mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-22 20:43:56 +08:00
2be4ff2f08
* git://git.kernel.org/pub/scm/linux/kernel/git/brodo/pcmcia-2.6: (49 commits) pcmcia: ioctl-internal definitions pcmcia: cistpl header cleanup pcmcia: remove unused argument to pcmcia_parse_tuple() pcmcia: card services header cleanup pcmcia: device_id header cleanup pcmcia: encapsulate ioaddr_t pcmcia: cleanup device driver header file pcmcia: cleanup socket services header file pcmcia: merge ds_internal.h into cs_internal.h pcmcia: cleanup cs_internal.h pcmcia: cs_internal.h is internal pcmcia: use dev_printk for cs_error() pcmcia: remove CS_ error codes alltogether pcmcia: deprecate CS_BAD_TUPLE pcmcia: deprecate CS_BAD_ARGS pcmcia: deprecate CS_BAD_BASE, CS_BAD_IRQ, CS_BAD_OFFSET and CS_BAD_SIZE pcmcia: deprecate CS_BAD_ATTRIBUTE, CS_BAD_TYPE and CS_BAD_PAGE pcmcia: deprecate CS_NO_MORE_ITEMS pcmcia: deprecate CS_IN_USE pcmcia: deprecate CS_CONFIGURATION_LOCKED ... Fix trivial conflict in drivers/pcmcia/ds.c manually
483 lines
16 KiB
C
483 lines
16 KiB
C
/*======================================================================
|
|
|
|
Aironet driver for 4500 and 4800 series cards
|
|
|
|
This code is released under both the GPL version 2 and BSD licenses.
|
|
Either license may be used. The respective licenses are found at
|
|
the end of this file.
|
|
|
|
This code was developed by Benjamin Reed <breed@users.sourceforge.net>
|
|
including portions of which come from the Aironet PC4500
|
|
Developer's Reference Manual and used with permission. Copyright
|
|
(C) 1999 Benjamin Reed. All Rights Reserved. Permission to use
|
|
code in the Developer's manual was granted for this driver by
|
|
Aironet.
|
|
|
|
In addition this module was derived from dummy_cs.
|
|
The initial developer of dummy_cs is David A. Hinds
|
|
<dahinds@users.sourceforge.net>. Portions created by David A. Hinds
|
|
are Copyright (C) 1999 David A. Hinds. All Rights Reserved.
|
|
|
|
======================================================================*/
|
|
|
|
#ifdef __IN_PCMCIA_PACKAGE__
|
|
#include <pcmcia/k_compat.h>
|
|
#endif
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/netdevice.h>
|
|
|
|
#include <pcmcia/cs_types.h>
|
|
#include <pcmcia/cs.h>
|
|
#include <pcmcia/cistpl.h>
|
|
#include <pcmcia/cisreg.h>
|
|
#include <pcmcia/ds.h>
|
|
|
|
#include <asm/io.h>
|
|
#include <asm/system.h>
|
|
|
|
#include "airo.h"
|
|
|
|
/*
|
|
All the PCMCIA modules use PCMCIA_DEBUG to control debugging. If
|
|
you do not define PCMCIA_DEBUG at all, all the debug code will be
|
|
left out. If you compile with PCMCIA_DEBUG=0, the debug code will
|
|
be present but disabled -- but it can then be enabled for specific
|
|
modules at load time with a 'pc_debug=#' option to insmod.
|
|
*/
|
|
#ifdef PCMCIA_DEBUG
|
|
static int pc_debug = PCMCIA_DEBUG;
|
|
module_param(pc_debug, int, 0);
|
|
static char *version = "$Revision: 1.2 $";
|
|
#define DEBUG(n, args...) if (pc_debug>(n)) printk(KERN_DEBUG args);
|
|
#else
|
|
#define DEBUG(n, args...)
