ip_callchain *)array++;
if (data->callchain->nr > max_callchain_nr)
return -EFAULT;
sz = data->callchain->nr * sizeof(u64);
OVERFLOW_CHECK(array, sz, max_size);
array = (void *)array + sz;
}
if (type & PERF_SAMPLE_RAW) {
OVERFLOW_CHECK_u64(array);
u.val64 = *array;
/*
* Undo swap of u64, then swap on individual u32s,
* get the size of the raw area and undo all of the
* swap. The pevent interface handles endianity by
* itself.
*/
if (swapped) {
u.val64 = bswap_64(u.val64);
u.val32[0] = bswap_32(u.val32[0]);
u.val32[1] = bswap_32(u.val32[1]);
}
data->raw_size = u.val32[0];
/*
* The raw data is aligned on 64bits including the
* u32 size, so it's safe to use mem_bswap_64.
*/
if (swapped)
mem_bswap_64((void *) array, data->raw_size);
array = (void *)array + sizeof(u32);
OVERFLOW_CHECK(array, data->raw_size, max_size);
data->raw_data = (void *)array;
array = (void *)array + data->raw_size;
}
if (type & PERF_SAMPLE_BRANCH_STACK) {
const u64 max_branch_nr = UINT64_MAX /
sizeof(struct branch_entry);
OVERFLOW_CHECK_u64(array);
data->branch_stack = (struct branch_stack *)array++;
if (data->branch_stack->nr > max_branch_nr)
return -EFAULT;
sz = data->branch_stack->nr * sizeof(struct branch_entry);
OVERFLOW_CHECK(array, sz, max_size);
array = (void *)array + sz;
}
if (type & PERF_SAMPLE_REGS_USER) {
OVERFLOW_CHECK_u64(array);
data->user_regs.abi = *array;
array++;
if (data->user_regs.abi) {
u64 mask = evsel->attr.sample_regs_user;
sz = hweight64(mask) * sizeof(u64);
OVERFLOW_CHECK(array, sz, max_size);
data->user_regs.mask = mask;
data->user_regs.regs = (u64 *)array;
array = (void *)array + sz;
}
}
if (type & PERF_SAMPLE_STACK_USER) {
OVERFLOW_CHECK_u64(array);
sz = *array++;
data->user_stack.offset = ((char *)(array - 1)
- (char *) event);
if (!sz) {
data->user_stack.size = 0;
} else {
OVERFLOW_CHECK(array, sz, max_size);
data->user_stack.data = (char *)array;
array = (void *)array + sz;
OVERFLOW_CHECK_u64(array);
data->user_stack.size = *array++;
if (WARN_ONCE(data->user_stack.size > sz,
"user stack dump failure\n"))
return -EFAULT;
}
}
if (type & PERF_SAMPLE_WEIGHT) {
OVERFLOW_CHECK_u64(array);
data->weight = *array;
array++;
}
if (type & PERF_SAMPLE_DATA_SRC) {
OVERFLOW_CHECK_u64(array);
data->data_src = *array;
array++;
}
if (type & PERF_SAMPLE_TRANSACTION) {
OVERFLOW_CHECK_u64(array);
data->transaction = *array;
array++;
}
data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
if (type & PERF_SAMPLE_REGS_INTR) {
OVERFLOW_CHECK_u64(array);
data->intr_regs.abi = *array;
array++;
if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
u64 mask = evsel->attr.sample_regs_intr;
sz = hweight64(mask) * sizeof(u64);
OVERFLOW_CHECK(array, sz, max_size);
data->intr_regs.mask = mask;
data->intr_regs.regs = (u64 *)array;
array = (void *)array + sz;
}
}
data->phys_addr = 0;
if (type & PERF_SAMPLE_PHYS_ADDR) {
data->phys_addr = *array;
array++;
}
return 0;
}
int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel,
union perf_event *event,
u64 *timestamp)
{
u64 type = evsel->attr.sample_type;
const u64 *array;
if (!(type & PERF_SAMPLE_TIME))
return -1;
if (event->header.type != PERF_RECORD_SAMPLE) {
struct perf_sample data = {
.time = -1ULL,
};
if (!evsel->attr.sample_id_all)
return -1;
if (perf_evsel__parse_id_sample(evsel, event, &data))
return -1;
*timestamp = data.time;
return 0;
}
array = event->sample.array;
if (perf_event__check_size(event, evsel->sample_size))
return -EFAULT;
if (type & PERF_SAMPLE_IDENTIFIER)
array++;
if (type & PERF_SAMPLE_IP)
array++;
