2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-10 06:34:17 +08:00
linux-next/arch/x86/kernel/kvmclock.c
Marcelo Tosatti e32025a564 x86: kvmclock: remove check_and_clear_guest_paused warning
CPU offline path calls the hrtimer interrupt handler with interrupts
disabled, without touching preempt_count, triggering this warning.

Remove the warning since it is supposed to be used from hrtimer
interrupt context only.

Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2012-06-11 23:18:33 -03:00

236 lines
6.3 KiB
C

/* KVM paravirtual clock driver. A clocksource implementation
Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <linux/clocksource.h>
#include <linux/kvm_para.h>
#include <asm/pvclock.h>
#include <asm/msr.h>
#include <asm/apic.h>
#include <linux/percpu.h>
#include <linux/hardirq.h>
#include <asm/x86_init.h>
#include <asm/reboot.h>
static int kvmclock = 1;
static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
static int parse_no_kvmclock(char *arg)
{
kvmclock = 0;
return 0;
}
early_param("no-kvmclock", parse_no_kvmclock);
/* The hypervisor will put information about time periodically here */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct pvclock_vcpu_time_info, hv_clock);
static struct pvclock_wall_clock wall_clock;
/*
* The wallclock is the time of day when we booted. Since then, some time may
* have elapsed since the hypervisor wrote the data. So we try to account for
* that with system time
*/
static unsigned long kvm_get_wallclock(void)
{
struct pvclock_vcpu_time_info *vcpu_time;
struct timespec ts;
int low, high;
low = (int)__pa_symbol(&wall_clock);
high = ((u64)__pa_symbol(&wall_clock) >> 32);
native_write_msr(msr_kvm_wall_clock, low, high);
vcpu_time = &get_cpu_var(hv_clock);
pvclock_read_wallclock(&wall_clock, vcpu_time, &ts);
put_cpu_var(hv_clock);
return ts.tv_sec;
}
static int kvm_set_wallclock(unsigned long now)
{
return -1;
}
static cycle_t kvm_clock_read(void)
{
struct pvclock_vcpu_time_info *src;
cycle_t ret;
preempt_disable_notrace();
src = &__get_cpu_var(hv_clock);
ret = pvclock_clocksource_read(src);
preempt_enable_notrace();
return ret;
}
static cycle_t kvm_clock_get_cycles(struct clocksource *cs)
{
return kvm_clock_read();
}
/*
* If we don't do that, there is the possibility that the guest
* will calibrate under heavy load - thus, getting a lower lpj -
* and execute the delays themselves without load. This is wrong,
* because no delay loop can finish beforehand.
* Any heuristics is subject to fail, because ultimately, a large
* poll of guests can be running and trouble each other. So we preset
* lpj here
*/
static unsigned long kvm_get_tsc_khz(void)
{
struct pvclock_vcpu_time_info *src;
src = &per_cpu(hv_clock, 0);
return pvclock_tsc_khz(src);
}
static void kvm_get_preset_lpj(void)
{
unsigned long khz;
u64 lpj;
khz = kvm_get_tsc_khz();
lpj = ((u64)khz * 1000);
do_div(lpj, HZ);
preset_lpj = lpj;
}
bool kvm_check_and_clear_guest_paused(void)
{
bool ret = false;
struct pvclock_vcpu_time_info *src;
src = &__get_cpu_var(hv_clock);
if ((src->flags & PVCLOCK_GUEST_STOPPED) != 0) {
__this_cpu_and(hv_clock.flags, ~PVCLOCK_GUEST_STOPPED);
ret = true;
}
return ret;
}
static struct clocksource kvm_clock = {
.name = "kvm-clock",
.read = kvm_clock_get_cycles,
.rating = 400,
.mask = CLOCKSOURCE_MASK(64),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
int kvm_register_clock(char *txt)
{
int cpu = smp_processor_id();
int low, high, ret;
low = (int)__pa(&per_cpu(hv_clock, cpu)) | 1;
high = ((u64)__pa(&per_cpu(hv_clock, cpu)) >> 32);
ret = native_write_msr_safe(msr_kvm_system_time, low, high);
printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
cpu, high, low, txt);
return ret;
}
static void kvm_save_sched_clock_state(void)
{
}
static void kvm_restore_sched_clock_state(void)
{
kvm_register_clock("primary cpu clock, resume");
}
#ifdef CONFIG_X86_LOCAL_APIC
static void __cpuinit kvm_setup_secondary_clock(void)
{
/*
* Now that the first cpu already had this clocksource initialized,
* we shouldn't fail.
*/
WARN_ON(kvm_register_clock("secondary cpu clock"));
}
#endif
/*
* After the clock is registered, the host will keep writing to the
* registered memory location. If the guest happens to shutdown, this memory
* won't be valid. In cases like kexec, in which you install a new kernel, this
* means a random memory location will be kept being written. So before any
* kind of shutdown from our side, we unregister the clock by writting anything
* that does not have the 'enable' bit set in the msr
*/
#ifdef CONFIG_KEXEC
static void kvm_crash_shutdown(struct pt_regs *regs)
{
native_write_msr(msr_kvm_system_time, 0, 0);
kvm_disable_steal_time();
native_machine_crash_shutdown(regs);
}
#endif
static void kvm_shutdown(void)
{
native_write_msr(msr_kvm_system_time, 0, 0);
kvm_disable_steal_time();
native_machine_shutdown();
}
void __init kvmclock_init(void)
{
if (!kvm_para_available())
return;
if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
} else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)))
return;
printk(KERN_INFO "kvm-clock: Using msrs %x and %x",
msr_kvm_system_time, msr_kvm_wall_clock);
if (kvm_register_clock("boot clock"))
return;
pv_time_ops.sched_clock = kvm_clock_read;
x86_platform.calibrate_tsc = kvm_get_tsc_khz;
x86_platform.get_wallclock = kvm_get_wallclock;
x86_platform.set_wallclock = kvm_set_wallclock;
#ifdef CONFIG_X86_LOCAL_APIC
x86_cpuinit.early_percpu_clock_init =
kvm_setup_secondary_clock;
#endif
x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
machine_ops.shutdown = kvm_shutdown;
#ifdef CONFIG_KEXEC
machine_ops.crash_shutdown = kvm_crash_shutdown;
#endif
kvm_get_preset_lpj();
clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
pv_info.paravirt_enabled = 1;
pv_info.name = "KVM";
if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
}