|
|
#endif
|
|
|
|
/*====================================================================*/
|
|
|
|
MODULE_AUTHOR("Benjamin Reed");
|
|
MODULE_DESCRIPTION("Support for Cisco/Aironet 802.11 wireless ethernet \
|
|
cards. This is the module that links the PCMCIA card \
|
|
with the airo module.");
|
|
MODULE_LICENSE("Dual BSD/GPL");
|
|
MODULE_SUPPORTED_DEVICE("Aironet 4500, 4800 and Cisco 340 PCMCIA cards");
|
|
|
|
/*====================================================================*/
|
|
|
|
/*
|
|
The event() function is this driver's Card Services event handler.
|
|
It will be called by Card Services when an appropriate card status
|
|
event is received. The config() and release() entry points are
|
|
used to configure or release a socket, in response to card
|
|
insertion and ejection events. They are invoked from the airo_cs
|
|
event handler.
|
|
*/
|
|
|
|
static int airo_config(struct pcmcia_device *link);
|
|
static void airo_release(struct pcmcia_device *link);
|
|
|
|
/*
|
|
The attach() and detach() entry points are used to create and destroy
|
|
"instances" of the driver, where each instance represents everything
|
|
needed to manage one actual PCMCIA card.
|
|
*/
|
|
|
|
static void airo_detach(struct pcmcia_device *p_dev);
|
|
|
|
/*
|
|
You'll also need to prototype all the functions that will actually
|
|
be used to talk to your device. See 'pcmem_cs' for a good example
|
|
of a fully self-sufficient driver; the other drivers rely more or
|
|
less on other parts of the kernel.
|
|
*/
|
|
|
|
/*
|
|
A linked list of "instances" of the aironet device. Each actual
|
|
PCMCIA card corresponds to one device instance, and is described
|
|
by one struct pcmcia_device structure (defined in ds.h).
|
|
|
|
You may not want to use a linked list for this -- for example, the
|
|
memory card driver uses an array of struct pcmcia_device pointers, where minor
|
|
device numbers are used to derive the corresponding array index.
|
|
*/
|
|
|
|
/*
|
|
A driver needs to provide a dev_node_t structure for each device
|
|
on a card. In some cases, there is only one device per card (for
|
|
example, ethernet cards, modems). In other cases, there may be
|
|
many actual or logical devices (SCSI adapters, memory cards with
|
|
multiple partitions). The dev_node_t structures need to be kept
|
|
in a linked list starting at the 'dev' field of a struct pcmcia_device
|
|
structure. We allocate them in the card's private data structure,
|
|
because they generally shouldn't be allocated dynamically.
|
|
|
|
In this case, we also provide a flag to indicate if a device is
|
|
"stopped" due to a power management event, or card ejection. The
|
|
device IO routines can use a flag like this to throttle IO to a
|
|
card that is not ready to accept it.
|
|
*/
|
|
|
|
typedef struct local_info_t {
|
|
dev_node_t node;
|
|
struct net_device *eth_dev;
|
|
} local_info_t;
|
|
|
|
/*======================================================================
|
|
|
|
airo_attach() creates an "instance" of the driver, allocating
|
|
local data structures for one device. The device is registered
|
|
with Card Services.
|
|
|
|
The dev_link structure is initialized, but we don't actually
|
|
configure the card at this point -- we wait until we receive a
|
|
card insertion event.
|
|
|
|
======================================================================*/
|
|
|
|
static int airo_probe(struct pcmcia_device *p_dev)
|
|
{
|
|
local_info_t *local;
|
|
|
|
DEBUG(0, "airo_attach()\n");
|
|
|
|
/* Interrupt setup */
|
|
p_dev->irq.Attributes = IRQ_TYPE_DYNAMIC_SHARING;
|
|
p_dev->irq.IRQInfo1 = IRQ_LEVEL_ID;
|
|
p_dev->irq.Handler = NULL;
|
|
|
|
/*
|
|
General socket configuration defaults can go here. In this
|
|
client, we assume very little, and rely on the CIS for almost
|
|
everything. In most clients, many details (i.e., number, sizes,
|
|
and attributes of IO windows) are fixed by the nature of the
|
|
device, and can be hard-wired here.
