2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-15 17:14:00 +08:00
linux-next/crypto/simd.c
Thomas Gleixner 1ccea77e2a treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 13
Based on 2 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version this program is distributed in the
  hope that it will be useful but without any warranty without even
  the implied warranty of merchantability or fitness for a particular
  purpose see the gnu general public license for more details you
  should have received a copy of the gnu general public license along
  with this program if not see http www gnu org licenses

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version this program is distributed in the
  hope that it will be useful but without any warranty without even
  the implied warranty of merchantability or fitness for a particular
  purpose see the gnu general public license for more details [based]
  [from] [clk] [highbank] [c] you should have received a copy of the
  gnu general public license along with this program if not see http
  www gnu org licenses

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 355 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Jilayne Lovejoy <opensource@jilayne.com>
Reviewed-by: Steve Winslow <swinslow@gmail.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190519154041.837383322@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-21 11:28:45 +02:00

533 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Shared crypto simd helpers
*
* Copyright (c) 2012 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
* Copyright (c) 2016 Herbert Xu <herbert@gondor.apana.org.au>
* Copyright (c) 2019 Google LLC
*
* Based on aesni-intel_glue.c by:
* Copyright (C) 2008, Intel Corp.
* Author: Huang Ying <ying.huang@intel.com>
*/
/*
* Shared crypto SIMD helpers. These functions dynamically create and register
* an skcipher or AEAD algorithm that wraps another, internal algorithm. The
* wrapper ensures that the internal algorithm is only executed in a context
* where SIMD instructions are usable, i.e. where may_use_simd() returns true.
* If SIMD is already usable, the wrapper directly calls the internal algorithm.
* Otherwise it defers execution to a workqueue via cryptd.
*
* This is an alternative to the internal algorithm implementing a fallback for
* the !may_use_simd() case itself.
*
* Note that the wrapper algorithm is asynchronous, i.e. it has the
* CRYPTO_ALG_ASYNC flag set. Therefore it won't be found by users who
* explicitly allocate a synchronous algorithm.
*/
#include <crypto/cryptd.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/simd.h>
#include <crypto/internal/skcipher.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/preempt.h>
#include <asm/simd.h>
/* skcipher support */
struct simd_skcipher_alg {
const char *ialg_name;
struct skcipher_alg alg;
};
struct simd_skcipher_ctx {
struct cryptd_skcipher *cryptd_tfm;
};
static int simd_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int key_len)
{
struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
struct crypto_skcipher *child = &ctx->cryptd_tfm->base;
int err;
crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(tfm) &
CRYPTO_TFM_REQ_MASK);
err = crypto_skcipher_setkey(child, key, key_len);
crypto_skcipher_set_flags(tfm, crypto_skcipher_get_flags(child) &
CRYPTO_TFM_RES_MASK);
return err;
}
static int simd_skcipher_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
struct skcipher_request *subreq;
struct crypto_skcipher *child;
subreq = skcipher_request_ctx(req);