if (type & PERF_SAMPLE_TID)
array++;
if (type & PERF_SAMPLE_TIME)
*timestamp = *array;
return 0;
}
size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
u64 read_format)
{
size_t sz, result = sizeof(struct sample_event);
if (type & PERF_SAMPLE_IDENTIFIER)
result += sizeof(u64);
if (type & PERF_SAMPLE_IP)
result += sizeof(u64);
if (type & PERF_SAMPLE_TID)
result += sizeof(u64);
if (type & PERF_SAMPLE_TIME)
result += sizeof(u64);
if (type & PERF_SAMPLE_ADDR)
result += sizeof(u64);
if (type & PERF_SAMPLE_ID)
result += sizeof(u64);
if (type & PERF_SAMPLE_STREAM_ID)
result += sizeof(u64);
if (type & PERF_SAMPLE_CPU)
result += sizeof(u64);
if (type & PERF_SAMPLE_PERIOD)
result += sizeof(u64);
if (type & PERF_SAMPLE_READ) {
result += sizeof(u64);
if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
result += sizeof(u64);
if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
result += sizeof(u64);
/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
if (read_format & PERF_FORMAT_GROUP) {
sz = sample->read.group.nr *
sizeof(struct sample_read_value);
result += sz;
} else {
result += sizeof(u64);
}
}
if (type & PERF_SAMPLE_CALLCHAIN) {
sz = (sample->callchain->nr + 1) * sizeof(u64);
result += sz;
}
if (type & PERF_SAMPLE_RAW) {
result += sizeof(u32);
result += sample->raw_size;
}
if (type & PERF_SAMPLE_BRANCH_STACK) {
sz = sample->branch_stack->nr * sizeof(struct branch_entry);
sz += sizeof(u64);
result += sz;
}
if (type & PERF_SAMPLE_REGS_USER) {
if (sample->user_regs.abi) {
result += sizeof(u64);
sz = hweight64(sample->user_regs.mask) * sizeof(u64);
result += sz;
} else {
result += sizeof(u64);
}
}
if (type & PERF_SAMPLE_STACK_USER) {
sz = sample->user_stack.size;
result += sizeof(u64);
if (sz) {
result += sz;
result += sizeof(u64);
}
}
if (type & PERF_SAMPLE_WEIGHT)
result += sizeof(u64);
if (type & PERF_SAMPLE_DATA_SRC)
result += sizeof(u64);
if (type & PERF_SAMPLE_TRANSACTION)
result += sizeof(u64);
if (type & PERF_SAMPLE_REGS_INTR) {
if (sample->intr_regs.abi) {
result += sizeof(u64);
sz = hweight64(sample->intr_regs.mask) * sizeof(u64);
result += sz;
} else {
result += sizeof(u64);
}
}
if (type & PERF_SAMPLE_PHYS_ADDR)
result += sizeof(u64);
return result;
}
int perf_event__synthesize_sample(union perf_event *event, u64 type,
u64 read_format,
const struct perf_sample *sample)
{
u64 *array;
size_t sz;
/*
* used for cross-endian analysis. See git commit 65014ab3
* for why this goofiness is needed.
*/
union u64_swap u;
array = event->sample.array;
if (type & PERF_SAMPLE_IDENTIFIER) {
*array = sample->id;
array++;
}
if (type & PERF_SAMPLE_IP) {
*array = sample->ip;
array++;
}
if (type & PERF_SAMPLE_TID) {
u.val32[0] = sample->pid;
u.val32[1] = sample->tid;
*array = u.val64;
array++;
}
if (type & PERF_SAMPLE_TIME) {
*array = sample->time;
array++;
}
if (type & PERF_SAMPLE_ADDR) {
*array = sample->addr;
array++;
}
if (type & PERF_SAMPLE_ID) {
*array = sample->id;
array++;
}
if (type & PERF_SAMPLE_STREAM_ID) {
*array = sample->stream_id;
array++;
}
if (type & PERF_SAMPLE_CPU) {
u.val32[0] = sample->cpu;
u.val32[1] = 0;
*array = u.val64;
array++;
}
if (type & PERF_SAMPLE_PERIOD) {
*array = sample->period;
array++;
}
if (type & PERF_SAMPLE_READ) {
if (read_format & PERF_FORMAT_GROUP)
*array = sample->read.group.nr;
else
*array = sample->read.one.value;
array++;
if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
*array = sample->read.time_enabled;
array++;
}
if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
*array = sample->read.time_running;