|
|
*/
|
|
p_dev->conf.Attributes = 0;
|
|
p_dev->conf.IntType = INT_MEMORY_AND_IO;
|
|
|
|
/* Allocate space for private device-specific data */
|
|
local = kzalloc(sizeof(local_info_t), GFP_KERNEL);
|
|
if (!local) {
|
|
printk(KERN_ERR "airo_cs: no memory for new device\n");
|
|
return -ENOMEM;
|
|
}
|
|
p_dev->priv = local;
|
|
|
|
return airo_config(p_dev);
|
|
} /* airo_attach */
|
|
|
|
/*======================================================================
|
|
|
|
This deletes a driver "instance". The device is de-registered
|
|
with Card Services. If it has been released, all local data
|
|
structures are freed. Otherwise, the structures will be freed
|
|
when the device is released.
|
|
|
|
======================================================================*/
|
|
|
|
static void airo_detach(struct pcmcia_device *link)
|
|
{
|
|
DEBUG(0, "airo_detach(0x%p)\n", link);
|
|
|
|
airo_release(link);
|
|
|
|
if ( ((local_info_t*)link->priv)->eth_dev ) {
|
|
stop_airo_card( ((local_info_t*)link->priv)->eth_dev, 0 );
|
|
}
|
|
((local_info_t*)link->priv)->eth_dev = NULL;
|
|
|
|
kfree(link->priv);
|
|
} /* airo_detach */
|
|
|
|
/*======================================================================
|
|
|
|
airo_config() is scheduled to run after a CARD_INSERTION event
|
|
is received, to configure the PCMCIA socket, and to make the
|
|
device available to the system.
|
|
|
|
======================================================================*/
|
|
|
|
#define CS_CHECK(fn, ret) \
|
|
do { last_fn = (fn); if ((last_ret = (ret)) != 0) goto cs_failed; } while (0)
|
|
|
|
static int airo_cs_config_check(struct pcmcia_device *p_dev,
|
|
cistpl_cftable_entry_t *cfg,
|
|
cistpl_cftable_entry_t *dflt,
|
|
unsigned int vcc,
|
|
void *priv_data)
|
|
{
|
|
win_req_t *req = priv_data;
|
|
|
|
if (cfg->index == 0)
|
|
return -ENODEV;
|
|
|
|
/* Does this card need audio output? */
|
|
if (cfg->flags & CISTPL_CFTABLE_AUDIO) {
|
|
p_dev->conf.Attributes |= CONF_ENABLE_SPKR;
|
|
p_dev->conf.Status = CCSR_AUDIO_ENA;
|
|
}
|
|
|
|
/* Use power settings for Vcc and Vpp if present */
|
|
/* Note that the CIS values need to be rescaled */
|
|
if (cfg->vpp1.present & (1<<CISTPL_POWER_VNOM))
|
|
p_dev->conf.Vpp = cfg->vpp1.param[CISTPL_POWER_VNOM]/10000;
|
|
else if (dflt->vpp1.present & (1<<CISTPL_POWER_VNOM))
|
|
p_dev->conf.Vpp = dflt->vpp1.param[CISTPL_POWER_VNOM]/10000;
|
|
|
|
/* Do we need to allocate an interrupt? */
|
|
if (cfg->irq.IRQInfo1 || dflt->irq.IRQInfo1)
|
|
p_dev->conf.Attributes |= CONF_ENABLE_IRQ;
|
|
|
|
/* IO window settings */
|
|
p_dev->io.NumPorts1 = p_dev->io.NumPorts2 = 0;
|
|
if ((cfg->io.nwin > 0) || (dflt->io.nwin > 0)) {
|
|
cistpl_io_t *io = (cfg->io.nwin) ? &cfg->io : &dflt->io;
|
|
p_dev->io.Attributes1 = IO_DATA_PATH_WIDTH_AUTO;
|
|
if (!(io->flags & CISTPL_IO_8BIT))
|
|
p_dev->io.Attributes1 = IO_DATA_PATH_WIDTH_16;
|
|
if (!(io->flags & CISTPL_IO_16BIT))
|
|
p_dev->io.Attributes1 = IO_DATA_PATH_WIDTH_8;
|
|
p_dev->io.BasePort1 = io->win[0].base;
|
|
p_dev->io.NumPorts1 = io->win[0].len;
|
|
if (io->nwin > 1) {
|
|
p_dev->io.Attributes2 = p_dev->io.Attributes1;
|
|
p_dev->io.BasePort2 = io->win[1].base;
|
|
p_dev->io.NumPorts2 = io->win[1].len;
|
|
}
|
|
}
|
|
|
|
/* This reserves IO space but doesn't actually enable it */
|
|
if (pcmcia_request_io(p_dev, &p_dev->io) != 0)
|
|
return -ENODEV;
|
|
|
|
/*
|
|
Now set up a common memory window, if needed. There is room
|
|
in the struct pcmcia_device structure for one memory window handle,
|
|
but if the base addresses need to be saved, or if multiple
|
|
windows are needed, the info should go in the private data
|
|
structure for this device.