*subreq = *req;
if (!crypto_simd_usable() ||
(in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
child = &ctx->cryptd_tfm->base;
else
child = cryptd_skcipher_child(ctx->cryptd_tfm);
skcipher_request_set_tfm(subreq, child);
return crypto_skcipher_encrypt(subreq);
}
static int simd_skcipher_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
struct skcipher_request *subreq;
struct crypto_skcipher *child;
subreq = skcipher_request_ctx(req);
*subreq = *req;
if (!crypto_simd_usable() ||
(in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
child = &ctx->cryptd_tfm->base;
else
child = cryptd_skcipher_child(ctx->cryptd_tfm);
skcipher_request_set_tfm(subreq, child);
return crypto_skcipher_decrypt(subreq);
}
static void simd_skcipher_exit(struct crypto_skcipher *tfm)
{
struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
cryptd_free_skcipher(ctx->cryptd_tfm);
}
static int simd_skcipher_init(struct crypto_skcipher *tfm)
{
struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
struct cryptd_skcipher *cryptd_tfm;
struct simd_skcipher_alg *salg;
struct skcipher_alg *alg;
unsigned reqsize;
alg = crypto_skcipher_alg(tfm);
salg = container_of(alg, struct simd_skcipher_alg, alg);
cryptd_tfm = cryptd_alloc_skcipher(salg->ialg_name,
CRYPTO_ALG_INTERNAL,
CRYPTO_ALG_INTERNAL);
if (IS_ERR(cryptd_tfm))
return PTR_ERR(cryptd_tfm);
ctx->cryptd_tfm = cryptd_tfm;
reqsize = crypto_skcipher_reqsize(cryptd_skcipher_child(cryptd_tfm));
reqsize = max(reqsize, crypto_skcipher_reqsize(&cryptd_tfm->base));
reqsize += sizeof(struct skcipher_request);
crypto_skcipher_set_reqsize(tfm, reqsize);
return 0;
}
struct simd_skcipher_alg *simd_skcipher_create_compat(const char *algname,
const char *drvname,
const char *basename)
{
struct simd_skcipher_alg *salg;
struct crypto_skcipher *tfm;
struct skcipher_alg *ialg;
struct skcipher_alg *alg;
int err;
tfm = crypto_alloc_skcipher(basename, CRYPTO_ALG_INTERNAL,
CRYPTO_ALG_INTERNAL | CRYPTO_ALG_ASYNC);
if (IS_ERR(tfm))
return ERR_CAST(tfm);
ialg = crypto_skcipher_alg(tfm);
salg = kzalloc(sizeof(*salg), GFP_KERNEL);
if (!salg) {
salg = ERR_PTR(-ENOMEM);
goto out_put_tfm;
}
salg->ialg_name = basename;
alg = &salg->alg;
err = -ENAMETOOLONG;
if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >=
CRYPTO_MAX_ALG_NAME)
goto out_free_salg;
if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
drvname) >= CRYPTO_MAX_ALG_NAME)
goto out_free_salg;
alg->base.cra_flags = CRYPTO_ALG_ASYNC;
alg->base.cra_priority = ialg->base.cra_priority;
alg->base.cra_blocksize = ialg->base.cra_blocksize;
alg->base.cra_alignmask = ialg->base.cra_alignmask;
alg->base.cra_module = ialg->base.cra_module;
alg->base.cra_ctxsize = sizeof(struct simd_skcipher_ctx);
alg->ivsize = ialg->ivsize;
alg->chunksize = ialg->chunksize;
alg->min_keysize = ialg->min_keysize;
alg->max_keysize = ialg->max_keysize;
alg->init = simd_skcipher_init;
alg->exit = simd_skcipher_exit;
alg->setkey = simd_skcipher_setkey;
alg->encrypt = simd_skcipher_encrypt;
alg->decrypt = simd_skcipher_decrypt;
err = crypto_register_skcipher(alg);
if (err)
goto out_free_salg;
out_put_tfm:
crypto_free_skcipher(tfm);
return salg;
out_free_salg:
kfree(salg);
salg = ERR_PTR(err);
goto out_put_tfm;
}
EXPORT_SYMBOL_GPL(simd_skcipher_create_compat);
struct simd_skcipher_alg *simd_skcipher_create(const char *algname,
const char *basename)
{
char drvname[CRYPTO_MAX_ALG_NAME];
if (snprintf(drvname, CRYPTO_MAX_ALG_NAME, "simd-%s", basename) >=
CRYPTO_MAX_ALG_NAME)
return ERR_PTR(-ENAMETOOLONG);
return simd_skcipher_create_compat(algname, drvname, basename);