array++;
}
/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
if (read_format & PERF_FORMAT_GROUP) {
sz = sample->read.group.nr *
sizeof(struct sample_read_value);
memcpy(array, sample->read.group.values, sz);
array = (void *)array + sz;
} else {
*array = sample->read.one.id;
array++;
}
}
if (type & PERF_SAMPLE_CALLCHAIN) {
sz = (sample->callchain->nr + 1) * sizeof(u64);
memcpy(array, sample->callchain, sz);
array = (void *)array + sz;
}
if (type & PERF_SAMPLE_RAW) {
u.val32[0] = sample->raw_size;
*array = u.val64;
array = (void *)array + sizeof(u32);
memcpy(array, sample->raw_data, sample->raw_size);
array = (void *)array + sample->raw_size;
}
if (type & PERF_SAMPLE_BRANCH_STACK) {
sz = sample->branch_stack->nr * sizeof(struct branch_entry);
sz += sizeof(u64);
memcpy(array, sample->branch_stack, sz);
array = (void *)array + sz;
}
if (type & PERF_SAMPLE_REGS_USER) {
if (sample->user_regs.abi) {
*array++ = sample->user_regs.abi;
sz = hweight64(sample->user_regs.mask) * sizeof(u64);
memcpy(array, sample->user_regs.regs, sz);
array = (void *)array + sz;
} else {
*array++ = 0;
}
}
if (type & PERF_SAMPLE_STACK_USER) {
sz = sample->user_stack.size;
*array++ = sz;
if (sz) {
memcpy(array, sample->user_stack.data, sz);
array = (void *)array + sz;
*array++ = sz;
}
}
if (type & PERF_SAMPLE_WEIGHT) {
*array = sample->weight;
array++;
}
if (type & PERF_SAMPLE_DATA_SRC) {
*array = sample->data_src;
array++;
}
if (type & PERF_SAMPLE_TRANSACTION) {
*array = sample->transaction;
array++;
}
if (type & PERF_SAMPLE_REGS_INTR) {
if (sample->intr_regs.abi) {
*array++ = sample->intr_regs.abi;
sz = hweight64(sample->intr_regs.mask) * sizeof(u64);
memcpy(array, sample->intr_regs.regs, sz);
array = (void *)array + sz;
} else {
*array++ = 0;
}
}
if (type & PERF_SAMPLE_PHYS_ADDR) {
*array = sample->phys_addr;
array++;
}
return 0;
}
struct tep_format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
{
return tep_find_field(evsel->tp_format, name);
}
void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
const char *name)
{
struct tep_format_field *field = perf_evsel__field(evsel, name);
int offset;
if (!field)
return NULL;
offset = field->offset;
if (field->flags & TEP_FIELD_IS_DYNAMIC) {
offset = *(int *)(sample->raw_data + field->offset);
offset &= 0xffff;
}
return sample->raw_data + offset;
}
u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample,
bool needs_swap)
{
u64 value;
void *ptr = sample->raw_data + field->offset;
switch (field->size) {
case 1:
return *(u8 *)ptr;
case 2:
value = *(u16 *)ptr;
break;
case 4:
value = *(u32 *)ptr;
break;
case 8:
memcpy(&value, ptr, sizeof(u64));
break;
default:
return 0;
}
if (!needs_swap)
return value;
switch (field->size) {
case 2:
return bswap_16(value);
case 4:
return bswap_32(value);
case 8:
return bswap_64(value);
default:
return 0;
}
return 0;
}
u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
const char *name)
{
struct tep_format_field *field = perf_evsel__field(evsel, name);
if (!field)
return 0;
return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
}
bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
char *msg, size_t msgsize)
{
int paranoid;
if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
evsel->attr.type == PERF_TYPE_HARDWARE &&
evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
/*
* If it's cycles then fall back to hrtimer based
* cpu-clock-tick sw counter, which is always available even if
* no PMU support.
*
* PPC returns ENXIO until 2.6.37 (behavior changed with commit
* b0a873e).