|
|
|
|
Note that the memory window base is a physical address, and
|
|
needs to be mapped to virtual space with ioremap() before it
|
|
is used.
|
|
*/
|
|
if ((cfg->mem.nwin > 0) || (dflt->mem.nwin > 0)) {
|
|
cistpl_mem_t *mem = (cfg->mem.nwin) ? &cfg->mem : &dflt->mem;
|
|
memreq_t map;
|
|
req->Attributes = WIN_DATA_WIDTH_16|WIN_MEMORY_TYPE_CM;
|
|
req->Base = mem->win[0].host_addr;
|
|
req->Size = mem->win[0].len;
|
|
req->AccessSpeed = 0;
|
|
if (pcmcia_request_window(&p_dev, req, &p_dev->win) != 0)
|
|
return -ENODEV;
|
|
map.Page = 0;
|
|
map.CardOffset = mem->win[0].card_addr;
|
|
if (pcmcia_map_mem_page(p_dev->win, &map) != 0)
|
|
return -ENODEV;
|
|
}
|
|
/* If we got this far, we're cool! */
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int airo_config(struct pcmcia_device *link)
|
|
{
|
|
local_info_t *dev;
|
|
win_req_t *req;
|
|
int last_fn, last_ret;
|
|
|
|
dev = link->priv;
|
|
|
|
DEBUG(0, "airo_config(0x%p)\n", link);
|
|
|
|
req = kzalloc(sizeof(win_req_t), GFP_KERNEL);
|
|
if (!req)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* In this loop, we scan the CIS for configuration table
|
|
* entries, each of which describes a valid card
|
|
* configuration, including voltage, IO window, memory window,
|
|
* and interrupt settings.
|
|
*
|
|
* We make no assumptions about the card to be configured: we
|
|
* use just the information available in the CIS. In an ideal
|
|
* world, this would work for any PCMCIA card, but it requires
|
|
* a complete and accurate CIS. In practice, a driver usually
|
|
* "knows" most of these things without consulting the CIS,
|
|
* and most client drivers will only use the CIS to fill in
|
|
* implementation-defined details.
|
|
*/
|
|
last_ret = pcmcia_loop_config(link, airo_cs_config_check, req);
|
|
if (last_ret)
|
|
goto failed;
|
|
|
|
/*
|
|
Allocate an interrupt line. Note that this does not assign a
|
|
handler to the interrupt, unless the 'Handler' member of the
|
|
irq structure is initialized.
|
|
*/
|
|
if (link->conf.Attributes & CONF_ENABLE_IRQ)
|
|
CS_CHECK(RequestIRQ, pcmcia_request_irq(link, &link->irq));
|
|
|
|
/*
|
|
This actually configures the PCMCIA socket -- setting up
|
|
the I/O windows and the interrupt mapping, and putting the
|
|
card and host interface into "Memory and IO" mode.
|
|
*/
|
|
CS_CHECK(RequestConfiguration, pcmcia_request_configuration(link, &link->conf));
|
|
((local_info_t*)link->priv)->eth_dev =
|
|
init_airo_card( link->irq.AssignedIRQ,
|
|
link->io.BasePort1, 1, &handle_to_dev(link) );
|
|
if (!((local_info_t*)link->priv)->eth_dev) goto cs_failed;
|
|
|
|
/*
|
|
At this point, the dev_node_t structure(s) need to be
|
|
initialized and arranged in a linked list at link->dev_node.