}
EXPORT_SYMBOL_GPL(simd_skcipher_create);
void simd_skcipher_free(struct simd_skcipher_alg *salg)
{
crypto_unregister_skcipher(&salg->alg);
kfree(salg);
}
EXPORT_SYMBOL_GPL(simd_skcipher_free);
int simd_register_skciphers_compat(struct skcipher_alg *algs, int count,
struct simd_skcipher_alg **simd_algs)
{
int err;
int i;
const char *algname;
const char *drvname;
const char *basename;
struct simd_skcipher_alg *simd;
err = crypto_register_skciphers(algs, count);
if (err)
return err;
for (i = 0; i < count; i++) {
WARN_ON(strncmp(algs[i].base.cra_name, "__", 2));
WARN_ON(strncmp(algs[i].base.cra_driver_name, "__", 2));
algname = algs[i].base.cra_name + 2;
drvname = algs[i].base.cra_driver_name + 2;
basename = algs[i].base.cra_driver_name;
simd = simd_skcipher_create_compat(algname, drvname, basename);
err = PTR_ERR(simd);
if (IS_ERR(simd))
goto err_unregister;
simd_algs[i] = simd;
}
return 0;
err_unregister:
simd_unregister_skciphers(algs, count, simd_algs);
return err;
}
EXPORT_SYMBOL_GPL(simd_register_skciphers_compat);
void simd_unregister_skciphers(struct skcipher_alg *algs, int count,
struct simd_skcipher_alg **simd_algs)
{
int i;
crypto_unregister_skciphers(algs, count);
for (i = 0; i < count; i++) {
if (simd_algs[i]) {
simd_skcipher_free(simd_algs[i]);
simd_algs[i] = NULL;
}
}
}
EXPORT_SYMBOL_GPL(simd_unregister_skciphers);
/* AEAD support */
struct simd_aead_alg {
const char *ialg_name;
struct aead_alg alg;
};
struct simd_aead_ctx {
struct cryptd_aead *cryptd_tfm;
};
static int simd_aead_setkey(struct crypto_aead *tfm, const u8 *key,
unsigned int key_len)
{
struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct crypto_aead *child = &ctx->cryptd_tfm->base;
int err;
crypto_aead_clear_flags(child, CRYPTO_TFM_REQ_MASK);
crypto_aead_set_flags(child, crypto_aead_get_flags(tfm) &
CRYPTO_TFM_REQ_MASK);
err = crypto_aead_setkey(child, key, key_len);
crypto_aead_set_flags(tfm, crypto_aead_get_flags(child) &
CRYPTO_TFM_RES_MASK);
return err;
}
static int simd_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
{
struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct crypto_aead *child = &ctx->cryptd_tfm->base;
return crypto_aead_setauthsize(child, authsize);
}
static int simd_aead_encrypt(struct aead_request *req)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct aead_request *subreq;
struct crypto_aead *child;
subreq = aead_request_ctx(req);
*subreq = *req;
if (!crypto_simd_usable() ||
(in_atomic() && cryptd_aead_queued(ctx->cryptd_tfm)))
child = &ctx->cryptd_tfm->base;
else
child = cryptd_aead_child(ctx->cryptd_tfm);
aead_request_set_tfm(subreq, child);
return crypto_aead_encrypt(subreq);
}
static int simd_aead_decrypt(struct aead_request *req)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct aead_request *subreq;
struct crypto_aead *child;
subreq = aead_request_ctx(req);
*subreq = *req;
if (!crypto_simd_usable() ||
(in_atomic() && cryptd_aead_queued(ctx->cryptd_tfm)))
child = &ctx->cryptd_tfm->base;
else
child = cryptd_aead_child(ctx->cryptd_tfm);
aead_request_set_tfm(subreq, child);
return crypto_aead_decrypt(subreq);
}
static void simd_aead_exit(struct crypto_aead *tfm)
{
struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
cryptd_free_aead(ctx->cryptd_tfm);
}
static int simd_aead_init(struct crypto_aead *tfm)
{
struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct cryptd_aead *cryptd_tfm;
struct simd_aead_alg *salg;
struct aead_alg *alg;
unsigned reqsize;
alg = crypto_aead_alg(tfm);
salg = container_of(alg, struct simd_aead_alg, alg);
