2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-01 10:13:58 +08:00
linux-next/drivers/acpi/nfit/intel.c
Dave Jiang 89fa9d8ea7 acpi/nfit, libnvdimm/security: add Intel DSM 1.8 master passphrase support
With Intel DSM 1.8 [1] two new security DSMs are introduced. Enable/update
master passphrase and master secure erase. The master passphrase allows
a secure erase to be performed without the user passphrase that is set on
the NVDIMM. The commands of master_update and master_erase are added to
the sysfs knob in order to initiate the DSMs. They are similar in opeartion
mechanism compare to update and erase.

[1]: http://pmem.io/documents/NVDIMM_DSM_Interface-V1.8.pdf

Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2018-12-21 12:44:41 -08:00

389 lines
9.6 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2018 Intel Corporation. All rights reserved. */
#include <linux/libnvdimm.h>
#include <linux/ndctl.h>
#include <linux/acpi.h>
#include <asm/smp.h>
#include "intel.h"
#include "nfit.h"
static enum nvdimm_security_state intel_security_state(struct nvdimm *nvdimm,
enum nvdimm_passphrase_type ptype)
{
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
struct {
struct nd_cmd_pkg pkg;
struct nd_intel_get_security_state cmd;
} nd_cmd = {
.pkg = {
.nd_command = NVDIMM_INTEL_GET_SECURITY_STATE,
.nd_family = NVDIMM_FAMILY_INTEL,
.nd_size_out =
sizeof(struct nd_intel_get_security_state),
.nd_fw_size =
sizeof(struct nd_intel_get_security_state),
},
};
int rc;
if (!test_bit(NVDIMM_INTEL_GET_SECURITY_STATE, &nfit_mem->dsm_mask))
return -ENXIO;
/*
* Short circuit the state retrieval while we are doing overwrite.
* The DSM spec states that the security state is indeterminate
* until the overwrite DSM completes.
*/
if (nvdimm_in_overwrite(nvdimm) && ptype == NVDIMM_USER)
return NVDIMM_SECURITY_OVERWRITE;
rc = nvdimm_ctl(nvdimm, ND_CMD_CALL, &nd_cmd, sizeof(nd_cmd), NULL);
if (rc < 0)
return rc;
if (nd_cmd.cmd.status)
return -EIO;
/* check and see if security is enabled and locked */
if (ptype == NVDIMM_MASTER) {
if (nd_cmd.cmd.extended_state & ND_INTEL_SEC_ESTATE_ENABLED)
return NVDIMM_SECURITY_UNLOCKED;
else if (nd_cmd.cmd.extended_state &
ND_INTEL_SEC_ESTATE_PLIMIT)
return NVDIMM_SECURITY_FROZEN;
} else {
if (nd_cmd.cmd.state & ND_INTEL_SEC_STATE_UNSUPPORTED)
return -ENXIO;
else if (nd_cmd.cmd.state & ND_INTEL_SEC_STATE_ENABLED) {
if (nd_cmd.cmd.state & ND_INTEL_SEC_STATE_LOCKED)
return NVDIMM_SECURITY_LOCKED;
else if (nd_cmd.cmd.state & ND_INTEL_SEC_STATE_FROZEN
|| nd_cmd.cmd.state &
ND_INTEL_SEC_STATE_PLIMIT)
return NVDIMM_SECURITY_FROZEN;
else
return NVDIMM_SECURITY_UNLOCKED;
}
}
/* this should cover master security disabled as well */
return NVDIMM_SECURITY_DISABLED;
}
static int intel_security_freeze(struct nvdimm *nvdimm)
{
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
struct {
struct nd_cmd_pkg pkg;
struct nd_intel_freeze_lock cmd;
} nd_cmd = {
.pkg = {
.nd_command = NVDIMM_INTEL_FREEZE_LOCK,
.nd_family = NVDIMM_FAMILY_INTEL,
.nd_size_out = ND_INTEL_STATUS_SIZE,
.nd_fw_size = ND_INTEL_STATUS_SIZE,
},
};
int rc;
if (!test_bit(NVDIMM_INTEL_FREEZE_LOCK, &nfit_mem->dsm_mask))
return -ENOTTY;
rc = nvdimm_ctl(nvdimm, ND_CMD_CALL, &nd_cmd, sizeof(nd_cmd), NULL);
if (rc < 0)
return rc;
if (nd_cmd.cmd.status)
return -EIO;
return 0;
}
static int intel_security_change_key(struct nvdimm *nvdimm,
const struct nvdimm_key_data *old_data,
const struct nvdimm_key_data *new_data,
enum nvdimm_passphrase_type ptype)
{
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
unsigned int cmd = ptype == NVDIMM_MASTER ?