|
|
*/
|
|
strcpy(dev->node.dev_name, ((local_info_t*)link->priv)->eth_dev->name );
|
|
dev->node.major = dev->node.minor = 0;
|
|
link->dev_node = &dev->node;
|
|
|
|
/* Finally, report what we've done */
|
|
printk(KERN_INFO "%s: index 0x%02x: ",
|
|
dev->node.dev_name, link->conf.ConfigIndex);
|
|
if (link->conf.Vpp)
|
|
printk(", Vpp %d.%d", link->conf.Vpp/10, link->conf.Vpp%10);
|
|
if (link->conf.Attributes & CONF_ENABLE_IRQ)
|
|
printk(", irq %d", link->irq.AssignedIRQ);
|
|
if (link->io.NumPorts1)
|
|
printk(", io 0x%04x-0x%04x", link->io.BasePort1,
|
|
link->io.BasePort1+link->io.NumPorts1-1);
|
|
if (link->io.NumPorts2)
|
|
printk(" & 0x%04x-0x%04x", link->io.BasePort2,
|
|
link->io.BasePort2+link->io.NumPorts2-1);
|
|
if (link->win)
|
|
printk(", mem 0x%06lx-0x%06lx", req->Base,
|
|
req->Base+req->Size-1);
|
|
printk("\n");
|
|
kfree(req);
|
|
return 0;
|
|
|
|
cs_failed:
|
|
cs_error(link, last_fn, last_ret);
|
|
failed:
|
|
airo_release(link);
|
|
kfree(req);
|
|
return -ENODEV;
|
|
} /* airo_config */
|
|
|
|
/*======================================================================
|
|
|
|
After a card is removed, airo_release() will unregister the
|
|
device, and release the PCMCIA configuration. If the device is
|
|
still open, this will be postponed until it is closed.
|
|
|
|
======================================================================*/
|
|
|
|
static void airo_release(struct pcmcia_device *link)
|
|
{
|
|
DEBUG(0, "airo_release(0x%p)\n", link);
|
|
pcmcia_disable_device(link);
|
|
}
|
|
|
|
static int airo_suspend(struct pcmcia_device *link)
|
|
{
|
|
local_info_t *local = link->priv;
|
|
|
|
netif_device_detach(local->eth_dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int airo_resume(struct pcmcia_device *link)
|
|
{
|
|
local_info_t *local = link->priv;
|
|
|
|
if (link->open) {
|
|
reset_airo_card(local->eth_dev);
|
|
netif_device_attach(local->eth_dev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct pcmcia_device_id airo_ids[] = {
|
|
PCMCIA_DEVICE_MANF_CARD(0x015f, 0x000a),
|
|
PCMCIA_DEVICE_MANF_CARD(0x015f, 0x0005),
|
|
PCMCIA_DEVICE_MANF_CARD(0x015f, 0x0007),
|
|
PCMCIA_DEVICE_MANF_CARD(0x0105, 0x0007),
|
|
PCMCIA_DEVICE_NULL,
|
|
};
|
|
MODULE_DEVICE_TABLE(pcmcia, airo_ids);
|
|
|
|
static struct pcmcia_driver airo_driver = {
|
|
.owner = THIS_MODULE,
|
|
.drv = {
|
|
.name = "airo_cs",
|
|
},
|
|
.probe = airo_probe,
|
|
.remove = airo_detach,
|
|
.id_table = airo_ids,
|
|
.suspend = airo_suspend,
|
|
.resume = airo_resume,
|
|
};
|
|
|
|
static int airo_cs_init(void)
|
|
{
|
|
return pcmcia_register_driver(&airo_driver);
|
|
}
|
|
|
|
static void airo_cs_cleanup(void)
|
|
{
|
|
pcmcia_unregister_driver(&airo_driver);
|
|
}
|
|
|
|
/*
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
as published by the Free Software Foundation; either version 2
|
|
of the License, or (at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
In addition:
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
3. The name of the author may not be used to endorse or promote
|
|
products derived from this software without specific prior written
|
|
permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
|
|
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
|
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
module_init(airo_cs_init);
|
|
module_exit(airo_cs_cleanup);
|