cryptd_tfm = cryptd_alloc_aead(salg->ialg_name, CRYPTO_ALG_INTERNAL,
CRYPTO_ALG_INTERNAL);
if (IS_ERR(cryptd_tfm))
return PTR_ERR(cryptd_tfm);
ctx->cryptd_tfm = cryptd_tfm;
reqsize = crypto_aead_reqsize(cryptd_aead_child(cryptd_tfm));
reqsize = max(reqsize, crypto_aead_reqsize(&cryptd_tfm->base));
reqsize += sizeof(struct aead_request);
crypto_aead_set_reqsize(tfm, reqsize);
return 0;
}
struct simd_aead_alg *simd_aead_create_compat(const char *algname,
const char *drvname,
const char *basename)
{
struct simd_aead_alg *salg;
struct crypto_aead *tfm;
struct aead_alg *ialg;
struct aead_alg *alg;
int err;
tfm = crypto_alloc_aead(basename, CRYPTO_ALG_INTERNAL,
CRYPTO_ALG_INTERNAL | CRYPTO_ALG_ASYNC);
if (IS_ERR(tfm))
return ERR_CAST(tfm);
ialg = crypto_aead_alg(tfm);
salg = kzalloc(sizeof(*salg), GFP_KERNEL);
if (!salg) {
salg = ERR_PTR(-ENOMEM);
goto out_put_tfm;
}
salg->ialg_name = basename;
alg = &salg->alg;
err = -ENAMETOOLONG;
if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >=
CRYPTO_MAX_ALG_NAME)
goto out_free_salg;
if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
drvname) >= CRYPTO_MAX_ALG_NAME)
goto out_free_salg;
alg->base.cra_flags = CRYPTO_ALG_ASYNC;
alg->base.cra_priority = ialg->base.cra_priority;
alg->base.cra_blocksize = ialg->base.cra_blocksize;
alg->base.cra_alignmask = ialg->base.cra_alignmask;
alg->base.cra_module = ialg->base.cra_module;
alg->base.cra_ctxsize = sizeof(struct simd_aead_ctx);
alg->ivsize = ialg->ivsize;
alg->maxauthsize = ialg->maxauthsize;
alg->chunksize = ialg->chunksize;
alg->init = simd_aead_init;
alg->exit = simd_aead_exit;
alg->setkey = simd_aead_setkey;
alg->setauthsize = simd_aead_setauthsize;
alg->encrypt = simd_aead_encrypt;
alg->decrypt = simd_aead_decrypt;
err = crypto_register_aead(alg);
if (err)
goto out_free_salg;
out_put_tfm:
crypto_free_aead(tfm);
return salg;
out_free_salg:
kfree(salg);
salg = ERR_PTR(err);
goto out_put_tfm;
}
EXPORT_SYMBOL_GPL(simd_aead_create_compat);
struct simd_aead_alg *simd_aead_create(const char *algname,
const char *basename)
{
char drvname[CRYPTO_MAX_ALG_NAME];
if (snprintf(drvname, CRYPTO_MAX_ALG_NAME, "simd-%s", basename) >=
CRYPTO_MAX_ALG_NAME)
return ERR_PTR(-ENAMETOOLONG);
return simd_aead_create_compat(algname, drvname, basename);
}
EXPORT_SYMBOL_GPL(simd_aead_create);
void simd_aead_free(struct simd_aead_alg *salg)
{
crypto_unregister_aead(&salg->alg);
kfree(salg);
}
EXPORT_SYMBOL_GPL(simd_aead_free);
int simd_register_aeads_compat(struct aead_alg *algs, int count,
struct simd_aead_alg **simd_algs)
{
int err;
int i;
const char *algname;
const char *drvname;
const char *basename;
struct simd_aead_alg *simd;
err = crypto_register_aeads(algs, count);
if (err)
return err;
for (i = 0; i < count; i++) {
WARN_ON(strncmp(algs[i].base.cra_name, "__", 2));
WARN_ON(strncmp(algs[i].base.cra_driver_name, "__", 2));
algname = algs[i].base.cra_name + 2;
drvname = algs[i].base.cra_driver_name + 2;
basename = algs[i].base.cra_driver_name;
simd = simd_aead_create_compat(algname, drvname, basename);
err = PTR_ERR(simd);
if (IS_ERR(simd))
goto err_unregister;
simd_algs[i] = simd;
}
return 0;
err_unregister:
simd_unregister_aeads(algs, count, simd_algs);
return err;
}
EXPORT_SYMBOL_GPL(simd_register_aeads_compat);
void simd_unregister_aeads(struct aead_alg *algs, int count,
struct simd_aead_alg **simd_algs)
{
int i;
crypto_unregister_aeads(algs, count);
for (i = 0; i < count; i++) {
if (simd_algs[i]) {
simd_aead_free(simd_algs[i]);
simd_algs[i] = NULL;
}
}
}
EXPORT_SYMBOL_GPL(simd_unregister_aeads);
MODULE_LICENSE("GPL");