NVDIMM_INTEL_SET_MASTER_PASSPHRASE :
NVDIMM_INTEL_SET_PASSPHRASE;
struct {
struct nd_cmd_pkg pkg;
struct nd_intel_set_passphrase cmd;
} nd_cmd = {
.pkg = {
.nd_family = NVDIMM_FAMILY_INTEL,
.nd_size_in = ND_INTEL_PASSPHRASE_SIZE * 2,
.nd_size_out = ND_INTEL_STATUS_SIZE,
.nd_fw_size = ND_INTEL_STATUS_SIZE,
.nd_command = cmd,
},
};
int rc;
if (!test_bit(cmd, &nfit_mem->dsm_mask))
return -ENOTTY;
if (old_data)
memcpy(nd_cmd.cmd.old_pass, old_data->data,
sizeof(nd_cmd.cmd.old_pass));
memcpy(nd_cmd.cmd.new_pass, new_data->data,
sizeof(nd_cmd.cmd.new_pass));
rc = nvdimm_ctl(nvdimm, ND_CMD_CALL, &nd_cmd, sizeof(nd_cmd), NULL);
if (rc < 0)
return rc;
switch (nd_cmd.cmd.status) {
case 0:
return 0;
case ND_INTEL_STATUS_INVALID_PASS:
return -EINVAL;
case ND_INTEL_STATUS_NOT_SUPPORTED:
return -EOPNOTSUPP;
case ND_INTEL_STATUS_INVALID_STATE:
default:
return -EIO;
}
}
static void nvdimm_invalidate_cache(void);
static int intel_security_unlock(struct nvdimm *nvdimm,
const struct nvdimm_key_data *key_data)
{
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
struct {
struct nd_cmd_pkg pkg;
struct nd_intel_unlock_unit cmd;
} nd_cmd = {
.pkg = {
.nd_command = NVDIMM_INTEL_UNLOCK_UNIT,
.nd_family = NVDIMM_FAMILY_INTEL,
.nd_size_in = ND_INTEL_PASSPHRASE_SIZE,
.nd_size_out = ND_INTEL_STATUS_SIZE,
.nd_fw_size = ND_INTEL_STATUS_SIZE,
},
};
int rc;
if (!test_bit(NVDIMM_INTEL_UNLOCK_UNIT, &nfit_mem->dsm_mask))
return -ENOTTY;
memcpy(nd_cmd.cmd.passphrase, key_data->data,
sizeof(nd_cmd.cmd.passphrase));
rc = nvdimm_ctl(nvdimm, ND_CMD_CALL, &nd_cmd, sizeof(nd_cmd), NULL);
if (rc < 0)
return rc;
switch (nd_cmd.cmd.status) {
case 0:
break;
case ND_INTEL_STATUS_INVALID_PASS:
return -EINVAL;
default:
return -EIO;
}
/* DIMM unlocked, invalidate all CPU caches before we read it */
nvdimm_invalidate_cache();
return 0;
}
static int intel_security_disable(struct nvdimm *nvdimm,
const struct nvdimm_key_data *key_data)
{
int rc;
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
struct {
struct nd_cmd_pkg pkg;
struct nd_intel_disable_passphrase cmd;
} nd_cmd = {
.pkg = {
.nd_command = NVDIMM_INTEL_DISABLE_PASSPHRASE,
.nd_family = NVDIMM_FAMILY_INTEL,
.nd_size_in = ND_INTEL_PASSPHRASE_SIZE,
.nd_size_out = ND_INTEL_STATUS_SIZE,
.nd_fw_size = ND_INTEL_STATUS_SIZE,
},
};
if (!test_bit(NVDIMM_INTEL_DISABLE_PASSPHRASE, &nfit_mem->dsm_mask))
return -ENOTTY;
memcpy(nd_cmd.cmd.passphrase, key_data->data,
sizeof(nd_cmd.cmd.passphrase));
rc = nvdimm_ctl(nvdimm, ND_CMD_CALL, &nd_cmd, sizeof(nd_cmd), NULL);
if (rc < 0)
return rc;
switch (nd_cmd.cmd.status) {
case 0:
break;
case ND_INTEL_STATUS_INVALID_PASS:
return -EINVAL;
case ND_INTEL_STATUS_INVALID_STATE:
default:
return -ENXIO;
}
return 0;
}
static int intel_security_erase(struct nvdimm *nvdimm,
const struct nvdimm_key_data *key,
enum nvdimm_passphrase_type ptype)
{
int rc;
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
unsigned int cmd = ptype == NVDIMM_MASTER ?
