2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-15 17:14:00 +08:00
linux-next/include/linux/ptrace.h
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00

413 lines
15 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_PTRACE_H
#define _LINUX_PTRACE_H
#include <linux/compiler.h> /* For unlikely. */
#include <linux/sched.h> /* For struct task_struct. */
#include <linux/sched/signal.h> /* For send_sig(), same_thread_group(), etc. */
#include <linux/err.h> /* for IS_ERR_VALUE */
#include <linux/bug.h> /* For BUG_ON. */
#include <linux/pid_namespace.h> /* For task_active_pid_ns. */
#include <uapi/linux/ptrace.h>
extern int ptrace_access_vm(struct task_struct *tsk, unsigned long addr,
void *buf, int len, unsigned int gup_flags);
/*
* Ptrace flags
*
* The owner ship rules for task->ptrace which holds the ptrace
* flags is simple. When a task is running it owns it's task->ptrace
* flags. When the a task is stopped the ptracer owns task->ptrace.
*/
#define PT_SEIZED 0x00010000 /* SEIZE used, enable new behavior */
#define PT_PTRACED 0x00000001
#define PT_DTRACE 0x00000002 /* delayed trace (used on m68k, i386) */
#define PT_OPT_FLAG_SHIFT 3
/* PT_TRACE_* event enable flags */
#define PT_EVENT_FLAG(event) (1 << (PT_OPT_FLAG_SHIFT + (event)))
#define PT_TRACESYSGOOD PT_EVENT_FLAG(0)
#define PT_TRACE_FORK PT_EVENT_FLAG(PTRACE_EVENT_FORK)
#define PT_TRACE_VFORK PT_EVENT_FLAG(PTRACE_EVENT_VFORK)
#define PT_TRACE_CLONE PT_EVENT_FLAG(PTRACE_EVENT_CLONE)
#define PT_TRACE_EXEC PT_EVENT_FLAG(PTRACE_EVENT_EXEC)
#define PT_TRACE_VFORK_DONE PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE)
#define PT_TRACE_EXIT PT_EVENT_FLAG(PTRACE_EVENT_EXIT)
#define PT_TRACE_SECCOMP PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP)
#define PT_EXITKILL (PTRACE_O_EXITKILL << PT_OPT_FLAG_SHIFT)
#define PT_SUSPEND_SECCOMP (PTRACE_O_SUSPEND_SECCOMP << PT_OPT_FLAG_SHIFT)
/* single stepping state bits (used on ARM and PA-RISC) */
#define PT_SINGLESTEP_BIT 31
#define PT_SINGLESTEP (1<<PT_SINGLESTEP_BIT)
#define PT_BLOCKSTEP_BIT 30
#define PT_BLOCKSTEP (1<<PT_BLOCKSTEP_BIT)
extern long arch_ptrace(struct task_struct *child, long request,
unsigned long addr, unsigned long data);
extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
extern void ptrace_disable(struct task_struct *);
extern int ptrace_request(struct task_struct *child, long request,
unsigned long addr, unsigned long data);
extern void ptrace_notify(int exit_code);
extern void __ptrace_link(struct task_struct *child,
struct task_struct *new_parent,
const struct cred *ptracer_cred);
extern void __ptrace_unlink(struct task_struct *child);
extern void exit_ptrace(struct task_struct *tracer, struct list_head *dead);
#define PTRACE_MODE_READ 0x01
#define PTRACE_MODE_ATTACH 0x02
#define PTRACE_MODE_NOAUDIT 0x04
#define PTRACE_MODE_FSCREDS 0x08
#define PTRACE_MODE_REALCREDS 0x10
/* shorthands for READ/ATTACH and FSCREDS/REALCREDS combinations */
#define PTRACE_MODE_READ_FSCREDS (PTRACE_MODE_READ | PTRACE_MODE_FSCREDS)
#define PTRACE_MODE_READ_REALCREDS (PTRACE_MODE_READ | PTRACE_MODE_REALCREDS)
#define PTRACE_MODE_ATTACH_FSCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_FSCREDS)
#define PTRACE_MODE_ATTACH_REALCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_REALCREDS)
/**
* ptrace_may_access - check whether the caller is permitted to access
* a target task.
* @task: target task
* @mode: selects type of access and caller credentials
*
* Returns true on success, false on denial.
*
* One of the flags PTRACE_MODE_FSCREDS and PTRACE_MODE_REALCREDS must
* be set in @mode to specify whether the access was requested through
* a filesystem syscall (should use effective capabilities and fsuid
* of the caller) or through an explicit syscall such as
* process_vm_writev or ptrace (and should use the real credentials).
*/
extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
static inline int ptrace_reparented(struct task_struct *child)
{
return !same_thread_group(child->real_parent, child->parent);
}
static inline void ptrace_unlink(struct task_struct *child)
{
if (unlikely(child->ptrace))
__ptrace_unlink(child);
}
int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
unsigned long data);
int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
unsigned long data);
/**
* ptrace_parent - return the task that is tracing the given task
* @task: task to consider
*
* Returns %NULL if no one is tracing @task, or the &struct task_struct
* pointer to its tracer.