*/
scnprintf(msg, msgsize, "%s",
"The cycles event is not supported, trying to fall back to cpu-clock-ticks");
evsel->attr.type = PERF_TYPE_SOFTWARE;
evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
zfree(&evsel->name);
return true;
} else if (err == EACCES && !evsel->attr.exclude_kernel &&
(paranoid = perf_event_paranoid()) > 1) {
const char *name = perf_evsel__name(evsel);
char *new_name;
const char *sep = ":";
/* Is there already the separator in the name. */
if (strchr(name, '/') ||
strchr(name, ':'))
sep = "";
if (asprintf(&new_name, "%s%su", name, sep) < 0)
return false;
if (evsel->name)
free(evsel->name);
evsel->name = new_name;
scnprintf(msg, msgsize,
"kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
evsel->attr.exclude_kernel = 1;
return true;
}
return false;
}
static bool find_process(const char *name)
{
size_t len = strlen(name);
DIR *dir;
struct dirent *d;
int ret = -1;
dir = opendir(procfs__mountpoint());
if (!dir)
return false;
/* Walk through the directory. */
while (ret && (d = readdir(dir)) != NULL) {
char path[PATH_MAX];
char *data;
size_t size;
if ((d->d_type != DT_DIR) ||
!strcmp(".", d->d_name) ||
!strcmp("..", d->d_name))
continue;
scnprintf(path, sizeof(path), "%s/%s/comm",
procfs__mountpoint(), d->d_name);
if (filename__read_str(path, &data, &size))
continue;
ret = strncmp(name, data, len);
free(data);
}
closedir(dir);
return ret ? false : true;
}
int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
int err, char *msg, size_t size)
{
char sbuf[STRERR_BUFSIZE];
int printed = 0;
switch (err) {
case EPERM:
case EACCES:
if (err == EPERM)
printed = scnprintf(msg, size,
"No permission to enable %s event.\n\n",
perf_evsel__name(evsel));
return scnprintf(msg + printed, size - printed,
"You may not have permission to collect %sstats.\n\n"
"Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
"which controls use of the performance events system by\n"
"unprivileged users (without CAP_SYS_ADMIN).\n\n"
"The current value is %d:\n\n"
" -1: Allow use of (almost) all events by all users\n"
" Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
" Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
"To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
" kernel.perf_event_paranoid = -1\n" ,
target->system_wide ? "system-wide " : "",
perf_event_paranoid());
case ENOENT:
return scnprintf(msg, size, "The %s event is not supported.",
perf_evsel__name(evsel));
case EMFILE:
return scnprintf(msg, size, "%s",
"Too many events are opened.\n"
"Probably the maximum number of open file descriptors has been reached.\n"
"Hint: Try again after reducing the number of events.\n"
"Hint: Try increasing the limit with 'ulimit -n <limit>'");
case ENOMEM:
if (evsel__has_callchain(evsel) &&
access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
return scnprintf(msg, size,
"Not enough memory to setup event with callchain.\n"
"Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
"Hint: Current value: %d", sysctl__max_stack());
break;
case ENODEV:
if (target->cpu_list)
return scnprintf(msg, size, "%s",
"No such device - did you specify an out-of-range profile CPU?");
break;
case EOPNOTSUPP:
if (evsel->attr.sample_period != 0)
return scnprintf(msg, size,
"%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
perf_evsel__name(evsel));
if (evsel->attr.precise_ip)
return scnprintf(msg, size, "%s",
"\'precise\' request may not be supported. Try removing 'p' modifier.");
#if defined(__i386__) || defined(__x86_64__)
if (evsel->attr.type == PERF_TYPE_HARDWARE)
return scnprintf(msg, size, "%s",
"No hardware sampling interrupt available.\n");
#endif
break;
case EBUSY:
if (find_process("oprofiled"))
return scnprintf(msg, size,
"The PMU counters are busy/taken by another profiler.\n"
"We found oprofile daemon running, please stop it and try again.");
break;
case EINVAL:
if (evsel->attr.write_backward && perf_missing_features.write_backward)
return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
if (perf_missing_features.clockid)
return scnprintf(msg, size, "clockid feature not supported.");
if (perf_missing_features.clockid_wrong)
return scnprintf(msg, size, "wrong clockid (%d).", clockid);
break;
default:
break;
}
return scnprintf(msg, size,
"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
"/bin/dmesg | grep -i perf may provide additional information.\n",
err, str_error_r(err, sbuf, sizeof(sbuf)),
perf_evsel__name(evsel));
}
struct perf_env *perf_evsel__env(struct perf_evsel *evsel)
{
if (evsel && evsel->evlist)
return evsel->evlist->env;
return NULL;
}
static int store_evsel_ids(struct perf_evsel *evsel, struct perf_evlist *evlist)
{
int cpu, thread;
for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
for (thread = 0; thread < xyarray__max_y(evsel->fd);
thread++) {
int fd = FD(evsel, cpu, thread);
if (perf_evlist__id_add_fd(evlist, evsel,
cpu, thread, fd) < 0)
return -1;
}
}
return 0;
}
int perf_evsel__store_ids(struct perf_evsel *evsel, struct perf_evlist *evlist)
{
struct cpu_map *cpus = evsel->cpus;
struct thread_map *threads = evsel->threads;
if (perf_evsel__alloc_id(evsel, cpus->nr, threads->nr))
return -ENOMEM;
return store_evsel_ids(evsel, evlist);
}