NVDIMM_INTEL_MASTER_SECURE_ERASE : NVDIMM_INTEL_SECURE_ERASE;
struct {
struct nd_cmd_pkg pkg;
struct nd_intel_secure_erase cmd;
} nd_cmd = {
.pkg = {
.nd_family = NVDIMM_FAMILY_INTEL,
.nd_size_in = ND_INTEL_PASSPHRASE_SIZE,
.nd_size_out = ND_INTEL_STATUS_SIZE,
.nd_fw_size = ND_INTEL_STATUS_SIZE,
.nd_command = cmd,
},
};
if (!test_bit(cmd, &nfit_mem->dsm_mask))
return -ENOTTY;
/* flush all cache before we erase DIMM */
nvdimm_invalidate_cache();
memcpy(nd_cmd.cmd.passphrase, key->data,
sizeof(nd_cmd.cmd.passphrase));
rc = nvdimm_ctl(nvdimm, ND_CMD_CALL, &nd_cmd, sizeof(nd_cmd), NULL);
if (rc < 0)
return rc;
switch (nd_cmd.cmd.status) {
case 0:
break;
case ND_INTEL_STATUS_NOT_SUPPORTED:
return -EOPNOTSUPP;
case ND_INTEL_STATUS_INVALID_PASS:
return -EINVAL;
case ND_INTEL_STATUS_INVALID_STATE:
default:
return -ENXIO;
}
/* DIMM erased, invalidate all CPU caches before we read it */
nvdimm_invalidate_cache();
return 0;
}
static int intel_security_query_overwrite(struct nvdimm *nvdimm)
{
int rc;
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
struct {
struct nd_cmd_pkg pkg;
struct nd_intel_query_overwrite cmd;
} nd_cmd = {
.pkg = {
.nd_command = NVDIMM_INTEL_QUERY_OVERWRITE,
.nd_family = NVDIMM_FAMILY_INTEL,
.nd_size_out = ND_INTEL_STATUS_SIZE,
.nd_fw_size = ND_INTEL_STATUS_SIZE,
},
};
if (!test_bit(NVDIMM_INTEL_QUERY_OVERWRITE, &nfit_mem->dsm_mask))
return -ENOTTY;
rc = nvdimm_ctl(nvdimm, ND_CMD_CALL, &nd_cmd, sizeof(nd_cmd), NULL);
if (rc < 0)
return rc;
switch (nd_cmd.cmd.status) {
case 0:
break;
case ND_INTEL_STATUS_OQUERY_INPROGRESS:
return -EBUSY;
default:
return -ENXIO;
}
/* flush all cache before we make the nvdimms available */
nvdimm_invalidate_cache();
return 0;
}
static int intel_security_overwrite(struct nvdimm *nvdimm,
const struct nvdimm_key_data *nkey)
{
int rc;
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
struct {
struct nd_cmd_pkg pkg;
struct nd_intel_overwrite cmd;
} nd_cmd = {
.pkg = {
.nd_command = NVDIMM_INTEL_OVERWRITE,
.nd_family = NVDIMM_FAMILY_INTEL,
.nd_size_in = ND_INTEL_PASSPHRASE_SIZE,
.nd_size_out = ND_INTEL_STATUS_SIZE,
.nd_fw_size = ND_INTEL_STATUS_SIZE,
},
};
if (!test_bit(NVDIMM_INTEL_OVERWRITE, &nfit_mem->dsm_mask))
return -ENOTTY;
/* flush all cache before we erase DIMM */
nvdimm_invalidate_cache();
if (nkey)
memcpy(nd_cmd.cmd.passphrase, nkey->data,
sizeof(nd_cmd.cmd.passphrase));
rc = nvdimm_ctl(nvdimm, ND_CMD_CALL, &nd_cmd, sizeof(nd_cmd), NULL);
if (rc < 0)
return rc;
switch (nd_cmd.cmd.status) {
case 0:
return 0;
case ND_INTEL_STATUS_OVERWRITE_UNSUPPORTED:
return -ENOTSUPP;
case ND_INTEL_STATUS_INVALID_PASS:
return -EINVAL;
case ND_INTEL_STATUS_INVALID_STATE:
default:
return -ENXIO;
}
}
/*
* TODO: define a cross arch wbinvd equivalent when/if
* NVDIMM_FAMILY_INTEL command support arrives on another arch.
*/
#ifdef CONFIG_X86
static void nvdimm_invalidate_cache(void)
{
wbinvd_on_all_cpus();
}
#else
static void nvdimm_invalidate_cache(void)
{
WARN_ON_ONCE("cache invalidation required after unlock\n");
}
#endif
static const struct nvdimm_security_ops __intel_security_ops = {
.state = intel_security_state,
.freeze = intel_security_freeze,
.change_key = intel_security_change_key,
.disable = intel_security_disable,
#ifdef CONFIG_X86
.unlock = intel_security_unlock,
.erase = intel_security_erase,
.overwrite = intel_security_overwrite,
.query_overwrite = intel_security_query_overwrite,
#endif
};
const struct nvdimm_security_ops *intel_security_ops = &__intel_security_ops;