*
* Must called under rcu_read_lock(). The pointer returned might be kept
* live only by RCU. During exec, this may be called with task_lock() held
* on @task, still held from when check_unsafe_exec() was called.
*/
static inline struct task_struct *ptrace_parent(struct task_struct *task)
{
if (unlikely(task->ptrace))
return rcu_dereference(task->parent);
return NULL;
}
/**
* ptrace_event_enabled - test whether a ptrace event is enabled
* @task: ptracee of interest
* @event: %PTRACE_EVENT_* to test
*
* Test whether @event is enabled for ptracee @task.
*
* Returns %true if @event is enabled, %false otherwise.
*/
static inline bool ptrace_event_enabled(struct task_struct *task, int event)
{
return task->ptrace & PT_EVENT_FLAG(event);
}
/**
* ptrace_event - possibly stop for a ptrace event notification
* @event: %PTRACE_EVENT_* value to report
* @message: value for %PTRACE_GETEVENTMSG to return
*
* Check whether @event is enabled and, if so, report @event and @message
* to the ptrace parent.
*
* Called without locks.
*/
static inline void ptrace_event(int event, unsigned long message)
{
if (unlikely(ptrace_event_enabled(current, event))) {
current->ptrace_message = message;
ptrace_notify((event << 8) | SIGTRAP);
} else if (event == PTRACE_EVENT_EXEC) {
/* legacy EXEC report via SIGTRAP */
if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED)
send_sig(SIGTRAP, current, 0);
}
}
/**
* ptrace_event_pid - possibly stop for a ptrace event notification
* @event: %PTRACE_EVENT_* value to report
* @pid: process identifier for %PTRACE_GETEVENTMSG to return
*
* Check whether @event is enabled and, if so, report @event and @pid
* to the ptrace parent. @pid is reported as the pid_t seen from the
* the ptrace parent's pid namespace.
*
* Called without locks.
*/
static inline void ptrace_event_pid(int event, struct pid *pid)
{
/*
* FIXME: There's a potential race if a ptracer in a different pid
* namespace than parent attaches between computing message below and
* when we acquire tasklist_lock in ptrace_stop(). If this happens,
* the ptracer will get a bogus pid from PTRACE_GETEVENTMSG.
*/
unsigned long message = 0;
struct pid_namespace *ns;
rcu_read_lock();
ns = task_active_pid_ns(rcu_dereference(current->parent));
if (ns)
message = pid_nr_ns(pid, ns);
rcu_read_unlock();
ptrace_event(event, message);
}
/**
* ptrace_init_task - initialize ptrace state for a new child
* @child: new child task
* @ptrace: true if child should be ptrace'd by parent's tracer
*
* This is called immediately after adding @child to its parent's children
* list. @ptrace is false in the normal case, and true to ptrace @child.
*
* Called with current's siglock and write_lock_irq(&tasklist_lock) held.
*/
static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
{
INIT_LIST_HEAD(&child->ptrace_entry);
INIT_LIST_HEAD(&child->ptraced);
child->jobctl = 0;
child->ptrace = 0;
child->parent = child->real_parent;
if (unlikely(ptrace) && current->ptrace) {
child->ptrace = current->ptrace;
__ptrace_link(child, current->parent, current->ptracer_cred);
if (child->ptrace & PT_SEIZED)
task_set_jobctl_pending(child, JOBCTL_TRAP_STOP);
else
sigaddset(&child->pending.signal, SIGSTOP);
set_tsk_thread_flag(child, TIF_SIGPENDING);
}
else
child->ptracer_cred = NULL;
}
/**
* ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
* @task: task in %EXIT_DEAD state
*
* Called with write_lock(&tasklist_lock) held.
*/
static inline void ptrace_release_task(struct task_struct *task)
{
BUG_ON(!list_empty(&task->ptraced));
ptrace_unlink(task);
BUG_ON(!list_empty(&task->ptrace_entry));
}
#ifndef force_successful_syscall_return
/*
* System call handlers that, upon successful completion, need to return a
* negative value should call force_successful_syscall_return() right before
* returning. On architectures where the syscall convention provides for a
* separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
* others), this macro can be used to ensure that the error flag will not get
* set. On architectures which do not support a separate error flag, the macro
* is a no-op and the spurious error condition needs to be filtered out by some
* other means (e.g., in user-level, by passing an extra argument to the
* syscall handler, or something along those lines).
*/
#define force_successful_syscall_return() do { } while (0)
#endif
#ifndef is_syscall_success
/*
* On most systems we can tell if a syscall is a success based on if the retval
* is an error value. On some systems like ia64 and powerpc they have different
* indicators of success/failure and must define their own.
*/
#define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs))))
#endif
/*
* <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
*
* These do-nothing inlines are used when the arch does not
* implement single-step. The kerneldoc comments are here
* to document the interface for all arch definitions.
*/
#ifndef arch_has_single_step
/**
* arch_has_single_step - does this CPU support user-mode single-step?
*
* If this is defined, then there must be function declarations or
* inlines for user_enable_single_step() and user_disable_single_step().
* arch_has_single_step() should evaluate to nonzero iff the machine
* supports instruction single-step for user mode.
* It can be a constant or it can test a CPU feature bit.
*/
#define arch_has_single_step() (0)
/**
* user_enable_single_step - single-step in user-mode task
* @task: either current or a task stopped in %TASK_TRACED
*
* This can only be called when arch_has_single_step() has returned nonzero.
* Set @task so that when it returns to user mode, it will trap after the
* next single instruction executes. If arch_has_block_step() is defined,
* this must clear the effects of user_enable_block_step() too.
*/
static inline void user_enable_single_step(struct task_struct *task)
{
BUG(); /* This can never be called. */
}
/**
* user_disable_single_step - cancel user-mode single-step
* @task: either current or a task stopped in %TASK_TRACED
*
* Clear @task of the effects of user_enable_single_step() and
* user_enable_block_step(). This can be called whether or not either
* of those was ever called on @task, and even if arch_has_single_step()
* returned zero.
*/
static inline void user_disable_single_step(struct task_struct *task)
{
}
#else
extern void user_enable_single_step(struct task_struct *);
extern void user_disable_single_step(struct task_struct *);
#endif /* arch_has_single_step */
#ifndef arch_has_block_step
/**
* arch_has_block_step - does this CPU support user-mode block-step?
*
* If this is defined, then there must be a function declaration or inline
* for user_enable_block_step(), and arch_has_single_step() must be defined
* too. arch_has_block_step() should evaluate to nonzero iff the machine
* supports step-until-branch for user mode. It can be a constant or it
* can test a CPU feature bit.
*/
#define arch_has_block_step() (0)
/**
* user_enable_block_step - step until branch in user-mode task
* @task: either current or a task stopped in %TASK_TRACED
*
* This can only be called when arch_has_block_step() has returned nonzero,
* and will never be called when single-instruction stepping is being used.
* Set @task so that when it returns to user mode, it will trap after the
* next branch or trap taken.
*/
static inline void user_enable_block_step(struct task_struct *task)
{
BUG(); /* This can never be called. */
}
#else
extern void user_enable_block_step(struct task_struct *);
#endif /* arch_has_block_step */
#ifdef ARCH_HAS_USER_SINGLE_STEP_INFO
extern void user_single_step_siginfo(struct task_struct *tsk,
struct pt_regs *regs, siginfo_t *info);
#else
static inline void user_single_step_siginfo(struct task_struct *tsk,
struct pt_regs *regs, siginfo_t *info)
{
memset(info, 0, sizeof(*info));
info->si_signo = SIGTRAP;
}
#endif
#ifndef arch_ptrace_stop_needed
/**
* arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
* @code: current->exit_code value ptrace will stop with
* @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with
*
* This is called with the siglock held, to decide whether or not it's
* necessary to release the siglock and call arch_ptrace_stop() with the
* same @code and @info arguments. It can be defined to a constant if
* arch_ptrace_stop() is never required, or always is. On machines where
* this makes sense, it should be defined to a quick test to optimize out
* calling arch_ptrace_stop() when it would be superfluous. For example,
* if the thread has not been back to user mode since the last stop, the
* thread state might indicate that nothing needs to be done.
*
* This is guaranteed to be invoked once before a task stops for ptrace and
* may include arch-specific operations necessary prior to a ptrace stop.
*/
#define arch_ptrace_stop_needed(code, info) (0)
#endif
#ifndef arch_ptrace_stop
/**
* arch_ptrace_stop - Do machine-specific work before stopping for ptrace
* @code: current->exit_code value ptrace will stop with
* @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with
*
* This is called with no locks held when arch_ptrace_stop_needed() has
* just returned nonzero. It is allowed to block, e.g. for user memory
* access. The arch can have machine-specific work to be done before
* ptrace stops. On ia64, register backing store gets written back to user
* memory here. Since this can be costly (requires dropping the siglock),
* we only do it when the arch requires it for this particular stop, as
* indicated by arch_ptrace_stop_needed().
*/
#define arch_ptrace_stop(code, info) do { } while (0)
#endif
#ifndef current_pt_regs
#define current_pt_regs() task_pt_regs(current)
#endif
/*
* unlike current_pt_regs(), this one is equal to task_pt_regs(current)
* on *all* architectures; the only reason to have a per-arch definition
* is optimisation.
*/
#ifndef signal_pt_regs
#define signal_pt_regs() task_pt_regs(current)
#endif
#ifndef current_user_stack_pointer
#define current_user_stack_pointer() user_stack_pointer(current_pt_regs())
#endif
extern int task_current_syscall(struct task_struct *target, long *callno,
unsigned long args[6], unsigned int maxargs,
unsigned long *sp, unsigned long *pc);
#endif